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Abstract: Augmented reality (AR) has been shown to improve productivity in industry, but its
adverse effects (e.g., headaches, eye strain, nausea, and mental workload) on users warrant fur-
ther investigation. The objective of this study is to investigate the effects of different instruction
methods (i.e., HoloLens AR-based and paper-based instructions) and task complexity (low and
high-demanding tasks) on cognitive workloads and performance. Twenty-eight healthy males with
a mean age of 32.12 (SD 2.45) years were recruited in this study and were randomly divided into
two groups. The first group performed the experiment using AR-based instruction, and the second
group used paper-based instruction. Performance was measured using total task time (TTT). The
cognitive workload was measured using the power of electroencephalograph (EEG) features and
the NASA task load index (NASA TLX). The results showed that using AR instructions resulted in a
reduction in maintenance times and an increase in mental workload compared to paper instructions,
particularly for the more demanding tasks. With AR instruction, 0.45% and 14.94% less time was
spent on low- and high-demand tasks, respectively, as compared to paper instructions. According
to the EEG features, employing AR to guide employees during highly demanding maintenance
tasks increased information processing, which could be linked with an increased germane cognitive
load. Increased germane cognitive load means participants can better facilitate long-term knowledge
and skill acquisition. These results suggested that AR is superior and recommended for highly
demanding maintenance tasks since it speeds up maintenance times and increases the possibility that
information is stored in long-term memory and encrypted for recalls.

Keywords: augmented reality (AR); maintenance task complexity; cognitive workload; human
performance; electroencephalography (EEG)

1. Introduction

The overall complexity of maintenance and assembly tasks grows as product mass
customization increases [1,2]. The number of items offered by manufacturing enterprises
has dramatically increased as a consequence of increased product saturation, competition,
worldwide commerce, and growing demand for diverse sorts of products [3,4]. As a
result, the complexity of maintenance tasks may rise, potentially leading to decreased
operational effectiveness [5]. Task complexity in terms of the required cognitive resources
is defined as “the difficulty in human information processing” [6], which is mainly affected
by system design or environmental differences. The structure of new equipment and the
environment where maintenance specialists accomplish their responsibilities are often
very complex. Maintenance specialists are crucial individuals within the system of the
manufacturing industry, in which they study the status of the maintenance goal, identify
faults, and undertake maintenance tasks. Such responsibilities often involve a large amount
of information processing, which contributes to elevated levels of cognitive workload.
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Hence, a maintenance activity is more complicated if it involves making decisions that are
accompanied by high cognitive demands. Furthermore, new technologies and techniques
have been continuously adapted in the manufacturing environment as a response to the
continuous efforts to increase productivity [2]. Thus, maintenance specialists are required
to adapt and learn new techniques to accomplish their duties, which poses a potential
increase in task complexity and, thus, could impose high mental demands [7–9].

Traditionally, instructions for maintenance tasks are delivered to workers on paper
with expert assistance [10,11]. However, time, availability, and cost restrictions may prevent
expert assistance. In addition, there is a positive relationship between the efficiency of
the paper-based instruction method and the complexity of maintenance tasks [12]. To
improve maintenance efficiency, it is necessary to provide the correct information about
the appropriate quantity at the appropriate time to the appropriate worker [2]. Therefore,
a good maintenance support system that can support or aid the human technicians is
necessary to reduce financial costs and prevent errors. Such a system should feature an
intuitive, timely, and effective training tool to ensure that required abilities and skills are
delivered effectively to workers, especially newly hired workers, or when new technologies
are adapted [13].

The recent developments in interactive multimedia mediums provide promising
solutions for the weaknesses and limitations of the traditional paper-based instruction
method. For instance, augmented reality (AR) technology is a powerful tool that overlays
virtual information produced by computers into a real environment, which promotes
experience and interaction [14], as well as efficiently solving maintenance issues caused
by the complexity of modern equipment and, thus, improving quality and maintenance
effectiveness [15–17]. However, most previous studies assessing the effects of AR-based
instructions on cognitive load have applied subjective measurement methods and tested
tasks that are often unrepresentative of real industrial maintenance settings.

Cognitive load is defined as “the amount of cognitive effort being put into working
memory at any particular time” [18]. It is usually connected to the Cognitive Load Theory
(CLT), which examines how mental resources are directed and exploited during training
and problem-solving. The need for addressing cognitive load during training is based
on CLT and on the idea of the human cognitive model, which consists of sensory input,
working memory with a limited capacity, and long-term memory with an infinite storage
capacity [18,19]. Overall, CLT distinguished three types of memory loads, namely intrinsic
(ICL), extraneous (ECL), and germane cognitive loads (GCL) [18]. ICL is associated with
the inherent difficulty of the subject matter and the number of interrelated components
in the learning task. ECL is linked to the cognitive effort required for the learner to look
for/identify task-relevant information and is the result of additional demands generated by
poor instructional design. This mental load is non-task-related and should be minimized
by optimizing instructions and minimizing unrelated noise [20]. GCL is associated with
the cognitive exertion required for learners to accomplish learning objectives or internalize
new knowledge in long-term memory (i.e., the construction of schemas) [18]. Thus, the
purpose of instructions or guidance should be to assist the development of schemata in
working memory without exceeding its capacity with more information [21,22]. As a result,
in addition to past knowledge as a learner’s specific causative element affecting the capacity
of working memory, instructions for tasks, through which learners gain new information,
must be considered when determining working memory capacity. Cho et al. [23] modified
the standard CLT model proposed by [24,25] to include the physical learning environment,
learner tasks, and their interaction as contributing elements to cognitive load levels. As a
consequence, interactions between the environment and the learner, the learner and the
task, and the task and the environment may all alter cognitive load [23].

In comparison with traditional training methods, previous researchers focused mainly
on the effectiveness of AR as a training or guiding tool based on task completion time
and success rate. Previous research has shown that presenting task instructions via an
AR display reduced errors and time to complete tasks while maintaining high levels of
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technology acceptance from operators [26–33]. However, there is a significant lack of
empirical evidence from user studies implementing objective measures to evaluate the
effectiveness and adverse effects of AR-based instruction methods (e.g., headaches, eye
strain, nausea, and mental workload) when compared to paper instruction. For instance,
several previous studies have demonstrated the cognitive load and attention of AR-based
instruction using subjective measures such as NASA-TLX [32,34–36]. Although very useful,
NASA-TLX has the potential to be influenced by participant bias [37,38] and fails to
provide accurate, real-time cognitive measurements [39]. On the other hand, objective
assessment methods could provide a direct and real-time evaluation of the physiological
state of individuals during task performance. The recent advancements in the human
factors field provide objective assessment methods to investigate the human brain function
concerning perceptual, cognitive, and motor functioning in real or simulated industrial
settings. Such methods include electroencephalography (EEG), electrocardiogram (ECG),
electrooculography (EOG), and functional magnetic resonance imaging (fMRI) [40,41].

