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Abstract: Optical fiber Fabry-Pérot (FP) interferometer sensors have long been the focus of researchers
in sensing applications because of their simple light path, low cost, compact size and convenient
manufacturing methods. A miniature and highly sensitive optic fiber temperature sensor using an
ultraviolet glue-filled FP cavity in a hollow capillary fiber is proposed. The sensor is fabricated by
fusion splicing a single-mode fiber with a hollow capillary fiber, which is filled with ultraviolet glue
to form a FP cavity. The sensor has a good linear response in the temperature testing and high-
temperature sensitivity, which can be increased with the length of the FP cavity. The experimental
results show that the temperature sensitivity reaches 1.174 nm/◦C with a high linear response in
the range of 30–60 ◦C. In addition, this sensor is insensitive to pressure and can be highly suitable
for real-time water temperature monitoring for ocean research. The proposed ultraviolet glue-filled
structure has the advantages of easy fabrication, high-temperature sensitivity, low cost and an
arbitrary length of capillary, which has broad application prospects for marine survey technology,
biological diagnostics and environmental monitoring.

Keywords: Fabry-Pérot interferometer; fiber temperature sensor; high-temperature sensitivity;
ultraviolet glue cavity

1. Introduction

Temperature is a crucial physical parameter in the fields of the chemical industry,
biological diagnostics and environmental monitoring. Furthermore, high-accuracy temper-
ature sensing puts forward higher requirements for traditional temperature measurement.
Compared with traditional temperature sensors, optical fiber temperature sensors have
attracted great research interest due to their advantages in terms of their compact structure,
flexible configuration, remote sensing capability, high sensitivity and immunity to elec-
tromagnetic interference [1]. A great number of temperature sensor structures have been
created based on different sensing principles, including optical fiber grating [2,3], optical
fiber interferometer and microstructured fiber, such as photonic crystal fiber [4–6], tapered
fiber [7] and D-type fiber [8]. The sensitivity of fiber grating is relatively low and microstruc-
tured fiber involves an expensive and complicated configuration procedure. Therefore,
interferometric temperature sensors have been widely used in research measurements
within different fields.

The optical fiber interferometers in applying temperature sensing mainly include
the Fabry-Pérot interferometer (FPI) [9,10], the Mach-Zehnder interferometer [11,12], the
Michelson interferometer [13] and the Sagnac interferometer [14,15]. Among them, tem-
perature sensors based on FPI are widely reported in practical applications owing to their

Sensors 2023, 23, 7687. https://doi.org/10.3390/s23187687 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187687
https://doi.org/10.3390/s23187687
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0003-1820-2946
https://doi.org/10.3390/s23187687
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187687?type=check_update&version=1


