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Abstract: Compressed sensing (CS) MRI has shown great potential in enhancing time efficiency. Deep
learning techniques, specifically generative adversarial networks (GANs), have emerged as potent
tools for speedy CS-MRI reconstruction. Yet, as the complexity of deep learning reconstruction models
increases, this can lead to prolonged reconstruction time and challenges in achieving convergence. In
this study, we present a novel GAN-based model that delivers superior performance without the
model complexity escalating. Our generator module, built on the U-net architecture, incorporates
dilated residual (DR) networks, thus expanding the network’s receptive field without increasing
parameters or computational load. At every step of the downsampling path, this revamped generator
module includes a DR network, with the dilation rates adjusted according to the depth of the network
layer. Moreover, we have introduced a channel attention mechanism (CAM) to distinguish between
channels and reduce background noise, thereby focusing on key information. This mechanism
adeptly combines global maximum and average pooling approaches to refine channel attention. We
conducted comprehensive experiments with the designed model using public domain MRI datasets
of the human brain. Ablation studies affirmed the efficacy of the modified modules within the
network. Incorporating DR networks and CAM elevated the peak signal-to-noise ratios (PSNR) of the
reconstructed images by about 1.2 and 0.8 dB, respectively, on average, even at 10× CS acceleration.
Compared to other relevant models, our proposed model exhibits exceptional performance, achieving
not only excellent stability but also outperforming most of the compared networks in terms of PSNR
and SSIM. When compared with U-net, DR-CAM-GAN’s average gains in SSIM and PSNR were 14%
and 15%, respectively. Its MSE was reduced by a factor that ranged from two to seven. The model
presents a promising pathway for enhancing the efficiency and quality of CS-MRI reconstruction.

Keywords: compressed sensing MRI; GAN; U-net; dilated residual blocks; channel attention mechanism