The electroencephalogram (EEG) is an emerging, noninvasive, affordable, and portable
neuroimaging modality used to record voltage fluctuations occurring as ionic current flows
inside the brain’s neurons [42,43]. The electrical potential (often measured in microvolts) in
the brain is recorded instantaneously by placing various electrodes at different locations
on the scalp (regularly positioned over the frontal, parietal, occipital, and temporal brain
lobes) [43,44]. Thus, EEG brain signals are susceptible to vigilance variability and are
associated with various cognitive states of an individual while performing a specific
task [45–49]. Mainly, EEG has been utilized to identify the different features of cognitive
performance such as perception, emotions, memory, monitoring, and control [50]. To
obtain meaningful data about an individual’s cognitive load, EEG signals combine brain
patterns at different levels of frequency which fall into multiple frequency bands (e.g., Delta
(δ: 0.5–3.5 Hz), Theta (θ: 4–7 Hz), Alpha (α: 8–12 Hz), Beta (β: 13–30 Hz), and Gamma
(γ: 31–50 Hz) [45].

Previous studies have utilized EEG trends in various frequency bands to evaluate
the cognitive characteristics of performance in different fields. Sassaroli et al. [51] found
that frontal lobe activity in brain regions could be used as a measure of mental workload.
An increase in prefrontal cortex activation has been connected to an increase in mental
workload while driving [52]. Increased mental workload has been linked to theta and
alpha powers [53]. The fluctuation of the theta and alpha bands’ power has been linked
with memory and complex cognition performance [54,55]. Jensen & Tesche. [56] indicated
that the rise in theta activity in the frontal cortex was connected to the increased load
on the memory while working on a memory-intensive task. In addition, the complexity
of the task has been found to have positive associations with theta power in the frontal
lobe [57] and with alpha power when the left and right hemispheres were considered [58].
Puma et al. [59] evaluated the impact of task complexity on theta (θ) and alpha (α) band
power and found that the θ and α power spectral densities were increased for those who
performed at a high level in comparison to those who performed at a medium or low level.
Furthermore, it was discovered that beta (β) band power decreases during new information
acquisition [60]. Diaz-Piedra et al. [61] examined the influence of flight difficulty on the
activity of the brain. They discovered that as complexity increased, performance declined,
and the full range of EEG activity (0.5–30 Hz) demonstrated a rising pattern. Iqbal et al. [62]
discovered that θ power has the possibility to detect a discrepancy in the way processes act
and the operator’s mental models. They also found that θ power has a positive relationship
with operator effort required across process deviations.

This study aims to advance the body of knowledge relative to evaluating cognitive
workload while using AR systems in the training of maintenance and assembly tasks. To
accomplish this goal, both subjective and objective measurement methodologies are con-
sidered to evaluate cognitive workload during real-world representations of maintenance
tasks. Therefore, the main objective of this study is to investigate the effects of different
instruction methods (AR-based and paper-based instruction) and task complexity on cogni-
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tive workload and performance. The cognitive workload is evaluated by the EEG power
spectrum density of alpha, beta, and theta in the frontal, central, occipital, temporal, and
parietal brain regions and by perceived workload (NASA-TLX). The current study seeks
to answer the following question: how do AR-based instruction methods with various
demanding tasks affect human cognitive load (i.e., brain activity and perceived workload)
and performance (completion time)? It was hypothesized that performing the experimental
maintenance tasks with AR-based instructions would be linked with a higher cognitive
load as participants must simultaneously attend to information in both real and virtual
form. Yet, it was also anticipated that AR-instructions would improve performance time
since they facilitate easier information availability as compared to traditional instructions.

2. Materials and Methods
2.1. Apparatus

The maintenance tasks were performed on a piston pump subsystem. This piston
pump is part of the “GUNT” Practice Line for assembly, maintenance, and repair, which
is designed for students and technicians’ training (set: MT 184, Assembly & Maintenance
Exercise: Piston Pump). A screwdriver, a wrench, a soft hammer, a jig, and a bearing puller
were all needed to complete the tasks on the piston pump. Two instruction methods (Mi-
crosoft HoloLens and paper instructions) were used to guide the participants to complete
the maintenance tasks. The maintenance instructions for the two tasks were communicated
via the Microsoft HoloLens AR system. The paper instruction manuals for the two tasks
were developed based on the manual provided by the manufacturer (Gunt technology Ltd.,
Barsbüttel, Germany). A Live Amp wireless amplifier (Brain Products, GmbH, Gilching,
Germany) with 32 channels (weighing 60 g) was used for amplifying and digitizing EEG
signals. To hold the EEG electrodes, a black sub-inion cap (EASYCAP, Brain Products
GmbH, Gilching, Germany) with an integrated chin made of soft, high-comfort fabric was
used. A brain vision recorder system (Brain Products GmbH, Gilching, Germany) was used
for recording EEG signals.

2.2. Participants

Twenty-eight healthy male university students with a mean age of 32.12 (SD 2.45)
years from King Saud University, Riyadh, were recruited via opportunity sampling. The
minimum, maximum, and median ages of the participants were 27, 35, and 32.5 years,
respectively. A self-reported screening survey was adapted to exclude participants with
a pre-existing orthopedic surgery, nervous system disorder, articular pain, a history of
musculoskeletal disorder, injury to the arms, legs, or spine, or a heart and/or lung problem,
an allergic reaction to any adhesive and gel materials used in this study, or sleep disturbance
in the two weeks prior to the experiment. Moreover, each participant was also asked to
avoid eating two hours before training or data collection. Participants were also instructed
to have a normal amount of sleep (approximately six hours of sleep each night) and
refrain from engaging in any excessive physical activity before the experimental sessions.
Participants in the experiment were selected so that they had little to no background
information about the task to be performed.

The IRB’s approval for this experiment was obtained from the Human Participants
Review Sub-committee, the Institutional Review Board, King Khalid University Hospital,
the College of Medicine, and King Saud University. The approved written informed consent
form (ethical approval code: E-19-4467) was readied and signed by each participant before
participating in the experiment.

2.3. Experimental Design

A 2 × (2 × 14) mixed design was implemented to represent the experimental design
with one between-subject variable and one within-subject variable. The first independent
variable, which was treated as a between-subject variable, is the instruction methods at two
levels (i.e., AR-based instructions and paper-based instructions). The second independent
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variable, which was treated as a within-subject variable, is the task complexity with two
levels (i.e., low-demanding task and high-demanding task). The dependent variables were
the EEG power spectrum density of alpha, beta, and theta in the frontal, temporal, parietal,
and occipital brain regions and the perceived workload (NASA-TLX).

2.4. Maintenance Tasks

The maintenance tasks used in this study are the same as those used in Alhaag et al. [63]
study. The overhaul maintenance operations of the piston pump were selected for this
study and divided into two maintenance tasks: repairing a piston pump’s gearbox (i.e., a
high-demanding task) and checking the seal of the pump housing (i.e., a low-demanding
task). Figure 1 presents the gearbox and pump housing of the piston pump in their fully
assembled state. In the highly demanding task, participants were required to repair the
gearbox of the piston pump and check all seals in the gearbox. The gearbox of the piston
pump consists of 32 groups of parts that must be disassembled, maintained, and reassem-
bled over 40 steps using standard tools such as an open-ended wrench, screwdriver, puller,
jig, and soft hammer. Table 1 presents the maintenance steps for this highly demanding
task. In the low-demanding task, participants were required to check all seals on the pump
housing. Compared to the highly demanding task, this task included fewer steps (26 steps,
as shown in Table 2), the use of unspecialized hand tools and lightweight parts, and re-
quired less precision and effort. The degree of complexity was evaluated experimentally by
Alhaag et al. [63].
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Table 1. List of the maintenance steps for the high-demanding task (piston pump).