Sensors 2023, 23, 7687 2 of 12

simple principle, rapid response, convenient manufacturing methods and good mechanical
properties. However, FPI sensors based on the silica material of fiber have low-temperature
sensitivities of less than 20 pm/◦C due to their low thermal expansion coefficient (TEC)
of 5.5 × 10−7/◦C and their low thermal optic coefficient (TOC) of 1.1 × 10−5/◦C of silica
material [16]. To enhance the sensitivity of FPI temperature sensors, the sensors can be
fabricated by replacing the end surface in the FPI structure with polymer materials that
have high thermo-sensitivity, such as polydimethylsiloxane (PDMS) [17,18], ultraviolet
(UV) glue [19], polystyrene and polymethyl methacrylate [20]. Among the above materials,
UV glue is a colorless, transparent and non-toxic liquid. Owing to their advantages of
simple operation, fast curing and low cost, the various structures of temperature sensors
with UV glue have been researched. Yinggang Liu et al. proposed a dual-parameter fiber-
optic sensor structure, which consisted of an extrinsic FPI in the form of hemispherical
UV curing glue capped on a fiber Bragg grating (FBG) end face and had a temperature
sensitivity of 223.4 pm/◦C in a range from 30 ◦C to 110 ◦C [21]. Jin Zhang et al. fabricated
two cascaded FPIs for temperature sensing through the Vernier effect; the sensing FPI with
an air cavity was composed of a cleaved fiber end-face and UV glue, while the reference FPI
was fabricated by splicing single-mode fiber (SMF) with hollow capillary fiber (HCF) [22].
However, the system of grating inscription is expensive and complicated, and achieving the
Vernier effect requires the fabrication of two sensor structures with matched cavity lengths
by precisely controlling the reference FPI. Bowen Li et al. demonstrated a high-sensitivity
temperature sensor based on a UV glue-filled silica capillary tube to reach 0.963 nm/◦C [23].
Chengling Lee et al. presented a structure where the HCF was filled with a section of UV
glue and an air gap remained between the SMF and UV glue; this sensor had a temperature
sensitivity of−1.7 nm/◦C [24]. Although both structures have high-temperature sensitivity,
the UV glue cavity length is difficult to precisely control by dipping UV glue in HCF along
the narrow gap under the action of capillary force. Meanwhile, in these aforementioned
sensing schemes, they are either disturbed by pressure or do not mention the relevant
measurement of pressure. In this paper, we propose a high-sensitivity fiber-optic temper-
ature sensor based on the UV glue-filled Fabry-Pérot (FP) cavity in the HCF. The sensor
is fabricated by fusion splicing a SMF with a HCF. Furthermore, this sensor is insensitive
to pressure, which can be applied to temperature monitoring without interference from
pressure; for example, temperature measurement in a water environment. The proposed
sensor has the advantages of a compact structure, easy fabrication, good repeatability, high
sensitivity and low cost.

2. Sensor Configuration and Principle

The proposed FP sensor structure is shown in Figure 1, which is manufactured by
splicing a section of SMF and HCF. The HCF region is completely filled with UV glue,
which is the sensing region of the proposed sensor. The refractive index (RI) of air, the SMF
core and the UV glue are n0, ns, and n, respectively. Two reflected surfaces labeled as M1
and M2 are formed on a UV glue FPI with a cavity length of L. The RI of the cured UV glue
is 1.48. The reflectivity of the two surfaces is R1, R2, which can be calculated by the Fresnel
reflection equation [25] and can be expressed as:

R1 =

(
n− ns

n + ns

)2
, R2 =

(
n− n0

n + n0

)2
(1)

Because of the low reflectivity of each surface, which is less than 4%, the higher-order
reflections from these surfaces may be ignored [26]. The FPI can be regarded as double-
beam interference to analyze the sensor structure. When the light emitted from the lead-in
SMF passes through M1, part of the light is reflected, and part of the light is transmitted
into the FP cavity, where the transmitted light will also be reflected and transmitted on the
other reflective surface M2 of the FP cavity after a certain loss. Finally, the two beams of
reflected light passing through M1 interfere due to the phase difference. Figure 2 illustrates
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the double-beam reflection model of the electric fields of the proposed sensor. The total
electric field reflected from the FPI sensor Er can be expressed as [27,28]:

Er = E0
√

R1 + E0(1− R1)(1− α)
√

R2e−2jΦ (2)

where E0 is the input electric field, α is the transmission loss at the M1, λ is the wavelength
of incident light and Φ is the phase difference in the FP cavity, which is defined as:

Φ =
4πnL

λ
(3)
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Figure 2. Two-beam interference model of the sensor.

The total reflected light intensity Ir can be described by the square modulus of the
intensity ratio of the reflected electric field to the incident electric field and can be given by:

Ir = |Er/E0|2 = R1 + R2(1− α)2(1− R1)
2 + 2

√
R1R2(1− α)(1− R1)cos

(
4πnL

λ

)
(4)

The wavelength of the m′th-order (m is a positive integer) interference dip of FPI can
be obtained by

λm =
4nL

2m + 1
(5)

The free spectral range (FSR) of FPI can be expressed as:

FSR =
λ2

2nL
(6)
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the temperature sensitivity of the proposed FPI can be calculated by:

ST =
∆λm

∆T
= λm(

dL
LdT

+
dn

ndT
) (7)

According to the formula, the temperature sensitivity of the sensor is determined
by the TEC and the TOC. The TEC and TOC of the UV glue are 2.75 × 10−4/◦C and
1.82 × 10−4/◦C, respectively, which is two orders of magnitude for TEC and one order of
magnitude for TOC larger than that of silica, so the TEC and TOC of the silica capillary can
be negligible. Therefore, the temperature sensitivity can be simplified as:

ST =
∆λm

∆T
= λm(αTEC + σTOC) (8)

where αTEC is the TEC of the UV glue, σTOC is the TOC of the UV glue. Table 1 explains the
meanings corresponding to all parameters in the paper.

