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Abstract: Indoor agriculture is emerging as a promising approach for increasing the efficiency
and sustainability of agri-food production processes. It is currently evolving from a small-scale
horticultural practice to a large-scale industry as a response to the increasing demand. This led to the
appearance of plant factories where agri-food production is automated and continuous and the plant
environment is fully controlled. While plant factories improve the productivity and sustainability
of the process, they suffer from high energy consumption and the difficulty of providing the ideal
environment for plants. As a small step to address these limitations, in this article we propose to use
internet of things (IoT) technologies and automatic control algorithms to construct an energy-efficient
remote control architecture for grow lights monitoring in indoor farming. The proposed architecture
consists of using a master–slave device configuration in which the slave devices are used to control the
local light conditions in growth chambers while the master device is used to monitor the plant factory
through wireless communication with the slave devices. The devices all together make a 6LoWPAN
network in which the RPL protocol is used to manage data transfer. This allows for the precise and
centralized control of the growth conditions and the real-time monitoring of plants. The proposed
control architecture can be associated with a decision support system to improve yields and quality at
low costs. The developed method is evaluated in emulation software (Contiki-NG v4.7),its scalability
to the case of large-scale production facilities is tested, and the obtained results are presented and
discussed. The proposed approach is promising in dealing with control, cost, and scalability issues
and can contribute to making smart indoor agriculture more effective and sustainable.

Keywords: controlled environment agriculture; distributed control; internet of things; remote control;
smart indoor farming; wireless sensor network

1. Introduction

Technological adoption in agriculture is slow in comparison to other industrial sectors
and varies widely depending on the type of the cultivation method and the region. In
fact, many agricultural tasks still rely on manual labor and traditional low-tech methods,
resulting in low productivity. In general, the current situation is still far from satisfying
the goals of Agriculture 4.0 [1], which aims to transform agriculture into an efficient, data-
driven industry that uses the latest technologies to optimize production and promote
sustainability [2].

That being said, there are several recent research advancements in the agricultural
sector that provide a positive outlook aligning with the vision of Agriculture 4.0. For
instance, there is the increasing use of sensing technologies and data analytics to make
informed decisions in agriculture. Furthermore, numerous companies are developing
groundbreaking products and services that exploit recent technologies; when these improve
in terms of accessibility and affordability, their adoption in the agricultural sector will
increase [2]. These technologies comprise internet of things (IoT) [3–6], robotics [7,8],
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artificial intelligence (AI) [9,10], blockchain [11], remote sensing technologies [12–14],
image processing [15,16], and vertical farming [17,18]. The objectives are to automate the
production process and build decision support systems [19] that use sensors to collect
data on environmental conditions, soil condition, and plant growth, in addition to devices
that control irrigation, fertilization, lighting, and other tasks. IoT plays a paramount role
in smart agriculture as it ensures connectivity and data exchange between the different
devices that collect, send, process, and use data in the monitoring and control of various
agricultural processes [20,21]. The benefits of this technology appear in large-scale farms
where huge numbers of data on different agricultural products need to be collected and
processed in a central server according to the user’s requirements. AI can be used in
decision support systems [19] to analyze the collected data, find the relation between the
variables of interest [22], and make predictions [15,23]. It can also be used in robots to
automate tasks such as planting, irrigation, and harvesting [10,24], which reduces labor,
waste, and time consumption and improves efficiency and precision. Blockchain can be
used in agriculture to ensure that the food is produced ethically, improves transparency,
and reduces fraud [11]. New sensing technologies and image processing methods improve
accuracy in data acquisition and reduce the need for destructive analyses [25,26]. Vertical
farming consists of growing plants vertically on shelves in controlled indoor environments
with artificial lighting. It increases land use efficiency, supports circular economy, and
reduces environmental impacts [17]. In this way, farmers and stakeholders can make
informed and optimized decisions, adapt tasks to specific products, increase productivity
and profitability, conserve resources, and plan future productions. This revolution in
agriculture is an exciting opportunity to address the most pressing challenges of food
security, resource depletion, and climate change that are currently facing the world [2].