Disassembly Steps Assembly Steps

1 Detach the V-belt pulley from the crankshaft. 21 Before installing the grooved ball bearings on the crankshaft,
lightly lubricate the shaft.

2 Remove the stud bolt, hexagon nut, and washer. 22 Fit the ball bearing with the groove at the connecting rod seat
on the crankshaft.

3 Pull the packing gland out of the pump and remove
the hexagon nut from the stud bolts. 23

Without bending the crankshaft, drive the grooved ball bearing
onto it using a soft hammer, until the grooved ball bearing hits

the recess.

4
Detach the pump housing from the gearbox.

Carefully guide the piston out of the cylinder pipe
when doing so.

24

Insert the piston rod and connecting rod into the gearbox. The
crosshead should not be inserted into the guide bush just yet;

the piston rod should protrude slightly from the oil
splash guard.

5 Remove duo’s hexagon nut with the spring ring
from duo-piston 25 Install an oil splash guard in the housing of the gearbox.

6 Pull the duo-piston from the piston rod. 26 Twist the oil stripper and press it against the piston rod.
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Table 1. Cont.

Disassembly Steps Assembly Steps

7 Remove the hexagon nut from the rod. 27 Position the packing gland seal on the packing gland.

8
Remove the open bearing cover and bearing cover
seal from the gearbox housing by unscrewing the

hexagon screws.
28 Slot the piston rod through the packing gland and insert the

crosshead in the guide bush.

9
Remove the closed bearing cover and bearing cover

seal from the gearbox housing by unscrewing the
hexagon screws.

29 Screw a hexagon nut and washer onto the piston rod.

10 Lever gearbox cover from the gearbox housing 30 Insert the duo-piston onto the piston rod.
11 Loosen screw fitting on connecting rod 31 Tighten the hexagon nut with the spring.

12

Pull the crankshaft from the base of the connecting
rods. To remove the connecting rod bearing, you

must first spread the base of the rod using
a screwdriver.

32 Fit crankshaft into connecting rod base.

13
Take the crosshead and the rod that controls the
piston out of the guide bush. The connecting rod

should be left inside the gearbox.
33 To facilitate the insertion of the connecting rod bearing, open up

the base of the rod using a screwdriver.

14 Take packing gland seal from packing gland. 34 Mount the gearbox cover on the gearbox housing.
15 Twist the oil stripper off the piston rod. 35 Position the bearing cover seal against the gearbox housing.

16 Lever oil splash guard from the gearbox housing 36 Drive hexagonal screws into the gearbox housing to secure the
open bearing cover.

17 Take the connecting rod and piston rod out of the
gearbox housing. 37 Press the gearbox housing against the pump housing.

18
Insert the puller into the ball bearing groove. The

hook arms are evenly pressed against the
ball-bearing grooves.

38 Connect the pump’s gearbox and housing using the
hexagon nut.

19 Turn the adjuster thread against the shaft end.
Ensure the jig is centered. 39 Put packing glands on stud bolts using a hexagon nut

and washer.

20 Carefully turn the adjustment thread to remove the
grooved ball bearing from the crankshaft. 40 Push the V-belt pulley onto the crankshaft.

Table 2. List of the maintenance steps for the low-demanding task (pump housing).

Disassembly Steps Assembly Steps

1 Unscrew the water plug with the seal from the
air chamber. 14 Place the valve seat seal into the pump housing.

2 Unscrew the cap nut and washer from the air
chamber bolt. 15 Place both intake valves on one side of a pump housing.

3 Lift the air chamber from the pump housing. 16 Position both pressure valves on the pump housing’s
opposite side.

4 Remove the air chamber seal from the housing. 17 Cover each pressure and intake valve with a bridge.

5 Remove the bolt for the air chamber from the
pump housing. 18 Use a hexagonal screw and washer to secure the valve bridges.

6 Loosen hexagon screws and take off the intake and
pressure flanges with seals. 19 Tighten the drain plug containing the seal into the tapped hole.

7 Take off the drain plug and seal it from the tapped
hole in the pump housing. 20 Fit seals at intake and pressure fittings.

8 Remove the hex nuts and washers from the valve
bridge stud bolts. 21 Tighten both straight flanges with hexagon screws to the intake

and pressure fittings.
9 Raise valve bridges from intake and pressure valves. 22 Screw the air chamber bolt into the pump housing.

10 Take the pressure valve out of the pump housing. 23 Place the air chamber seal on the housing by pushing it over the
air chamber bolt.

11 Take the intake valve out of the pump housing. 24 Attach the air chamber to the pump case. The intake valves
must be located above the membrane safety valve opening.

12 Remove the valve seat seal (59) from the
pump housing. 25 Screw a cap nut with a washer onto the air chamber bolt.

13 Check valve seat seals and packing gland seals. 26 Screw the water plug with the seal into the air chamber.
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2.5. Instruction Methods
2.5.1. Paper-Based Instructions Method

The paper-based instructions were extracted from the manual of the piston pump that
is used for troubleshooting and repair. For the two maintenance tasks, two paper-based
instructions were designed and delivered on A4 sheets of paper, one page per step. Each
step was composed of pictures, text information, and the needed tools. For the highly
demanding task, the paper-based instructions consisted of 22 pages and 40 steps. The first
page contained a list of all parts (disassembled) and their code numbers, as well as the
objective of the task. Each of the following pages (page 2 to page 20) contained two of
the 40 steps (see Figure 2). The final page contained the full assembly of the gearbox. For
the low-demanding task, the paper-based instructions consisted of 14 pages and 26 steps.
The first page contained a list of all parts (disassembled) and their code number, as well
as the objective of the task. Each of the following pages contained two of the 26 steps (see
Figure 3).