1. Introduction

Compressed sensing (CS) is a promising technique that capitalizes on the sparsity
property for signal recovery [1]. CS-based methods have been increasingly employed to
enhance MRI time efficiency. Introduced by Donoho in 2006 [2], the CS method, also known
as compressed or sparse sampling, was first applied to fast MRI by Lustig et al. [3]. CS-MRI
leverages sparse sampling and convex optimization algorithms to improve clinical MRI
time efficiency [4]. Although CS-MRI surpasses the Nyquist–Shannon sampling barrier,
its acceleration rate remains limited. Current sparse transforms in CS-MRI struggle to
capture intricate image details [5], and iterative calculations in the nonlinear optimization
solver prolong the reconstruction time [6]. Inappropriate hyperparameter prediction may
result in overly smooth, unnatural images [7]. However, the widespread influence of
artificial intelligence (AI) and deep learning (DL) advancements [8] have enhanced various
aspects of medical image reconstruction, including their speed, accuracy, and robustness [9],
making them increasingly important for fast CS-MRI reconstruction.
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The use of deep learning techniques, such as generative adversarial networks
(GANs) [10,11], has emerged as a leading approach to CS-MRI reconstruction. These
techniques have enabled high-quality reconstruction without increasing model complex-
ity. Convolutional neural networks (CNNs) are some of the most prominent DL models
used for CS-MRI reconstruction. They excel in learning the non-linear mapping between
undersampled and fully sampled MRI images. Models like U-net and its variants [12]
have been particularly successful due to their ability to extract and combine features at
different levels. Recurrent neural networks (RNNs) and specifically their long short-term
memory (LSTM) variant have also been used in CS-MRI reconstruction [13]. They take
advantage of the temporal correlation in dynamic MRI data, thus improving the reconstruc-
tion quality of dynamic sequences. The GAN-based models have also shown potential in
CS-MRI reconstruction [11,14–17]. The competitive learning process between the genera-
tor and discriminator networks results in images with high perceptual quality. Some of
the mainstream GAN-based CS-MRI reconstruction models are summarized below: the
CycleGAN [18] model has been used for unsupervised image translation, where the goal
is to transform images from one domain to another. In CS-MRI, CycleGAN can be used
to map undersampled k-space data to fully sampled k-space data. The inherent cycle
consistency loss helps to preserve the important structures in the MRI images, leading to
better reconstruction. The pix2pix GAN model [19], also known as the image-to-image
translation GAN, has been used in CS-MRI for mapping the undersampled MRI images to
their fully sampled counterparts. This model has shown promising results in generating
high-quality reconstructions, although the quality of the output largely depends on the
quality of the paired data. The deep convolutional GAN (DCGAN) model [20] has been
used in CS-MRI to learn the mapping between the undersampled and fully sampled MRI
data. The deep convolutional layers in this model can better capture the complex patterns
in the MRI data, thereby producing high-quality reconstructed images. The Wasserstein
GAN (WGAN) model [21] uses the Wasserstein loss instead of the traditional GAN loss
to stabilize the training process and improve the quality of the generated images. WGAN
has been used in CS-MRI to generate more realistic reconstructions and better preserve
the details of the original images. The progressive GAN model [22] adopts a new train-
ing methodology that grows both the generator and discriminator progressively, adding
layers that model increasingly fine details as the training progresses. This method allows
the model to effectively generate high-resolution details, leading to improved CS-MRI
reconstruction. In the last three years, of deep-learning-based novel algorithms for CS-MRI
reconstruction have continued to emerge [23–28]. For example, the projection-based cas-
caded U-Net model [23]; the geometric distillation network, used to unfold the model-based
CS-MRI optimization problem [24]; the iterative fusion model, used to integrate the image-
and gradient-based priors into reconstruction [25]; the interpretable network, which has
two-grid cycle and geometric prior distillation [26]; and the fast iterative shrinkage thresh-
olding network, used for high throughput reconstruction [27]. The new GAN-powered
algorithms have also continued to grow [29–32], including ESSGAN [29], DBGAN [30],
CoVeGAN [31], and SEPGAN [32]. In ESSGAN [29], structurally strengthened connections
were introduced to enhance feature propagation and reuse the in-between concatenated
convolutional autoencoders in addition to residual blocks. In DBGAN [30], the dual-branch
GAN model uses cross-stage skip connection between two end-to-end-cascaded U-Nets
to widen the channels for feature propagation in the generator. In the complex-valued
GAN (Co-VeGAN) network [31], the use of complex-valued weights and operations was
explored in addition to the use of a complex-valued activation function that is sensitive to
the input phase. In SepGAN [32], depth-wise separable convolution was utilized as the ba-
sic component to reduce the number of learning parameters. Moreover, attention-enhanced
GAN networks [33–35] have become more and more powerful [36]. Besides spatial [34] and
channel attention mechanisms [33], transformer-based GAN networks have become quite
effective [35]. The development of GAN-powered frameworks for CS-MRI reconstruction
has been comprehensively summarized in recent reviews [36–38].



Sensors 2023, 23, 7685 3 of 16

Deep-learning-based methods have shown impressive results in image and signal
reconstruction. They often outperform conventional algorithms in terms of both speed
and quality [39]. However, many models require increased network depth and width,
which complicates training and prolongs the reconstruction time [21,40]. In this study, we
improved upon a GAN-based model for the construction of CS-MRI. The generator module
of the model was derived from the U-Net architectureby integrating dilated residual (DR)
structures to expand the network’s receptive field, while avoiding an increase in parameters
or computation. At each step of the downsampling path, the revamped generator module
incorporates three such structures with varying dilation rates depending on the depth of
the network layer [41,42]. To concentrate on essential information, we also introduced a
channel attention mechanism (CAM) that distinguishes between channels and reduces
background noise [43]. This mechanism integrates global maximum and average pooling
for more precise channel attention. We’ve assigned this GAN-based CS-MRI reconstruction
model, equipped with DR networks and CAM, the name DR-CAM-GAN.

Using public domain MRI datasets for the human brain, we conducted extensive recon-
struction experiments with the designed DR-CAM-GAN model at different undersampling
levels. To assess the performance of the model, we compared the reconstructed image
qualities with the results of a few reference models, including CRNN [13], DAGAN [15] and
RefineGAN [44]. The image quality was evaluated according to the peak signal-to-noise
ratio (PSNR), structural similarity (SSIM), and mean square error (MSE) [45]. The features
of the study we would like to highlight are as follows: (1) Dilated residual networks with
varying dilation rates to fully satisfy the receptive field [46], a channel attention mechanism
for refining network resource allocation [47], and a multi-scale information fusion mod-
ule for feature fusion and improved MRI reconstruction quality [48]. (2) A discriminator
structure design that avoids max pooling layers and implements feature downsampling
through varied convolution strides, with batch normalization to address gradient vanishing.
(3) A combination of four loss functions—pixel-wise image-domain mean square error loss,
frequency-domain MSE loss, perceptual VGG loss, and adversarial loss—assigned different
weights to enhance reconstruction quality and visual perception.