Motivated by the above considerations, the case studied in this article is the distributed
remote lighting control in large-scale vertical farms or plant factories where artificial lights
are used to provide the optimal light intensities needed by plants throughout their life.
Light-emitting diodes (LEDs) are proven to be the best artificial light source used in indoor
agriculture [27]. In this study, it is supposed that three types of LEDs are used to provide
different portions of the light spectrum, the light in the PAR (photosynthetically active
radiation) region, the far-red light, and the UV (ultraviolet) light. These lights are controlled
by a set of microcontrollers, each one of them is used to monitor the growth conditions
in a specific growth chamber. Pulse width modulation (PWM) method is implemented
in each microcontroller to dim the LEDs and change the obtained light intensities to the
required levels. An additional microcontroller is used as a server to supervise all the growth
chambers together from one place. A distributed control architecture is implemented in the
server to remotely control the growth lights in multiple growth chambers by communicating
with the microcontrollers in each one of them. The control architecture should have a low
computational cost to avoid increasing the latency of the network and facilitate the data
handling. The set of microcontrollers used in this case constructs a 6LoWPAN (IPv6 over
low-power wireless personal area networks) network, which means that it exchanges
data packets using the IPv6 protocol. The communication between the microcontrollers
in this network can be subject to multiple constraints on data transmission, processing
time, and energy consumption. RPL (routing protocol for low-power and lossy networks)
protocol is used to transfer data in this kind of constrained network thanks to its low power
consumption and its specific design for multi-hop and multi-point communications. In brief,
the main contributions of the paper are the proposed architecture that improves the energy-
efficiency of the plant factory by using economic LED lights, an energy-efficient PWM
method instead of amplitude modulation for light dimming, a low computational cost-
control method, and a 6LoWPAN network with the RPL routing protocol for constrained
networks to perform tasks remotely.

The remainder of this article is organized as follows: Section 2 presents related works
and similar IoT and control systems developed previously in the agricultural field. Section 3
explains the plant light requirements and shows why the automation of light control is
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needed. Section 4 shows the proposed control architecture and provides details about its
different components and the used techniques. Section 5 discusses the implementation of
the system and evaluates the obtained results. Finally, Section 6 concludes the article and
provides hints about future research.

2. Literature Review

Smart indoor agriculture has recently attracted significant attention thanks to its ability
to produce high-quality crops using fewer resources [17]. Artificial grow lights represent
the key component of indoor agriculture; they play the critical role of providing light
energy needed by plants for their growth and development processes [28,29]. Nevertheless,
controlling the grow lights manually can be imprecise, time-consuming, and laborious,
especially in large production facilities containing multiple products in different develop-
mental stages. In this case, the automation of light control and its remote operation from a
server become a necessity [30]. Furthermore, the advantages of automation and remote
control appear in plant factories where fine crops are produced all year round in controlled
cultivation environments [31].

As previously mentioned, using the latest technologies to make the agricultural field
more efficient and “smarter” appears to be a very promising solution to the challenges of
resource depletion and increasing demand [17,30]. Moreover, converting usual agricultural
production to an indoor process where the growth conditions are controlled is expected to
reduce the environmental impacts arising from farming practices and protect the crop from
diseases, pests, and bad weather [18,28]. It will also enable us to exploit non-arable lands
in the areas covered by snow, rocks, or sand in indoor agricultural production to cover
the food demand in these areas and reduce importation costs. However, indoor farming
facilities suffer from the high energy consumption problem, and this energy is consumed
in the management of the indoor growth conditions [32,33]. State of the art contributions
in indoor farming are mostly focused on finding solutions to this energy consumption
problem [33–35]. In this article, we propose to continue in the same line by presenting
an energy-efficient method based on IoT to remotely control the grow lights in indoor
production facilities.