Table 1. The parameters in the paper and the meaning of their explanations.

Parameter Explanation

n0 RI of air
ns RI of SMF core
n RI of the UV glue

R1 reflectivity of reflected surface M1
R2 reflectivity of reflected surface M2
L FPI cavity length
α transmission loss at the M1
λ wavelength of incident light
Φ phase difference in FP cavity
λm wavelength of m′th-order interference dip of FPI
E0 input electric field
Er total electric field reflected from the FPI sensor
Ir total reflected light intensity
T temperature
ST temperature sensitivity of the proposed FPI

αTEC the TEC of UV glue
σTOC the TOC of UV glue
m, j positive integer

3. Sensor Fabrication

The core and cladding diameters of SMF (SMF-28, Corning, New York, NY, USA) are
8.2 µm and 125 µm. The HCF has an inner diameter of 75 µm and an outer diameter of
125 µm. The key method for making the proposed sensor is UV glue filled in the HCF,
which has an air core. To fabricate the proposed temperature sensor based on FPI with
UV glue-filled HCF, a conventional fusion splicer (Fitel, Carrollton, GA, USA, S179) and
a fiber cleaver (Sumitomo electric, Osaka, Japan, FC-6) are required. Figure 3 shows a
schematic diagram of the manufacturing process of the sensor probe, which involves four
steps. Step 1: A section of HCF is fused to the cleaved end-face of the lead-in SMF with
a lower discharge power (25 bits) and shorter discharge duration time (500 ms), which
can guarantee the fusion piece does not collapse and provides enough connection strength
between the SMF and HCF to keep the splicing end face smooth, as shown in Figure 3a.
The quality of the spliced joint can be evaluated by observing the insertion loss of spectrum
after splicing and the process has nice reproducibility and dependability. Step 2: The HCF
is cut to a designed length with the fiber cleaver. A Charge Coupled Device (CCD) camera
is used for real-time monitoring of optical fiber movement to obtain the ideal length of
HCF in general, as shown in Figure 3b. Step 3: A drop of UV glue is filled into the HCF.
With the help of the capillary effect, the UV glue gradually flows into the interior of the
HCF. We use the fusion splicer to observe the whole filling process. Another cleaved SMF is
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dipped into the UV glue. The end-face of the fiber with a small UV glue droplet is attached
to the end of the HCF with a lateral offset. Due to the presence of air, UV glue slowly flows
into the HCF and, after 5–10 min, is completely filled and there is no air in the HCF, as
shown in Figure 3c. Finally, the sensor probe is completed after irradiating the UV glue
using ultraviolet radiation for 20 min, as shown in Figure 3d.
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Figure 3. (a–d) Schematic diagram of the fabrication process of the FPI sensor probe.

The microscope image of the sensor probe is shown in Figure 4. To research the effect
of the UV glue-filled length on the interference spectrum, we fabricated three samples
(marked by S1–S3) with different cavity lengths for comparison. The lengths of the capillary
were 69.92, 87.19 and 118.85 µm. Figure 5 presents the reflection spectra and microscope
images corresponding to three samples. According to reflection spectra, the FSR of three
different cavity lengths can be obtained to be 12.02, 9.35 and 7.18 nm, respectively. The FSR
of the FPI decreased as the length increased, which was consistent with the results of (6).
By comparing the FSR at different wavelengths, as shown in Figure 5, it can be seen that
the experimentally obtained FSR increased with the increasing wavelength.
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4. Results and Discussion
4.1. Temperature Performance