2. Materials and Methods
2.1. Datasets and Data Processing

To demonstrate the effectiveness of the proposed model, we utilized publicly available
T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) datasets of the human
brain for testing, including the diencephalon challenge dataset of the MICCAI 2013 grand
challenge (https://www.synapse.org/, accessed on 20 May 2022) and the Open Access
Series of Imaging Studies (OASIS) dataset (https://www.oasis-brains.org/, accessed on
20 May 2022), which contains neuroimaging data for 1378 participants collected over a
30-year period. There are 176 image slices in each 3D T1-weighted MPRAGE file. We
randomly shuffled these files, allocating 70% for training, 10% for validation, and 20%
for testing. The training set updates the network parameters according to the gradient
descent approach to best fit the real data distribution, while the validation set helps with
hyperparameter fine-tuning, identifying overfitting, and selecting more accurate models.

We utilized a fast Fourier transform procedure to convert the images into fully sampled
k-space data within the complex domain. To generate undersampled images for CS-MRI
reconstruction at different sampling rates, we extracted the k-space data at sub-Nyquist
rates of 10%, 20%, 30%, and 50%, then conducted zero-filling on the undersampled k-space
data and applied an inverse Fourier transform. This process was intended to demonstrate
the adaptability of our proposed model to various CS-MRI sampling rates. During the
training of the reconstruction model, the subsampled k-space data were used as input to
generate output images that matched the Fourier transforms of fully sampled k-space data.
Sparsity plays a crucial role in CS-MRI, particularly in the wavelet or Fourier domain. It
is essential for the CS-MRI data sampling pattern to be incoherent with the sparse basis.
Typically, variable-density random undersampling in the k-space is employed to achieve

https://www.synapse.org/
https://www.oasis-brains.org/
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this. Since the central k-space region contains important high-energy information for
image quality and tissue contrast, and higher k-space data contribute to image details
and fine structures [12], we always included the central 4% low-frequency information to
ensure good image quality during undersampling. To simulate incoherent k-space data
undersampling, we adopted a Monte Carlo’s random undersampling strategy based on
Gaussian sampling distribution. This approach exploits the high energy at the center of the
k-space while also including some sparse-distributed high-frequency k-space data points
needed to preserve fine structural details and correct for aliasing artifacts.

Given the importance of extensive datasets for deep learning models and the limited
availability of medical images, we utilized data augmentation techniques to expand our
datasets and bolster model resilience. To achieve this, we implemented online stochastic
augmentation, generating random augmentations for a data batch [49], which not only
enhanced model stability but also alleviated storage constraints as compared to offline
augmentation methods. We employed four different random enhancement methods with
equal probability to ensure low data repeatability. We divided the data into four equal parts,
augmenting each by flipping up and down, translating, mirroring horizontally, or rotating
by 90 degrees. These methods reduce model sensitivity to target position, accelerate model
convergence, and improve performance.

2.2. The Proposed Reconstruction Model

GAN-based models are innovative deep generative models that leverage game the-
ory and competitive learning between a generator and a discriminator to enhance the
network’s fitting ability. The proposed DR-CAM-GAN framework consists of generator
and discriminator modules. The generator module takes undersampled MR images and
outputs reconstructed images after multiple levels of convolutional operations, while the
discriminator classifies de-aliased reconstructed images from fully sampled ground truth
images. The outline of the proposed GAN framework is displayed in Figure 1.