Several studies have explored the use of IoT technologies in smart agriculture, and
general reviews about the different contributions, challenges, and research directions
in this field have been proposed by [5,6,20,21,36,37]. Furthermore, many applications
of IoT in the agricultural field can be found in the literature ranging from controlling
tasks like irrigation [38], fertilization [39], harvesting [10], and other operations [8,24] to
plant growth monitoring tasks [40,41], farm management systems [42,43], indoor farming
systems [44–47], and the management of the food production chain [48]. The widespread
use of IoT in agriculture is a result of its ability in data handling, its easy installation, and
its decreasing cost. Moreover, many adaptations of existing IoT technologies to agricultural
applications have been proposed to improve, for instance, data handling [49–51], the
routing protocol [52–54], and energy efficiency [49,55].

The automatic grow light control problem was investigated by many researchers. As a
result, different solutions were proposed such as a digital control system based on the PI
(proportional integral) controller of the PWM signal presented in [56], a grow light control
method for aeroponic systems based on random forest classification and sensor fusion
described in [57], a control method combining grow lights and natural light that turns the
lights on and off whenever natural light is not sufficient [58,59], a hybrid control method
to control the PWM signal of LED grow lights [60], and a pulse lighting control method
presented in [61] to find the best light exposure durations for plants in indoor farming.
In brief, various methods to automatically control the grow lights were proposed for the
goal of effectively managing lighting conditions and improving the yields and product
quality. However, more research is needed to determine the optimal control strategies
and technologies for different crop types and growth conditions, especially in large scale
plant factories.
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3. Plants Light Requirements

Light is the source of energy that plants use for their growth and development pro-
cesses. It is therefore considered a very critical factor when growing plants in indoor
environments. Thus, understanding plants’ light requirements is necessary for successful
cultivation. Plants need very specific light conditions for optimal growth; these conditions
include light intensity, light quality, light duration, and light source. Understanding and
optimizing these factors can help to ensure a healthy and high-yielding plant growth,
which results in a good final product. The light intensity received by plants is measured
in photon flux density (PFD) (µmol/m2s) in the photosynthetically active radiation (PAR)
region, which represents the spectrum region used for photosynthesis. The light intensity
required by plants changes depending on the plant species, their growth stage, and some
environmental factors like temperature and humidity. In general, the PAR light intensity re-
quired for growth is at least 100–200 µmol/m2s [62]. Light quality refers to the wavelengths
of light spectrum that plants receive. It is known that red and blue wavelengths are used
for photosynthesis with different amounts depending on the species and the growth stage.
More specifically, blue light is needed more in the vegetative growth stage, while red light
is needed more for flowering and fruiting. Light duration, also known by photoperiod,
refers to the duration of plants’ light exposure per day. In general, the photoperiod is about
12–16 h per day, and it also varies depending on the species and the growth stage. By
adjusting the photoperiod, developmental processes like germination or flowering can be
triggered. Natural sunlight contains all the mentioned requirements, and it is therefore
the ideal light source for plants. However, in the case of indoor farming, LED lights are
gaining in popularity thanks to their energy-efficiency, durability, and ability to provide
the necessary wavelengths of light.

3.1. Photosynthetically Active Radiation

PAR is the portion of the light spectrum used by plants in the photosynthesis process.
PAR is also the visible light spectrum which contains wavelengths between approximately
400 nm and 700 nm. PAR is measured in PFD, which means the number of photons
emitted on a unit area per unit of time. Plants convert PAR light energy into chemical
energy in the form of glucose and other sugars through the photosynthesis process. In
general, a minimum PAR intensity of around 100–200 µmol/m2s is required for vegetative
growth, and 400–600 µmol/m2s or more is required for flowering and fruiting [62]. The
optimal PAR intensities for a particular plant species and growth stage can be determined
through experimentation and monitoring of plant growth and development under different
intensity values.

3.2. Far Red Light Effect

far-red is at the upper edge of the visible spectrum with a wavelength range of 700–750 nm.
This kind of light can penetrate through dense canopies to reach the smaller plants. In this way,
far-red light can stimulate stem elongation in these plants and push them to grow towards the
light direction to get the other wavelengths, it is a phenomenon that can be easily observed
in nature [63]. far-red light, with small exposure duration and intensities in the range of
5–20 µmol/m2s, can be beneficial for some plants that are produced for their stems. However,
excessive exposure to far-red light can also cause a decrease in leaf size, chlorophyll content,
and nutritional value of plants. Therefore, the exposure duration and the intensity of the far-red
light should be precisely controlled to match the optimal intensity required by the produced
species depending on its growth stage.