2.5.2. AR-Based Instruction Method

The first step in building the AR instructions was to create 1:1 CAD models for the
piston pump using the SolidWorks software. After that, PTC Creo illustrate was used
to build and edit the sequence animation for the AR experience. The 3D instructions for
assembly, repair, and disassembly of the two tasks were created based on visual cues
and animations. Step-by-step instructions were created using several motion effects (as
applicable) for individual steps, such as fly-in/fly-out, fade-in/fade-out, shake, pulse,
unscrew, etc. These effects were added to each step individually, and then all steps of one
intended instruction were combined into one fluid motion. Also, other resources, such as
animated hand tools like a screwdriver, wrench, arrow, and puller, were added. Then, the
3D instructions were published as a PLZ file to be imported by Vuforia Studio software to
create the AR experience. Vuforia Studio is a web-based tool used to create and publish AR
experiences and enables users to provide step-by-step work instructions and overlay 3D
digital content on real-world equipment to provide contextual knowledge. In addition, the
programming language JavaScript was used to develop the key features of the applications.
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Then, the created experiences for the maintenance tasks were published to the cloud-
based “Vuforia Experience Service” with quick response (QR) codes and Things. Vuforia
Experience Service represents a server used to store and deliver published AR experiences,
which allow users to access them on Microsoft HoloLens 1 devices through the Vuforia
View application. For displaying the AR instruction, the Vuforia View app stored on Mi-
crosoft HoloLens was used for scanning a specific Thing marker placed on the maintenance
workplace 130 cm away from the participant. After the Thing Mark was identified, Mi-
crosoft HoloLens overlaid a 3D CAD model of the selected task on the user’s surroundings.
In this method, the maintenance steps were presented as 3D animated models in the AR
environment. The participants can interact with the 3D contents and control the playback
of the animation by directing their gaze to the virtual buttons (e.g., play, next step, previous
step, reset, name of tasks) placed above the 3D model and making a pinching gesture with
their fingers. If the participant clicks the play button, a step-by-step animated sequence for
the selected task is displayed. Figure 4 presents examples of AR instructions for one step
(removing the duo-piston in gearbox maintenance).
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2.6. Cognitive Load Measurement
2.6.1. Electroencephalography (EEG) Signal Response

To record the EEG signals, a standard protocol was followed to place the electrodes
on the scalp based on the international 10–20 placement system [44]. A Live Amp with
32 channels (24 EEG, 3 EOG, 2 EMG, and 3 head acceleration) and a wireless amplifier
(Brain Products GmbH, Germany) were used to record EEG, EOG, and EMG signals. An
ActiCAP with 24 mounted Ag/AgCl electrodes placed on the scalp was used to record
EEG activities from five brain regions, including the frontal for attentiveness, reasoning,
and motor planning; parietal regions for mental processing; temporal for hearing and
remembrance; central for sensorimotor function; and occipital region for sensory and visual
awareness [42,54,64]. For frontal regions, the EEG signals were recorded from the Fp1, Fp2,
F7, F3, F4, F8, and Fz sites, as shown in Figure 5. For the parietal regions, the EEG signals
were recorded from the P3, Pz, P4, P7, and P8 sites. For the temporal regions, the EEG
signals were recorded from the FT9, FT10, T7, and T8 sites. For the central regions, the EEG
signals were recorded from the C3, Cz, and C4 sites. For the occipital region, the EEG signals
were recorded from the O1, Oz, and O2 sites. Also, four Ag/AgCl surface electrodes were
connected to the ActiCAP for recording the vertical and horizontal eye movements. Two
electrodes were placed at the right and left outer canthi of the eyes to record the horizontal
eye movements (HEOG). The other two were located about 2 cm above and below one
eye to log the eye blinks and the vertical eye movements (VEOG) [65,66]. Moreover,
for recording EMG signals, Ag/AgCl solid adhesive pre-gelled electrodes connected to
ActiCAP were placed on the right and left of the sternocleidomastoid muscles, as shown
in Figure 5. The ground electrode was placed at FPz. The vertical and horizontal eye
movements (i.e., EOG data) and sternocleidomastoid muscle activities (i.e., EMG data)
were used for EEG artifact identification [67,68]. Linked mastoids (M1 and M2) were used
as reference electrodes.
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The EEG, EOG, and sternocleidomastoid EMG signals were acquired and amplified
at a sampling rate of 1000 Hz with the help of a brain vision recorder system (Brain
Products GmbH, Germany). The contact impedance between all electrodes and the skin
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was kept under 20 kΩ. Electrode impedances were adjusted before raw data collection
by filling the electrodes with electrolyte gel. Electrolyte gel was applied by syringe to
create a stable electrical connection between each electrode and the scalp. The raw EEG
data contains artifacts that have non-neural origins and are usually the result of eye
movements, eye blinks, jaw movements, and muscle movements. The recorded EEG
signals were initially inspected visually for these suspicious artifacts and then preprocessed
using EEGLAB [69]. Afterward, power line noise and other high-frequency noise were
eliminated using a low-pass four-pole elliptic filter with a cut-off frequency of 50 Hz. Then
an independent component analysis filter (ICA) was applied to identify and eliminate the
noise and reconstruct the lost data using a spatial mixing matrix under the assumption of
volume conduction [70,71].

The EEG data were processed using wavelet packet analysis and decomposed using
a six-octave wavelet, with the dB4 mother wavelet being chosen as the most appropriate
function [72,73]. The multilevel discrete wavelet transform (DWT) was utilized so that the
EEG data could be decomposed into their respective rhythms (i.e., θ, α, and β). To calculate
the power density of EEG rhythms from the five regions with a frequency resolution of 1 Hz
and a range from 0.5 to 50 Hz, a digital Fast Furrier Transform (FFT)-based power spectrum
analysis (using the Welch approach, Hanning windowing function, and 50% shift) was
applied [73,74]. The response variables related to the EEG were the power spectrum density
(PSD) of the three bands (θ, α, and β) in the frontal, central sulcus, temporal, occipital,
and parietal brain regions. These parameters were considered indicators of cognitive
processing workload.

2.6.2. Subjective Response

For subjective workload, the NASA-TLX was utilized to assess participants’ perceived
workload following each task on six dimensions (i.e., mental, physical, and temporal
demands, performance, effort, and frustration) and the overall weighted workload [37].
Participants rated the dimensions on a scale of 0–20 (where 1 represents a low workload
and 20 represents a high workload). Also, participants were given a list of six components
and asked to compare each pair (for a total of 15 comparisons) to choose which one would
be most useful for analyzing cognitive stress. The relative importance of each factor was
calculated based on these comparisons. Next, we multiplied the component’s weighted
value by its rating to get its total workload.

2.7. Experimental Setup and Procedure

The study was conducted in the Industrial Engineering Department’s maintenance lab.
The temperature, humidity, and light intensity at the center of the table in the laboratory
were 21.4 ◦C, 18.2%, and 392.5 lux, respectively. The experimental zone was secure from
vibrations or strong odors during the task’s execution. To attract participants, an announce-
ment and invitation were issued and distributed at King Saud University. The participants
were invited to participate in a pre-test session as well as two test sessions ranging from
1 to 4 h. Upon participant arrival, the purpose of the experiment was explained in detail,
and the screening process was completed. The results of the health survey were reviewed
and approved; if acceptable, the participant was asked to sign a consent form and fill out
a demographic questionnaire. In addition, the participants were requested to provide
background information and answer questions related to their existing AR experience.
After that, their anthropometric data was collected.

Next, participants were randomly assigned into two groups and given a briefing
on how to use the instruction method assigned to their group. The first group received
AR-based instructions, in which a Microsoft HoloLens1 was used to display relevant
maintenance instructions and guide the participant to perform the maintenance tasks.
In the AR-based instruction group, participants were given 10 to 15 min to familiarize
themselves and learn how to handle, adjust, the HoloLens and interact with it [9,75].
Participants were also familiarized with using the toolbox, such as a screwdriver, bearing
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puller, jig, etc. The second group received paper-based instructions, in which A4 paper
documentation was used to deliver the maintenance instructions and guide the participants
to perform the maintenance tasks. The paper-based group was familiarized with using the
toolbox and reading the document. Once the participants felt confident using the Microsoft
HoloLens or the paper instructions, they were asked to leave the lab and return the next
day to start the actual training session.