In the DR-CAM-GAN framework, we use a U-net base structure for the generator,
with an encoding layer for feature extraction and a decoding layer for feature amplification
at each stage. Skip connections transfer information from the encoding layer to the corre-
sponding decoding layer, enabling feature fusion and providing more accurate detailed
features for reconstruction. To alleviate gradient disappearance or network degradation as
the network depth increases, we modified the residual structures by replacing the second
standard convolution with a dilated convolution. This expands the network’s receptive
field without increasing parameters or computation. Dilated convolution is a technique
that expands the kernel size by inserting holes between the kernel elements. In other words,
the computation is the same as ordinary convolution, but it involves pixel skipping, so
that the kernel can cover a larger area of the input feature map. In a regular convolution
operation, a filter of a fixed size slides over the input feature map, and the values in the
filter are multiplied with the corresponding values in the input feature map to produce a
single output value. The receptive field of a neuron in the output feature map is defined
as the area in the input feature map that the filter can cover. Therefore, the size of the
receptive field is determined by the size of the filter and the stride of the convolution.
In a dilated convolution operation, the filter is “dilated” by inserting space between the
kernel elements, and the gaps are determined by an adjustable hyperparameter called the
dilation rate, which effectively increases the receptive field of the filter without increasing
the number of parameters. This can be useful in situations where a larger receptive field is
needed, but the size of the filter is limited. Our generator structure employs three dilated
residual blocks with different dilation rates (1, 2, and 3), which vary depending on the
network layer’s depth. We used skip connections in the U-net structure [50] to fuse deep
and shallow features, improving MR image reconstruction quality. To better focus on key
information, we propose a new channel attention mechanism that establishes dependencies
between channels, suppressing background information. This mechanism combines global
maximum pooling and global average pooling to obtain more accurate channel attention.
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Despite the dilated residual structure and channel attention mechanism’s strengths, the
decoding layer structure is a bottom-up process, which can lead to information loss or
corruption. We employed a multi-scale information fusion module to aggregate features
from multiple levels, using linear interpolation techniques for upsampling to avoid midway
detail information loss and fully utilize the information. Figure 2 depicts the generator
with integrated DR blocks and CAM.

Figure 1. Schematic illustration of the improved GAN model with dilated residual networks and a
channel attention mechanism (DR-CAM-GAN), intended for use in CS-MRI reconstruction.

The discriminator’s primary function is to determine the input MR images’ source. It
consists of a series of convolutions, employing batch normalization after each convolution
to normalize input and avoid gradient disappearance. The discriminator structure follows
Radford et al.’s [20] architectural guidelines, using convolution stride variations for feature
downsampling instead of max pooling layers. We utilize LeakyReLU for enhanced non-
linearity and a sigmoid function to determine whether an MR image is fully sampled or
reconstructed.
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Figure 2. The U-net-based generator architecture (A) with integrated DR blocks and CAM (B).

2.3. The Loss Function

The GAN model is trained in an alternating fashion: the discriminator trains for one
or more epochs, then the generator is trained. This procedure is repeated until the targeted
loss or the ultimate number of iterations is reached. To enhance the reconstruction quality
and visual perception of our model, we used a combination of pixel-wise image-domain
mean square error (MSE) loss, frequency-domain MSE loss, perceptual VGG loss, and
adversarial loss [51], assigning them different weights to form the generator’s loss function.
The combined loss function for the generator is given by:

Lcombine = αLiMSE + βL f MSE + δLVGG + LGEN (1)

where the hyperparameters α, β, δ are the weights associated with different loss terms.
Balancing these weights is achieved by setting them for different undersampling ratios.
We trained the network with α = 15, β = 0.1, and δ = 0.0025, as used previously in GAN-
related model training. Pixel loss ensures positive similarity between the reconstructed and
original images by calculating the MSE between each pixel point of the reconstructed MRI
and the fully sampled image:

LiMSE =
1
2
‖Xt − Xu‖2

2 (2)

where Xt represents the fully sampled image and Xu is the reconstructed image generated
by a cascaded convolutional neural network. Frequency-domain MSE loss enhances the
similarity between a fully sampled image and a reconstructed image, defined as:

L f MSE =
1
2
‖Yt −Yu‖2

2 (3)
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where Yt and Yu are the corresponding frequency-domain data of Xt and Xu. Pixel- and
frequency-domain losses yield reconstructed MRIs with higher PSNR and lower MSE.
However, optimizing MSE may result in the loss of high-frequency information, leading to
over-smoothed images that affect human visual perception. To address this issue, we intro-
duced perceptual loss from Gatys et al. [30] to reduce the gap between the reconstructed
MRI and the fully sampled image in feature space, obtaining higher texture similarity:

LVGG =
1
2
‖ fVGG(Xt)− fVGG(Xu)‖2

2 (4)

where fVGG refers to the VGG16 network.
The adversarial loss in the GAN network represents the difference between the pre-

dicted probability distribution produced by the discriminator and the actual probability
distribution of real samples. It is expressed as the log of the discriminator probability
distribution for the generated image data:

LGEN = − log
(

Dθd

(
Gθg(Xu)

))
(5)

While the generator aims to produce a better image from the undersampled data by
focusing on improving image quality, the discriminator’s primary objective is to maximize
the probability assigned to real and fake images: that is, to distinguish the image produced
by the generator from the fully sampled ground truth image. The two modules are engaged
in a min-max game, where simultaneous improvements are achieved for both modules
through competition. Mathematically, the model is seeking to minimize the average binary
cross entropy. This can be expressed as follows [36]:

LD = −log
(

Dθd(Xt)
)
−log

(
1− Dθg(Xu)

)
(6)

where log(Dθd(Xt)) represents the log of the discriminator probability distribution for
the fully sampled image data, and log(1− Dθg(Xu)) is the log of the invert probability
distribution for the generated images from the undersampled data. For the discriminator,
minimizing the LD loss function is equivalent to maximizing the judgement accuracy of
the fully sampled image and the network’s reconstructed image using undersampled data.

2.4. Model Training

We employed an NVIDIA Geforce 3060 GPU for both the training and testing phases,
utilizing the PyTorch development environment and a model with a total of 41.84 MB
of parameters. Our model was trained using the ADAM optimizer with set parameters:
β1 = 0.9, β2 = 0.999, an initial learning rate of 0.0001, a learning rate decay factor of 0.5, and
an update interval of 10 epochs for the learning rate. To mitigate overfitting, we used MSE
as the evaluation metric to optimize our model. Training was halted and the current model
saved if the observed MSE was lower than any MSE from the subsequent 20 epochs. Each
epoch, which included the computation of PSNR, SSIM, and MSE for the validation sets,
was completed within approximately 20 min.

We conducted ablation studies to ascertain the contribution of individual elements
to our proposed reconstruction model. By systematically altering the model, we gauged
the performance of these variants in comparison to the original comprehensive model.
We specifically scrutinized the effects of the dilated residual structure, channel attention
mechanism, and multi-scale information fusion module on the model’s performance. This
was accomplished by modifying or removing each component and evaluating the resultant
model’s performance.

As detailed in Table 1, we compared the performance of five renowned CS-MRI
reconstruction models—U-net [12], CRNN [13,52], DAGAN [15], RefineGAN [44], and
ESSGAN [29]—using the same training datasets and similar training procedures as de-
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scribed above. We used three metrics (PSNR, SSIM, and MSE) to assess and compare the
performance of the different models under different levels of undersampling.

Table 1. Summary of the different DL models assessed according to their performance in CS-
MRI reconstruction.

Model Reference Parameters Model Size Batch Epoch Training

U-net [12] 2.04 M 5.12 MB 16 200 3.6 h
CRNN [52] 0.32 M 1.13 MB 16 100 2.4 h

DAGAN [15] 98.60 M 376.16 MB 16 60 10.6 h
RefineGAN [44] 40.91 M 105.34 MB 16 50 18.4 h

ESSGAN [29] 35.71 M 74.50 MB 16 50 21.3 h
DR-CAM-GAN 15.77 M 41.84 MB 16 50 14.2 h

3. Results

Tables 2 and 3 and Figure 3 present the quantitative outcomes of our ablation studies,
encompassing evaluation metrics such as model size, training time, SSIM, MSE, and PSNR
across four different undersampling levels. The full model we propose, DR-CAM-GAN,
outperforms in all three metrics. The DR networks elevate PSNR, SSIM, and MSE as being
1.6–6.3%, 0.6–2.3%, and 14–64%, respectively, contingent on the undersampling levels.
Introducing the CAM results in improvements of 0.9–3.0% for PSNR, 0.4–0.9 for SSIM, and
10–26% for MSE. Multi-scale information fusion modestly boosts PSNR, SSIM, and MSE by
0.4–1.3%, 0.3–0.6, and 3–15%, respectively. Among these different innovative modifications,
the DR networks contribute most significantly to performance enhancement, followed by
the improvement provided by the CAM.