The temperature or gas pressure experimental setup of the proposed sensor is il-
lustrated in Figure 6. In order to investigate the temperature sensing performance with
different cavity lengths, we experimented with samples S1–S3 in a temperature response
test. A broadband light source (BBS, Golight, Ultra-wideband Light Source, Culbertson,
NE, USA) with a wavelength ranging from 1250 to 1650 nm was used as the input light
source. The transmitted light from BBS was introduced to the FPI sensor via an optical
circulator. The reflection spectrum of the sensor was detected using an optical spectrum
analyzer (OSA, AQ6370D) with a resolution of 0.02 nm. The FPI sensor was placed in a
high-precision temperature-controlled chamber with a minimum step of 0.1 ◦C. During the
temperature test, the temperature-controlled chamber was set from 30 ◦C to 60 ◦C with an
interval of 5 ◦C. The FPI was heated and cooled between 30 ◦C and 60 ◦C and two groups
of data of reflection spectra were recorded using the OSA after a steady temperature of each
set for 5 min. We performed a linear fitting between the dip wavelength and temperature
for the heating and cooling process. However, the linear fittings in the heating and cooling
process have a large deviation, as shown in Figure 7 for sample S1. The deviation was
derived from the residual stress of the cured UV material, because the curing process was
graded, the UV lamp vertically irradiated the sensor probe in fabrication, which caused UV
glue to be unevenly cured. The interior of the cured UV material had enough residual stress
to generate strain, which can affect the temperature sensing measurement. Therefore, the
fabricated sensor structure was annealed in a tube furnace with a temperature maintained
at 60 ◦C for 5 h to release the residual stress in the interior of the cured UV material, which
filled into the HCF.
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Figure 7. The relationship between the dip wavelength and temperature of sample S1 in the heating
process and the cooling process.

Then, we remeasured the reflection spectra of the three samples S1–S3 at each tem-
perature after annealing. The reflection spectrum of sample S3 is shown in Figure 8a,
where the temperature rises from 30 ◦C to 60 ◦C with an interval of 5 ◦C. Along with the
increase in temperature, the interference fringe shifts to the longer wavelength direction.
Because the values for the TOC and TEC of the UV glue are positive, it can be obtained
that dL

dT and dn
dT are positive. Therefore, both the RI and the length of the FPI cavity increase

when the temperature rises, which causes the wavelengths to have a redshift according to
(5). The three samples S1–S3 were tested for heating and cooling process, and the shift in
wavelength exhibits a linear relationship with the increase in temperature. The error bar
of samples S1–S3 represents the deviation in wavelength during the heating and cooling
processes, and the linear fitting between the dip wavelength and temperature is shown in
Figure 8b–d. After linear fitting, the sensitivity to temperature for samples S1–S3 can be
obtained to be 0.999, 1.033 and 1.174 nm/◦C, respectively. From Figure 8, we can see that
the temperature sensitivity of the proposed sensor increases with the cavity length of FPI.

In order to study the effect of the capillary inner diameter on the sensitivity of the
sensor, we used three types of HCF with inner diameters of 75, 30 and 25 µm, respectively,
the outer diameters of which were all 125 µm. The microscope images of the end-face of the
HCF with different inner diameters are shown in Figure 9. To compare the experimental
results with the 75 µm inner diameter, we fabricated two more fiber structures, marked S4
and S5. The inner diameters and lengths of the HCF for sample S4 are 30 µm and 69.99 µm,
respectively, and for sample S5, they are 25 µm and 87.15 µm, respectively. We tested
the temperature response in the same way as mentioned above. The insets in Figure 10
display the spectral response of the temperature variation in detail. The linear fitting
between the dip wavelength and the temperature results of the two samples are shown in
Figure 10. The sensitivity to temperature for samples S4 and S5 can be seen to be 0.517 and
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0.562 nm/◦C, respectively. In order to directly analyze the sensitivity of the proposed
sensors with different inner diameters, we calculated the unit length sensitivity of samples
S2, S4 and S5, the results of which were 0.01185, 0.00739 and 0.00645 nm/(◦C·µm), respec-
tively. The FPI sensor with a larger inner diameter had higher temperature sensitivity at the
same length, owing to more UV glue being filled in the capillary, which induced a larger
expansion in the temperature variation process.
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(a) 75 µm, (b) 30 µm and (c) 25 µm.
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4.2. Pressure Performance