The participant returned to the lab the next day to perform the maintenance tasks
with the help of the assigned instruction method from the previous day (AR-based or
paper-based instructions). On this day, for example, participants in group 1 (the AR-based
instruction group) were randomly assigned to perform the high- or low-demanding task
with AR instructions. These tasks were randomly allocated to the participants in different
sequences using a counterbalancing method to avoid the ordering effect of the tasks. The
AB or BA sequences (A and B refer to high- and low-demanding tasks, respectively) were
applied. In the AB sequence, half of the participants within group 1 were asked to perform
a highly demanding task first (repairing a piston pump’s gearbox). The remaining partici-
pants were assigned to the BA sequence and were asked to perform the least-demanding
task first. Two days later, participants returned to the lab to start the other half of the
experiment, which is the task that was not performed in the first half (i.e., a low or high-
demanding task), with AR instructions. Participants in group 2 (who used paper-based
instructions) followed the same procedures as group 1.

Before the performance of each training task, the EEG electrodes were placed on the
participants’ skin. After that, three minutes of EEG signals were recorded at resting postures
to be used as baseline data. During the training tasks, EEG signals were recorded. After
the training tasks were completed, the signals were recorded again for three minutes, and
the training time was recorded. Total training time is the time taken to complete the task
while following the instructions. The camera system and stopwatch were used to record
this time. Upon completing the task, the electrodes were removed, and the participants
were requested to complete questionnaires to measure their subjective perception of the
task and the technique of completing it in terms of perceived workload.

2.8. Data Analysis

Statistical analyses were implemented using the SPSS Statistics software version
23.0 (IBM Corp, N.Y., USA). The significance level (type I error) was set to 0.05. The
reliability of the statistical analysis was verified by checking the design assumptions of
normality, homogeneity of variance, and continuity of data. To ensure that the normalcy
assumption is true, a Kolmogorov-Smirnova test was performed [76]. A two-way analysis
of variance (ANOVA) for the repeated measures design was implemented to test the main
and interaction effects of the instruction method and task complexity on the dependent
variables, including the power spectra density of EEG wave bands, perceived workload
(NASA-TLX), and total training time. Significant interaction effects were further examined
using simple effect analysis. The paired t-test was used for pairwise comparisons of
the interaction effects of the task complexity levels. An independent sample t-test was
performed for pairwise comparisons of the interaction effects of the levels of the instruction
methods. The mean and standard deviation were calculated for all dependent variables.
Furthermore, the effect size was determined by calculating the percentage of variance in
the dependent variables that can be attributed to the specific independent variable using
the partial eta-squared value (2).

3. Results
3.1. Performance

The result of the mixed ANOVA revealed that there was a significant main effect of
task complexity on the total training time (p < 0.05). The training time for maintenance tasks
varied significantly, with a considerable rise from the low-demanding (mean = 13.37 min)
to the high-demanding (mean = 26.62 min) tasks, regardless of the instruction methods.
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Furthermore, the training time was significantly affected by the interaction between instruc-
tion methods and task complexity (p < 0.05). Based on simple effect analysis (Figure 6), the
results revealed that the training time during the high-demanding task was significantly
higher than the low-demanding task in both the AR-based instruction method (24.48 vs.
13.30 min; p < 0.05) and the paper-based instruction method (28.76 vs. 13.36 min; p < 0.05).
Additionally, the results revealed that for the highly demanding task, the completion
time for the AR and paper-based instruction groups was significantly different (24.48 vs.
28.76 min; p < 0.05). The AR group also finished the task with low demand more quickly
than the paper-based instruction group (13.30 vs. 13.36 min), but no statistically significant
difference was found (p > 0.05). The most important result of this analysis is that performing
a highly demanding task using AR instructions decreased training time.
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3.2. Mental Workload
3.2.1. Theta (θ) Power Spectrum Density

The statistical results shown in Table 3 revealed that the main effect of the instruction
method was statistically significant on θ power for central and parietal regions (p < 0.05).
The θ power at the central and parietal regions was found to be increased during the AR-
based instruction task as compared to the paper-based instruction. However, the θ power
at the frontal, occipital, and temporal regions was found to not be statistically affected
by the instruction method (p > 0.05). The main effect of task complexity was statistically
significant on θ power for the frontal, central, parietal, occipital, and temporal regions
(p < 0.05). The θ power was found to increase as task complexity increased from a low to
a high-demanding task for all regions of interest, regardless of the instruction methods
used. For the interaction effects, the statistical results revealed that there was a significant
interaction effect of instruction method and task complexity on θ power only at the parietal
region (p < 0.03).

Further analyses were performed using paired t-tests and independent t-tests to
investigate the differences in θ power for the parietal region across maintenance task
complexity and instruction methods (Figure 7). The results revealed that performing the
high-demand maintenance task using AR instructions led to increased θ power as compared
to the low-demand task (p < 0.05), but no significant difference was found between the
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high- and low-demand tasks when participants used paper-based instruction (p < 0.05). In
addition, there was a significant difference between paper-based and AR-based instructions
when participants performed the highly demanding task (p < 0.05). Furthermore, no
significant difference was found between AR and paper-based instructions for the less
demanding task (p > 0.05).

Table 3. Mean (SD) and statistical results for θ, α, and β power of all regions of interest (i.e., Frontal,
central, parietal, occipital, and temporal) across experimental tasks. Bolded p-value indicates a
significant effect. Note: η2 is partial eta squared.

Variable Mean (SD) p-Value (η2)

Instruction
Methods Paper-Based Instruction AR-Based Instruction

Instruction Complexity Interaction
Brain

Regions
Task

Complexity High Low High Low

Frontal
Theta (θ) 0.99 (0.98) 0.69 (0.61) 1.26 (0.77) 0.74 (0.41) 0.54 (0.02) 0.04 (0.21) 0.59 (0.02)
Alpha (α) 0.41 (0.23) 0.35 (0.25) 2.08 (1.95) 0.43 (0.22) 0.01 (0.30) 0.01 (0.30) 0.02 (0.30)
Beta (β) 0.21 (0.04) 0.27 (0.11) 0.15 (0.07) 0.25 (0.06) 0.12 (0.13) 0.002 (0.43) 0.51 (0.024)

Central
Theta (θ) 0.53 (0.29) 0.47 (0.19) 1.09 (0.66) 0.47 (0.19) 0.01 (0.32) 0.003 (0.4) 0.08 (0.16)
Alpha (α) 0.28 (0.15) 0.22 (0.09) 0.73 (0.33) 0.31 (0.05) 0.00 (0.50) 0.00 (0.54) 0.00 (0.40)
Beta (β) 0.20 (0.06) 0.35 (0.16) 0.11 (00.03) 0.16 (0.8) 0.00 (0.52) 0.00 (0.41) 0.12 (0.13)