Table 2. Summary of the DR-CAM-GAN component efficacy as tested by ablation studies.

Ablation Component Parameters Model Size Batch Epoch Training

Dilated residual structure 14.99 M 38.87 MB 16 50 12.9 h
Channel attention mechanism 15.68 M 41.51 MB 16 50 13.5 h
Multi-scale information fusion 15.74 M 41.72 MB 16 50 14.1 h

Table 3. Results of the ablation experiments with the DR-CAM-GAN framework.

Sampling Ablation Comparison SSIM MSE (×10−3) PSNR (dB)

10%

Dilated Residual structure 0.9059 3.27 30.62
Channel attention mechanism 0.9157 3.04 30.91
Multi-scale information fusion 0.9184 2.85 31.49

DR-CAM-GAN full model 0.9213 2.76 31.76

20%

Dilated Residual structure 0.9325 0.64 36.68
Channel attention mechanism 0.9456 0.61 37.45
Multi-scale information fusion 0.9479 0.55 37.63

DR-CAM-GAN full model 0.9541 0.48 37.79

30%

Dilated Residual structure 0.9508 0.47 37.82
Channel attention mechanism 0.9622 0.47 38.05
Multi-scale information fusion 0.9631 0.44 38.21

DR-CAM-GAN full model 0.9656 0.41 38.43

50%

Dilated Residual structure 0.9786 0.18 41.13
Channel attention mechanism 0.9804 0.15 42.62
Multi-scale information fusion 0.9812 0.12 43.35

DR-CAM-GAN full model 0.9847 0.11 43.90
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Figure 3. Bar graph of the SSIM (A), MSE (B), and PSNR (C) as a function of the CS undersampling
rates for the different models.

Figure 4 depicts a representative coronal slice of images reconstructed by various
models, including our proposed DR-CAM-GAN framework, at four distinct undersam-
pling levels. Figure 5 demonstrates the MSE outcomes for the same slice. At lower
sampling rates (10% and 20%), models such as U-net, CRNN, and DAGAN struggle with
signal recovery, leading to blurring in the reconstructed images. In stark contrast, both
the RefineGAN and proposed DR-CAM-GAN models display superior performance,
with less blur and enhanced detail recovery in brain structure. The DR-CAM-GAN
framework excels, even surpassing the highly effective RefineGAN model. At a 20%
sampling rate, the network largely succeeds in reconstructing the brain structure, al-
though edge details remain slightly blurred with minor visible artifacts. On the other
hand, reconstructions from the CRNN and DAGAN models appear noisy and present a
more significant loss of brain anatomy details.
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Figure 4. A coronal slice reconstructed from a T1-weighted MPRAGE volume by five distinct DL
models (column-wise) at four different CS undersampling rates (row-wise).

Figure 5. The MSE maps corresponding to the coronal slice depicted in Figure 4, illustrating the
results from six DL models (column-wise) at four different CS undersampling rates (row-wise).
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Table 4 and Figure 6 encapsulate the quantitative evaluations of the reconstructed
image quality. DL models showcase robust performance, even at elevated undersam-
pling rates, with the various quality metrics (PSNR, SSIM, and MSE) following a similar
trajectory. Our proposed DR-CAM-GAN model stands out, demonstrating remarkable
performance and stability. Regardless of the sampling rate, DR-CAM-GAN consistently
outperforms most of the compared literature models, except for the more recent ESSGAN
model. Compared with the ESSGAN, DR-CAM-GAN’s performances in PSNR and SSIM
are systematically lower; however, the differences are quite marginal (0.3 vs. 1.3% in
SSIM and 0.07 vs. 0.22 dB in PSNR). When pitted against U-net, DR-CAM-GAN’s gains
in SSIM and PSNR range from 6 to 15% and from 11 to 17% respectively. Even compared
to RefineGAN, improvements in SSIM and PSNR consistently surpass 1 and 3%, respec-
tively, depending on the undersampling levels. The reduction in its MSE is even more
noteworthy, ranging from two to nine times lower, which is particularly impressive at
higher sampling rates.