3.3. Ultraviolet (UV) Light Effect

UV light is at the range of 100–400 nm in the non-visible spectrum of light. UV
light can stimulate the production of important chemical compounds like flavonoids
and alkaloids in plants [27]. Flavonoids are responsible for the colors of many fruits
and flowers and are proven to be beneficial for human health. They are antioxidants,
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and they reduce damage caused by free radicals, in addition to having anti-cancer, anti-
inflammatory, and anti-viral properties. Moreover, they increase the nutritional value and
shelf life of products. Alkaloids, on the other hand, are used in medicine for their sedative,
analgesic (pain-relieving), and stimulant effects. However, other alkaloids are toxic and
even deadly when taken in high doses. UV light alerts the plant defense system, increases
its stress, and reduces growth and yield [64]. This is why only low intensities of UV light
in the range of 1–10 µmol/m2s are applied to plants in small durations. The exact values
are determined by monitoring plants’ stress when exposing them to different UV light
intensities and durations.

4. Grow Lights Monitoring System

Smart farming consists of collecting information about the cultivation process, specifi-
cally, collecting data on plants’ environment, including the weather, soil, and light condi-
tions. In addition, data on plant growth and health conditions, and data on the existence of
pests, diseases, or herbivores, are gathered. These data are collected by interconnected mi-
crocontrollers that are usually equipped with IoT technologies; the data are then analyzed
and used to make optimal decisions, automate operations like fertilization and irrigation,
improve the products and the productivity, and plan future productions. The general
architecture of this IoT-based data collection process is given in Figure 1. The collected data
are transferred to the cloud via a gateway where they can be stored, displayed, analyzed,
and processed remotely on a distant computing system through the internet, or they can be
displayed and processed locally on a server in a control room.

Figure 1. General architecture of a 6LoWPAN network.

4.1. The Network

In order to ensure optimal cultivation conditions, various microcontrollers equipped
with sensors, actuators, and wireless communication modules are deployed in the indoor
farming facility to monitor and control the system according to the user’s requirements. The
indoor farming facility is supposed to be divided into several compartments representing
growth chambers and containing different plant species or plants at different growth stages.
This means that each growth chamber requires particular environmental conditions and
management procedures. The microcontrollers are organized in equidistant positions in a
grid topology because the growth chambers are also supposed to be positioned next to each
other in a plant factory. On the other hand, a control room is positioned on the side of the
growth chambers where another microcontroller, a computer, or a server with the necessary
computational power is used for the remote monitoring of the growth conditions. The
communication between the microcontrollers is based on the IPv6 protocol, and the range
of each microcontroller, including the server, only reaches the neighboring microcontrollers.
Multi-hop communication is established to transfer the data between devices out of range.



Sensors 2023, 23, 7670 6 of 20

The RPL (routing protocol for low-power and lossy networks) routing protocol works
effectively in networks composed of constrained IoT devices used for data collection,
generally called WSN (wireless sensor network). Overall, two types of devices exist in the
proposed network: a master device and slave devices, also called server and clients. The
master device is the root node of the network responsible for processing the data received
from other nodes, whereas the slave devices are source nodes that can play two roles:
sensing information and forwarding it periodically to the next nodes until reaching the root
node, receiving control information from the root and forwarding it to the corresponding
sensor node, or applying this information in the growth chamber. Figure 2 illustrates the
proposed remote grow light control architecture for indoor farming, and Figure 3 shows
the flowchart of the process.

Figure 2. Grow light remote control system for indoor farming. Colored lines represent wired
communication, while dashed arrows represent wireless communication.
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Figure 3. Flowchart of the grow light remote control system for indoor farming.
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4.2. RPL Routing Protocol

RPL is a routing protocol for the networks constrained by their power consumption
and packets loss. It constructs the routes towards a single destination node based on a
distance vector algorithm minimizing the path length [65]. In addition, it can also use
different objective functions (OF) to construct the routes based on other metrics like energy
consumption and data packets delivery. RPL supports both upward and downward routing
corresponding to sending packets from source nodes to the root node and sending them
from the root node to a specific source node, respectively.