Parietal
Theta (θ) 0.83 (0.41) 0.66 (0.28) 2.00 (1.41) 0.73 (0.33) 0.02 (0.26) 0.00 (0.34) 0.03 (0.23)
Alpha (α) 0.55 (0.37) 0.49 (0.22) 1.09 (0.43) 0.56 (0.22) 0.01 (0.30) 0.00 (0.40) 0.02 (0.30)
Beta (β) 0.57 (0.32) 0.61 (0.19) 0.34 (0.15) 0.60 (0.21) 0.20 (0.11) 0.03 (0.24) 0.10 (0.15)

Occipital
Theta (θ) 2.45 (1.43) 1.5 (1.05) 2.79 (1.55) 1.21 (0.84) 0.96 (0) 0.00 (0.51) 0.3 (0.06)
Alpha (α) 1.81 (0.61) 1.060 (0.67) 3.52 (1.91) 1.24 (0.82) 0.03 (0.25) 0.00 (0.54) 0.03 (0.23)
Beta (β) 2.20 (0.63) 2.67 (0.55) 1.42 (0.38) 1.60 (0.37) 0.00 (0.55) 0.00 (0.35) 0.20 (0.10)

Temporal
Theta (θ) 0.66 (0.45) 0.50 (0.24) 0.92 (0.34) 0.44 (0.23) 0.4 (0.043) 0.00 (0.40) 0.11 (0.14)
Alpha (α) 0.51 (0.29) 0.32 (0.11) 1.03 (0.44) 0.36 (0.23) 0.02 (0.26) 0.00 (0.70) 0.00 (0.43)
Beta (β) 0.27 (0.17) 0.36 (0.18) 0.18 (0.10) 0.34 (0.12) 0.35 (0.05) 0.00 (0.40) 0.35 (0.05)
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3.2.2. Alpha (α) Power Spectrum Density

The instruction method was found to significantly affect α power at the frontal, cen-
tral, parietal, occipital, and temporal regions (p < 0.05). The results revealed that wearing
Microsoft HoloLens increased the α power at all regions of interest. Also, task complexity
has significantly affected α power all regions of interest (p < 0.05). Specifically, the high
complexity level resulted in higher α power values, regardless of the instruction methods.
For the interaction effects, the statistical results revealed that there were significant inter-
action effects between instruction method and task complexity on α power of the frontal,
central, parietal, occipital, and temporal regions (p < 0.05).

Further analyses were performed using paired t-tests and independent t-tests to
investigate the differences in α power across task complexity and instruction methods
for all regions of interest (Figure 8). For the AR method, the α power during the high-
demanding task demonstrated significantly larger values than during the low-demanding
task and during the high-demanding task of paper-based instruction across all regions of
interest (p < 0.05). In addition, for paper-based instruction, the α power of the occipital and
temporal regions for the high-demanding task increased significantly relative to the low-
demanding task but remained approximately the same over the frontal, central, and parietal
regions. Furthermore, the α power at the central region for AR groups was found to be
significantly increased relative to paper-based instruction during the low-demanding task.

3.2.3. Beta (β) Power Spectrum Density

The statistical results revealed that the main effect of the instruction method was
statistically significant on β power for the central and occipital regions (p < 0.05). This
effect resulted in significantly decreasing β power values during AR-based instruction as
compared to paper-based instruction at the central and occipital regions. The remaining
regions followed the same change pattern, but not significantly. The main effect of task
complexity was statistically significant on β power for all regions of interest (p < 0.05).
Less values of β power were observed as task complexity increased from a low to a
high-demanding task for all regions of interest, no matter the instruction methods used.
For the interaction effects, the statistical results revealed that there were no significant
interaction effects between instruction method and task complexity on β power for all
regions of interest.

3.2.4. Perceived Workload (NASA-TLX) Scores

Perceived workload levels were assessed with the NASA-TLX workload question-
naire [37]. Increased scores on subscales indicate increased perceived demand, except for
the performance subscale, which implies lesser self-reported task success. Table 4 sum-
marizes mixed ANOVA results for NASA-TLX sub-scores. The effect of task complexity
on the NASA-TLX overall score and the ratings of the six dimensions was statistically
significant (p < 0.001). The ratings for all the dimensions were higher during the highly
demanding task. The effect of an instruction method was found to be significant only
on the ratings for performance and frustration (p < 0.001) and on the NASA-TLX overall
score (p < 0.005), with these scores being higher for the paper-based instruction method (vs.
AR-based). The interaction between task complexity and instruction method was found
to be statistically significant on all the NASA-TLX subscales (p < 0.05) except effort and
overall score (p > 0.05).
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Table 4. Mean (SD) and statistic results for perceived workload (NASA-Tlx) scores across experimen-
tal tasks. Bolded p-value indicates a significant effect. Note: η2 is partial eta squared.

Variable Mean (SD) Statistics p (η2)

Instruction
Methods AR-Based Instruction Paper-Based Instruction

Instruction
(η2)

Complexity
(η2) Interaction

Task Complexity High Low High Low

Mental demand 68.21 (13.10) 30.71 (11.24) 73.93 (7.12) 25.00 (11.24) 1 (0.00) 0.00 (0.97) 0.00 (0.39)
Physical demand 61.79 (7.50) 33.57 (8.64) 70.36 (7.71) 30.35 (8.43) 0.17 (0.07) 0.00 (0.90) 0.02 (0.20)

Temporal demand 66.79 (13.95) 40.00 (9.61) 66.79 (6.96) 27.85 (9.55) 0.07 (0.13) 0.00 (0.90) 0.01 (0.21)
Performance 75.00 (7.33) 58.92 (14.17) 82.14 (7.26) 81.43 (7.95) 0.00 (0.50) 0.00 (0.40) 0.00 (0.33)

Effort 69.29 (7.56) 48.93 (11.12) 68.93 (9.03) 58.21 (8.823) 0.07 (0.12) 0.00 (0.60) 0.06 (0.13)
Frustration 18.93 (6.56) 12.86 (5.08) 47.50 (9.35) 17.14 (5.08) 0.00 (0.73) 0.00 (0.83) 0.00 (0.68)

Overall weighted
demand 68.35 (4.55) 43.33 (4.01) 71.48 (4.02) 47.95 (4.06) 0.00 (0.26) 0.00 (0.96) 0.43 (0.02)

4. Discussion

The goal of this study was to find out how performance and cognitive workload are
affected by different instruction methods (paper-based vs. AR-based instructions) and
task complexity (high vs. low-demanding tasks) when using maintenance applications.
Currently, monitoring the workload of AR system users is mainly subjective. Therefore,
accurate and sensitive methodologies are required for assessing the workload of AR system
users during maintenance operations. To the best of our knowledge, there are very few
studies that integrate subjective and objective metrics to evaluate the mental workload of
AR system users during maintenance operations. The work presented here focuses on how
AR-based instruction methods with different levels of demanding tasks influence human
performance and cognitive workload. The overall findings of this study mainly confirm
the original hypotheses.