Table 4. Performance comparison for six different DL models at four different undersampling rates.

Sampling Model SSIM MSE (×10−3)
PSNR
(dB)

10%

U-net 0.781 4.75 28.34
CRNN 0.853 3.63 29.53

DAGAN 0.903 3.29 30.59
RefineGAN 0.906 3.22 30.97

ESSGAN 0.933 1.96 31.83

DR-CAM-GAN 0.921 2.76 31.76

20%

U-net 0.838 3.04 31.75
CRNN 0.887 1.25 33.16

DAGAN 0.915 1.09 34.32
RefineGAN 0.944 0.85 36.50

ESSGAN 0.965 0.41 37.86

DR-CAM-GAN 0.954 0.48 37.79

30%

U-net 0.857 1.96 33.54
CRNN 0.900 0.79 35.67

DAGAN 0.944 0.81 36.69
RefineGAN 0.951 0.77 36.95

ESSGAN 0.972 0.35 38.62

DR-CAM-GAN 0.966 0.41 38.43

50%

U-net 0.921 1.05 36.28
CRNN 0.942 0.50 38.93

DAGAN 0.967 0.53 39.18
RefineGAN 0.972 0.23 42.05

ESSGAN 0.988 0.08 44.12

DR-CAM-GAN 0.985 0.11 43.90
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Figure 6. The SSIM (A), MSE (B), and PSNR (C) as a function of the CS undersampling rates for the
different DL models.

4. Discussion

To summarize, our proposed DR-CAM-GAN model exhibits superior performance
in image reconstruction compared to other DL models, even at elevated undersampling
rates. Quantitative assessments indicated substantial improvements in PSNR, SSIM, and
MSE metrics. The DR networks contribute the most significantly to this performance
enhancement. The DR-CAM-GAN model consistently outperforms U-net, CRNN, DAGAN,
and even the efficient RefineGAN, with notable improvements in image quality and noise
reduction. Compared with the ESSGAN, DR-CAM-GAN’s performances in PSNR and SSIM
are slightly lower. Overall, the DR-CAM-GAN model demonstrates good performance and
stability and can effectively recover detailed brain structures from undersampled data.

The ablation study results presented in Tables 2 and 3 and Figure 3 offer valuable
insights into the contributions of each component of our proposed DR-CAM-GAN model.
By evaluating the model’s performance using SSIM, MSE, and PSNR metrics across four
distinct undersampling levels, we can better understand how each element impacts the
overall performance. In summary, the ablation study highlights the importance of each
component in the DR-CAM-GAN model. The DR networks are the primary driver of
performance improvement, while the CAM mechanism and multi-scale information fusion
provide valuable support. These combined elements allow the DR-CAM-GAN model to
achieve superior performance across all evaluation metrics, demonstrating its effectiveness
in reconstructing high-quality images from undersampled data. The DR networks play a
crucial role in enhancing the model’s performance. The DR networks demonstrate their
effectiveness in capturing multi-scale information and preserving the spatial structure of
the images. This leads to better image quality and improved reconstruction, particularly
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in capturing fine details and maintaining the overall structure of the brain. The CAM
mechanism, though it provides only a moderate contribution, is still an essential component
of the model. It focuses on important features by adaptively weighing channel-wise
information, thereby improving the model’s ability to recover specific details and suppress
less relevant information. This results in better image quality and reduced noise. The
multiscale information fusion further refines the model’s performance by moderately
increasing PSNR, SSIM, and MSE. This component enables the model to incorporate
information from different scales, ensuring that both global and local features are well-
represented in the final reconstruction. This fusion process contributes to a more accurate
and detailed image representation.

As suggested by the results of the ablation study, the superior performance can be
attributed to the combination of the DR networks, CAM mechanism, and multi-scale
information fusion. This combination allows the DR-CAM-GAN model to outperform
most of the compared DL models and achieve exceptional performance and stability in
CS image reconstruction tasks. The model comparison results showcased in Figures 4–6
provide a comprehensive understanding of how the proposed DR-CAM-GAN model
performs against other deep learning models in image reconstruction tasks. By examining
the structure and reconstruction quality of various models, such as U-net, CRNN, DAGAN,
RefineGAN, ESSGAN, and our proposed DR-CAM-GAN, we can evaluate their strengths
and weaknesses and identify the factors contributing to the superior performance of the
DR-CAM-GAN model.