Three objective functions are tested in the studied case: OF0 (Objective Function 0),
MRHOF-ETX (minimum rank with hysteresis objective function–expected transmission
count), and MRHOF-energy (minimum rank with hysteresis objective function–energy).
OF0 corresponds to the shortest path, MRHOF-ETX corresponds to the minimum number
of transmission attempts per successful transmission (minimum data loss), and MRHOF-
energy corresponds to the minimum energy consumption of the nodes. In Section 5, we
present the evaluation results of the network performance in terms of data loss, latency,
and energy consumption while using these objective functions (OF0, MRHOF-ETX, and
MRHOF-energy).

4.3. Light Control

LEDs are a sustainable and effective source of artificial light and are continuously
gaining ground in indoor farming, to the detriment of the other artificial light sources [66].
Moreover, some LEDs can produce wavelengths that are used in temporary treatments
to improve product quality or stimulate the production of important substances with
pharmacological properties in medicinal plants. The recent industrial LEDs used in lighting
applications can provide higher illuminance than what plants require. In this case, the
illuminance of LED lights used in indoor farming has to be dimmed and the light treatments’
duration also has to be controlled to precisely match plants’ requirements. The proposed
method to control the grow lights is given in the next sub-sections.

4.3.1. LED Dimming

LED illuminance is controlled by changing the forward current flowing through it.
The relationship between the current of an LED and its brightness is approximately linear,
contrary to its relation with the voltage. Therefore, an LED driver is used to change the
forward current based on either an amplitude modulation (AM) method or a pulse width
modulation (PWM) method [67]. The AM method directly changes the amplitude of the
forward current, which is easier to control, but it does not ensure efficient dimming, and it
changes the chromaticity of the emitted light, which makes it unsuitable for providing the
plant light requirements discussed earlier. PWM, on the other hand, changes the duration of
the forward current flow through the LED; it does not affect the LED chromaticity since the
current amplitude is maintained constant and is therefore suitable for providing the plant
light requirements in indoor farming environments. PWM is performed by generating
a square-form signal that rapidly switches between the on and off states at a specific
frequency. The power delivered to the LED is controlled by changing the on-time of the
signal, also called the duty-cycle, which is given by the ratio of on-time in one period of
the square signal. The majority of microcontrollers have built-in PWM outputs that can be
used to control the brightness of the LEDs only by changing the duty-cycle.

4.3.2. Distributed LED Brightness Control

In the proposed scenario, the LEDs in each chamber of the plant factory or vertical farm
are connected to a microcontroller that is responsible for controlling the growth conditions
and collecting sensor data in that chamber. Each microcontroller is a node in the network
presented earlier, where its role is sending sensor data to the server, receiving back control
values from it, and using them to directly adjust the actuators. The microcontroller reads
the light intensity value measured by the sensor and sends it to the server for processing.
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Then, it applies the control value which is the duty-cycle computed by the server and sent
back to it in the downward traffic. In the server, a learning algorithm based on the Newton
optimization method is implemented to compute the duty-cycles needed to obtain the
desired light intensities from the sensor measurements. The cost function minimized in
this learning algorithm is given by:

J(θ) =
1
2

N

∑
i=1

(Lt,i − L̂t,i)
2 (1)

where Lt,i = θLmax,i is the current illuminance at time t in growth chamber i, θ is the duty
cycle, Lmax,i is the maximum illuminance of the LEDs measured by the sensor, and L̂t,i is
the desired illuminance in the growth chamber i at time t fixed by the user. Notice that all
these variables (Lt,i, L̂t,i, Lmax,i, and θ) are (3 × 1) vectors with three components referring
to PAR, far-red, and UV lights, respectively. The Newton method used to update the values
of θ and iteratively solve this minimization problem is given by:

θk+1 := θk − α
J′(θk)

J′′(θk)
, k = 0, 1, 2, . . . (2)

where α is a learning rate; k is the iteration number; and J′(θ) = Lmax,i
(
θLmax,i − L̂t,i

)
and

J′′(θ) = L2
max,i are the first and the second derivatives of J(θ) with respect to θ, respectively.