4.1. Performance

User performance while using an AR instruction method was assessed against the pa-
per instruction method using total training time. Maintenance training times varied signifi-
cantly between tasks, with a significant increase from low-demanding to high-demanding
regardless of instruction method type (i.e., a 50% increase). The training time for the high-
demanding task was significantly higher than the low-demanding task in the AR-based
instruction method (24.48 vs. 13.30 min) and the paper-based instruction method (28.76 vs.
13.36 min). Using AR instructions, the time was saved by 0.45% for the low-demanding
task and 14.94% for the high-demanding task as compared to paper instructions. The
study’s findings revealed that using AR-based instruction during high-demanding tasks
significantly speeds up maintenance training when compared to paper-based instruction.
It could be argued that paper-based instruction for this highly demanding task is time-
consuming as it requires browsing papers and extracting different features. In contrast, the
introduced AR-based instruction provides different functionalities that can be presented
on demand (i.e., virtual and real contents). On the other hand, no advantage in training
time was observed while using AR for the low-difficulty task with a small number of task
steps. Thus, AR instructions showed great improvement in training time as the difficulty
level increased.

The findings of this study are in line with those in existing studies [31,77–80]. Wieden-
maier et al. [31] found that paper manuals were not significantly different from AR in-
struction when it came to simple activities, but when it came to more challenging jobs,
the AR support proved to be better. Deshpande & Kim [81] discovered that utilizing AR
in a simple assembly activity is less expensive than using paper instructions. Mengoni
et al. [77] discovered that using AR for a simple job yielded similar results as using tradi-
tional techniques. Alves et al. [79] recommended that “augmented reality’s potential lies in
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its application to more complex tasks." Bendzioch et al. [80] evaluated the effect of different
types of instructions (AR-based, tablet-based, projection-based, and paper instructions)
and product complexity (difficult, medium, and easy) on total completion time. Their
result showed that using AR glasses for instructions resulted in less completion time by
3.16% for easy, 9.51% for medium, and 9.00% for difficult products as compared to paper
instructions [80].

4.2. Mental Workload

The mental workload can be perceived as the ratio of available cognitive resources
to external and task-related demands. The cognitive processes that are connected with
mental workload begin with data reception and processing and end with motor response
activation and motor pattern monitoring [82]. The limits of human capacity, especially
those of working memory, are a limiting factor [83,84]. Each decision-making process can
be viewed as a unique cognitive operation characterized by the allocation of resources in a
network of interconnected brain areas [85]. When there are more tasks to be performed,
more resources must be utilized, and more of the available capacity must be put to use.
Therefore, "mental workload" describes the amount of effort exerted by the brain in order
to fulfill task demands [86].

4.3. Perceived Workload (NASA-TLX) Scores

Compared to the AR-based instruction, the average physical workload, performance,
and frustration ratings were significantly higher when the participants performed the
high-demanding task using paper-based instruction. Utilizing the AR instruction technique
for highly demanding tasks led to a reduction of 12.18% in physical workload, 8.69% for
performance, and 60.14% for frustration. In addition, when the participants performed
the low-demanding task using AR instruction as compared to paper-based instruction, the
average temporal demand ratings were significantly higher and performance ratings were
lower. Compared to the paper-based method, using AR instruction for the low-demanding
task led to lower performance and frustration ratings by 27.64% and 24.97%, respectively,
and more temporal demand by 43.63%. Overall, the AR-based instruction task was found
to cause a reduction of 18.13% for performance, 50.82% for frustration, and 6.50% for
overall mean scores. Also, the average mental and physical workloads and temporal and
frustration ratings for the two instruction methods were found to increase as the task
complexity increased.

Previous research on the effect of AR tools on perceived workload and performance
during training has yielded inconclusive results, with some researchers claiming that using
AR to deliver visual guidance and task-relevant information reduced cognitive load and
increased performance [32,87,88], while others claim that it is cognitively demanding and
can lead to decreased performance [89,90]. The findings of this study are in line with
those reported in [32,87,88]. Another study found that with AR assistance, mental activity
associated with locating and interpreting needed information for a task is reduced, and
only effort is required for task execution [91]. Also, Deshpande and Kim [81] found an
increase in cognitive load but no change in task performance when AR was used. For
example, Dan and Reiner [92] reported that processing 3D information is less taxing on the
brain than processing 2D information. Relevance and timeliness of material, information
presentation, user and task characteristics, and augmented reality display device type
were demonstrated as factors that could have impacts on cognitive workload and task
performance [92]. These different findings could be attributed to differences in the types of
studies, the technology used, and the research designs that have been used.

4.4. EEG Power Spectrum Density

The results revealed that performing the high-demand maintenance task using AR
instruction led to an increase in the theta power in the parietal region as compared to
the low-demand task, but no change was detected between the high and low-demand
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tasks when participants used paper-based instruction. In addition, there was a significant
change between paper-based and AR instructions while participants performed the most
demanding task, but no significant difference was found between the least demanding
tasks. The increased theta power at the parietal region, when the participants performed the
highly demanding task using AR instruction, may be an indicator of attentional orienting
to a task-relevant class of event. On the other hand, participants who performed the high-
and low-demanding tasks using paper-based instruction used the same class of cues for
processing the information. Related to α power, the findings revealed that for the AR
method, the α power during the high-demanding task demonstrated significantly larger
values than during the low-demanding task across all regions of interest. In addition, for
paper-based instruction, the α power of the temporal and occipital regions for the high-
demanding task increased significantly relative to the low-demanding task but remained
approximately the same over the frontal, central, and parietal regions. The results showed
that at a low-demanding task, the α power in the central region for AR groups was found to
be significantly increased relative to paper-based instruction but not significantly increased
in the parietal, frontal, temporal, and occipital regions. These increases in alpha power are
possibly due to sensory inhibition or internal processing demands. The drastic increase in
alpha power attributed to the execution of the mental demand during the AR experience is
remarkable. When compared to paper-based instruction, β power was found to be reduced
in the central and occipital regions during AR instruction. In addition, the β power values
were found to decrease as task complexity increased for all regions of interest, no matter
what the instruction methods used. The increase of theta and alpha and the decrease of beta
have probably resulted from the perceived intrinsic load that participants interpret as the
intricacy of the objective affordances concerning their abilities to handle the maintenance
task (i.e., their prior knowledge). As the task load increases, so does the amount of resources
used, and more of the available capacity is used [86].

The findings of this study are in line with previous studies, which reported that θ and
α activities may be associated with memory, cognition, and attention [54,93]. θ was also
linked with other mental processes and workload [64]. The AR instruction for the highly
demanding task used more visual cues to orient focus toward the necessary steps in the
AR environment, which led to enhanced target stimulus processing speed and accuracy.
Increased frontal activations for AR relative to paper instruction could be understood as
associated with inwardly driven decision-making processes about where to attend [94–96].
Moreover, during creativity tasks, the alpha power of the frontal, parietal, occipital, and
right hemispheric regions was reported to be increased [97–101]. The changes in alpha
seem to be more inwardly focused, which could be attributed to attention [102]. The
theta band also tends to increase when one is focused inward and experiencing pleasant
emotions [103]. Similar to how alpha activity plays a different function in internal vs.
external attention, theta activity does the same [104]. Therefore, our findings regarding the
synchronization of alpha and theta waves may be regarded as increased cortical activation
during internal focus of attention. Cooper et al. [105] discovered that alpha power increased
with task demands and was highest when participants focused their attention internally
on mental imagination tasks rather than externally on sensory intake activities. Higher
alpha values may indicate cognitive process inhibition that is not directly related to task
performance and is observed through positions that are most likely to be subject to or to
impose top-down control [106].