The response of the proposed sensor to gas pressure was also experimentally explored.
The sensor head was sealed in the gas chamber and the other end was connected to BBS
and OSA through a circulator. The gas pressure experimental apparatus of the sensor is
shown in Figure 6. The gas pressure was generated and measured by a high-precision
pressure gauge (ConST-811) ranging from 100 kPa to 1 MPa with a step of 100 kPa. The
section of the spectra response at room temperature is shown in Figure 11a, which shows
that the reflective spectrum experiences almost no shift with increasing pressure. We chose
two dip wavelengths (Dip 1 and Dip 2) and performed their linear fittings of wavelength
with respect to the pressure, as shown in Figure 11b. The pressure sensitivity for Dip 1
and Dip 2 was 2.187 × 10−5, 1.271 × 10−5, respectively, and it can be considered that the
proposed sensor is insensitive to pressure and suitable for real-time water temperature
monitoring for ocean research.
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Figure 11. (a) The interference fringe with increasing pressure. (b) Wavelength shifts of Dip 1 and
Dip 2 versus pressure.

Comparisons of the temperature sensing performances and characteristics between
our UV glue-filled HCF sensor and other structured fiber sensors cited in the literature,
including sensing sensitivity values, temperature ranges, costs, structure sizes as well as
fabrication processes, are listed in Table 2. Among them, the sensitivity of our proposed
sensor is obviously higher than most of those reported in the references. Compared to
the other two sensors with higher sensitivity, our proposed sensor structure can precisely
control the cavity length by cleaving desired lengths under the observation of the CCD.
In addition, the proposed sensor also has the advantages of being small in size, easy
to manufacture and repeatable production, making the sensor promising in terms of its
application in the field of temperature measurement.
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Table 2. Sensing Performance Comparison of Several Different Temperature Sensors.

Sensor Structure Sensitivity FPI Cavity Length or Structure Size Range Fabrication Cost Ref

PDMS-filled
air-microbubble 2.7035 nm/◦C the air-microbubble length of 26.5 µm 51.2–70.5 ◦C Easy Low [17]

SU-8 and PDMS
polymer-capped 0.6897 nm/◦C the SU-8 film thickness of 18.7 µm

the PDMS film thickness of 7.7 µm 20–75 ◦C Easy High [18]

UV glue-capped
with FBG 0.223 nm/◦C the UV glue cap thickness of 48 µm 30–110 ◦C Complicated High [21]

UV glue/Air
cavity 67.35 nm/◦C the sensing air cavity length of 77.59 µm

the reference air cavity length of 81.52 µm 20–24 ◦C Complicated Low [22]

UV glue and
Capillary 0.963 nm/◦C the UV glue cavity length of 90 µm 42–50 ◦C Easy Low [23]

UV glue and Air
Cavities −1.7 nm/◦C the air cavity length of 20 µm

the UV glue cavity length of 70 µm 20–75 ◦C Easy Low [24]

UV glue-filled
HCF 1.174 nm/◦C the UV glue cavity length of 118.85 µm 30–60 ◦C Easy Low Our

work

5. Conclusions

In summary, in this study, an optic fiber temperature sensor based on a UV glue-
filled FP cavity in a HCF is proposed and demonstrated. The experimental results show
that the sensor has a good linear response in a range of 30–60 ◦C and high-temperature
sensitivity, which can be increased as the length of the FP cavity is enlarged. The sensitivity
of the probe with an FP cavity length of 118.85 µm can reach up to 1.174 nm/◦C. The FPI
sensors can be simply fabricated with different lengths and inner diameters of the capillary,
and have good repeatability. In addition, the sensor is insensitive to pressure and highly
suitable for real-time water temperature monitoring in ocean research. With appropriate
packaging, the proposed temperature sensor with high sensitivity and a compact structure
has broad application prospects in marine survey technology, biological diagnostics and
environmental monitoring. Due to the limitations of the experimental instruments, we only
measured the temperature response of this sensor between 30–60 ◦C, and did not obtain
the temperature sensing measurement in the low-temperature region. In future work, we
will further test the proposed sensor at low or even sub-zero temperatures.
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