The CRNN [52] is not a GAN-based architecture but a convolutional recurrent neural
network embedded with the structure of traditional iterative algorithms. CRNN can
efficiently model the recurrence of the iterative reconstruction stages. The U-Net [12]
follows an encoder–decoder cascade architecture, where the encoder gradually compresses
information into a lower-dimensional representation. Then the decoder decodes this
information back to the original image dimension. Owing to the overall U-shaped structure,
the architecture is named U-Net and is the basic construction unit for many variants of
GAN generator modules. DAGAN [15] is a deep learning architecture for fast, de-aliasing
CS-MRI reconstruction. Its generator network is a U-Net architecture with skip connections.
RefineGAN [44] employs chained U-nets to form deeper generator and discriminator
networks and further enhance the reconstruction quality. ESSGAN [29] consists of a
structurally strengthened generator with strengthened connections that enhance feature
propagation between the concatenated and strengthened convolutional autoencoders, in
addition to strengthening the residual in residual blocks. In DR-CAM-GAN, we derived the
generator module from a U-net model by integrating dilated residual structures of different
dilation rates according to the depth in the encoder to expand the network’s receptive field,
in addition to introducing CAM mechanisms. Overall, the architectures for RefineGAN
and ESSGAN are more complex, with larger models and more parameters, which leads to
an increase in training time (see Table 1). Compared with DAGAN and RefineGAN, our
proposed DR-CAM-GAN method can improve image quality while reducing training time.

At low sampling rates (10 and 20%), the limited amount of sampled data poses a
challenge for most models. U-net, CRNN, and DAGAN struggle to recover lost signals,
resulting in blurry reconstructed images with less detail. This limitation can be attributed
to these models’ inability to capture multi-scale information effectively, which is crucial for
preserving the spatial structure and finer details of the images.

In contrast, RefineGAN and our DR-CAM-GAN model demonstrate better perfor-
mance in reconstructing images with less blur and more detailed brain structures. The
DR-CAM-GAN model, in particular, leverages its dilated residual networks, which enable
the model to capture multi-scale information and preserve the spatial structure more effec-
tively. Additionally, the channel attention mechanism focuses on relevant features, improving
the model’s ability to recover specific details and suppress less important information.

The DR-CAM-GAN model outperforms even the highly efficient RefineGAN model.
At a 20% sampling rate, the network recovers much of the brain structure. However,
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edge information remains somewhat blurred, and minor artifacts are present. Conversely,
reconstruction results from CRNN and DAGAN models are noisy, with some loss of brain
anatomy details.

Quantitative assessments of image quality, including those using PSNR, SSIM, and
MSE metrics, further confirm the outstanding performance of the DR-CAM-GAN model. As
shown in Table 4 and Figure 6, deep learning models demonstrate good performance even
at high undersampling rates, but the DR-CAM-GAN model consistently achieves significant
improvements in PSNR and SSIM compared to other networks. This superior performance
can be attributed to the model’s ability to effectively capture multi-scale information and
focus on relevant features through the DR networks and the CAM mechanism.

5. Conclusions

In conclusion, the DR-CAM-GAN model outperforms other deep learning models in
image reconstruction tasks, even at high undersampling rates. Its superior performance
and stability in recovering detailed brain structures stem from the integration of dilated
residual networks, a channel attention mechanism, and multi-scale information fusion. The
ablation study highlights the importance of DR networks, with the CAM mechanism and
multi-scale fusion providing valuable support. Consequently, the DR-CAM-GAN model
excels across all evaluation metrics, proving its effectiveness in reconstructing high-quality
images from undersampled data. The model surpasses deep learning models like U-net,
CRNN, DAGAN, and even RefineGAN, with quantitative assessments confirming its
outstanding performance. The DR-CAM-GAN model’s success lies in its ability to capture
multi-scale information and focus on relevant features. Ultimately, this model presents a
promising solution for reconstructing high-quality images from undersampled data, with
significant potential for various medical imaging and computer vision applications.
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