The overall findings of this study revealed that the use of AR instruction caused an
increase in mental workload. Such an increase could be interpreted as a more germane
cognitive load, which is desirable as it is associated with learning new skills and other
information. So, AR fosters the construction of schemata (GCL) and mental models by
activating the cognitive processes of the participants and encouraging them to invest
more effort in learning. The germane load during AR is increased due to incorporating
new information, as well as the development and updating of schema, which takes up
some of the memory [18]. To aid in learning and schema development, augmented reality
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(AR) adopted the concept of cognitive activation to focus the user’s attention on the
most pertinent cognitive processes [18]. The findings indicated that the AR system could
enhance the cognitive element of learning; by connecting virtual objects to the real-world
setting, AR enables actual and virtual objects to display themselves in a single spatially
embedded view, which is in line with the previous study by [107]. The structure of the
information presented in AR is compatible with the users’ inherent mental models [108].
In addition, AR consequently helps to integrate information: each relationship between
a virtual object and a real-world object is encrypted and stored as a single visual picture
forming the foundation for a memory connection [109]. Future research should assess this
interpretation by comparing how much knowledge is transferred when using paper-based
instructions to do a complex task versus AR-based instructions.

Furthermore, the increased mental workload during AR usage may arise from the
fact that delivering AR instructions is a novel method and participants have to learn new
interaction techniques, which activates the cognitive processes of the participants to in-
vest more effort into learning, raising mental effort. Hence, using AR as an instruction
method, participants could better facilitate long-term knowledge and skill acquisition,
manage their working memory load, and learn successfully. During the AR instruction
method, the information is processed in working memory and stored in long-term memory,
and knowledge, in accordance with schema theory, is stored and arranged in the mind
in the shape of schemata. Also, during AR, the participants spent a greater amount of
their mental resources on processes that were irrelevant to the actual task, like repressing
instruction through animation, visual cues, and arrows. To overcome this, it is preferable
to show an instruction visually when put together with animation. While presented in-
struction combined with animation requires visual resources, auditory instruction uses
the phonological system of working memory [83]. Another possible explanation for the
increased mental workload during AR may result from task difficulties [110]. Moreover,
the increased cognitive workload when performing AR-guided activities may be due to
focus rivalry (FR), which happens when simultaneously concentrating real and digital in-
formation positioned in the user’s immediate personal surroundings [111], restricting their
usage in high-precision manual tasks [11,110,112].In order to mitigate the increased mental
workload observed with AR instruction, several strategies could be employed. Firstly, the
AR system could be adaptively designed to match the user’s pace and learning style, thus
customizing the learning experience. Secondly, a multimodal instruction approach utilizing
both auditory and visual cues could be implemented, which could distribute the cognitive
load across different channels. Thirdly, providing preliminary training sessions could help
familiarize users with the AR system and its interaction techniques before they undertake
complex tasks. Fourthly, an emphasis on user-friendly interface design, including clear
icons, intuitive navigation, and easy-to-understand instructions, could minimize unnec-
essary cognitive load. Lastly, scheduling regular breaks during AR instruction could aid
in preventing cognitive overload. These strategies collectively aim to enhance the efficacy
of AR as an instructional tool by effectively managing cognitive load and warrant further
research for refinement and efficacy testing.

The current study has some limitations that are worth noting. The design was lim-
ited to a standing posture. The participants were restricted to standing during the task
performance. Therefore, the effects of different postures (e.g., sitting and standing) should
be investigated in the future. Second, upper body kinematics were not monitored in this
study. Tracking inter-individual kinematic differences may aid in explaining observed
differences in stiffness responses to complex tasks and instruction methods. In addition, all
participants were male students. Future works will include female and other physiological
signals (i.e., autonomic nervous system and upper arm muscle activity). Moreover, the
target users were also novices, so it would be better to recruit experienced participants or
experts to make the evaluations and comparisons more complete. Furthermore, the range
of the participants’ ages was quite narrow, so it would be interesting to do more research on
a broader age group in the future. The results and conclusions of this study were reached
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in light of the particular interfaces utilized for this user study (visual cues with animation),
and the usage of different variations of the interface (visual with auditory), technology
(HMD, HHD), and research designs (between, within, or mixed design) may yield different
results and conclusions. Finally, this study also illustrated very effectively that the benefits
promised by AR for maintenance applications will not be realized automatically.

5. Conclusions

This study evaluated the effects of instruction methods and task complexity on cog-
nitive and perceived workloads in maintenance applications. The results supported the
hypotheses that the AR method is more suitable, efficient, and effective to display mainte-
nance instructions than the paper method; that AR instructions lead to faster maintenance
times than paper instructions; and that AR instructions lead to a greater increase in mental
workload than paper-based instructions, especially for the highly demanding task. Using
AR instructions, the time was saved by 0.45% for the low-demanding task and by 14.94% for
the high-demanding task as compared to paper instructions. It is argued that paper-based
maintenance instruction for the highly complex task is time-consuming (i.e., viewing a
paper and extracting different features). In contrast, the introduced AR-based instruction
provides different functionalities that are presented on demand. Thus, the benefit of using
AR for the low-difficulty task (with a small number of task steps) was relatively small.
As the difficulty level increased, the advantages of applying AR to an instruction system
became more obvious. Thus, in similar cases of higher task complexity, AR is recommended
to be utilized. Furthermore, AR could enhance cognitive abilities to process information by
easing information access and keeping working memory capacity free for use. Overall, the
use of AR to guide workers through high-demanding maintenance tasks increased infor-
mation processing, which could be connected to germane cognitive load due to learning.
The findings suggested that AR instruction increased the germane cognitive load, which
is the portion of cognitive load that assists in learning new skills and other information.
AR for a high-demanding task allows for using cognitive or metacognitive prompts to
hustle the participant in the right direction or to give the participant cues on how to best
process the maintenance instructions. So, AR fosters the construction of schemata (GCL)
and mental models by activating the cognitive processes of the participants to invest effort
into learning, raising mental effort.

Overall, this study shows that augmented reality should be used for high-demand
maintenance tasks because it cuts down on maintenance time and makes it more likely
that information will be stored in long-term memory and encrypted for later use. The
results of this study can help manufacturing stakeholders better understand the benefits
of AR technology as an instruction tool for manual tasks. Furthermore, the findings of
this study could aid manufacturers of AR instruments in fine-tuning their products to
overcome some of the limitations encountered. Also, the results of this study are important
for the advancement of knowledge relative to cognitive workload evaluation while using
AR systems in maintenance and assembly tasks.
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