A sensor calibration step is implemented in the server, before the learning algorithm, in
which the control values of θi = 0 and θi = 1 are sent to each node to read the corresponding
values of illuminance Lt,i = 0 and Lt,i = Lmax,i, respectively. The implementation of the
sensor calibration and the learning method is given in Algorithm 1.

Sensor measurements are noisy, and there is jitter in the packet sending rate. The
learning algorithm is not affected by this; it is proven to converge independently of the
initial conditions, and sensor noises are averaged out. In addition, updating the value of
θ in Equation (2) is performed whenever a new measurement value is received from the
client. Thus, jitter does not affect the control method since this is already designed to treat
each client separately and wait for packet transmission time that changes depending on the
distance from different clients to the server, the route of the data packet, and jitter.

Algorithm 1 Distributed LED brightness control algorithm

1: Initialize θi = 0 for i = 1, . . . , N, α = 1, and desired error tolerance ε
2: N: number of clients
3: Initialize L̂t,i according to user requirements, for i = 1, . . . , N
4: #sensor calibration:
5: For i = 1, . . . , N, send θi = 0 to client i
6: For i = 1, . . . , N, receive Lt,i = 0 from client i
7: For i = 1, . . . , N, send θi = 1 to client i
8: For i = 1, . . . , N, receive Lt,i = Lmax,i from client i
9: #LED brightness control:

10: If a value Lt,i is received from a client i:
11: While True:
12: θi := θi − α

J′(θi)
J′′(θi)

13: If J′(θi) < ε:
14: Break
15: Send θi to client i
16: Else
17: Wait for Lt,i from a client i

5. Results and Discussion

This section presents the results obtained after implementing the proposed distributed
grow light control method using IoT technologies and discusses the performance of the
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system. Performance evaluation metrics include total energy consumption of the system,
data loss ratio, latency, and how they impact the control method used to monitor the
lighting conditions in the growth chambers. This allows one to collect information for
improving the energy efficiency of plant factories and develop a robust and precise control
and monitoring system for indoor agriculture.

5.1. Simulation Setup

Simulations were carried out on the network emulator Contiki-NG (next generation),
which is an open-source, IoT simulation platform for severely constrained wireless devices.
Contiki-NG facilitates the implementation, prototyping, and the evaluation of IoT research
works. It reduces the development time of IoT products and allows one to teach IoT systems
based on its platform [68]. The main reasons for selecting Contiki-NG are the variety of
its new features like the data structure manipulation libraries and the network evaluation
tools. The simulations were performed under the conditions listed in Table 1.

Table 1. Network simulation conditions.

Parameter Value

Operating system/simulator Contiki-NG

MAC layer IEEE 802.14.5

Network type/addressing scheme 6LoWPAN/IPv6

Transport UDP

Radio medium model Unit disk graph medium
(UDGM): distance loss

Area 100× 100, . . . , 300× 300 m2

Number of nodes 10, . . . , 60

Simulation time 5,000,000 ms

Objectives functions OF0, MRHOF (ETX, Energy)

Transmit/receive ratio TX = 100%, RX = 100%

Transmission range 50 m

Interferance range 100 m

Topology Grid, multipoint-to-point;
point-to-point

Nodes type Zolertia Z1

Packet sending rate (from clients) 1 packet/s

The proposed 6loWPAN network consists of 10 to 60 nodes in which client nodes are
distributed in a grid topology with equal distances between the nodes in each direction,
whereas the root of the network is located on the side of the grid. Figure 4 shows the nodes’
positions as they are supposed to be in the indoor farming facility. The server node is
the first node in the network (green color), and the remaining nodes (yellow color) are
the clients. Each client node is responsible for controlling the growth conditions—more
specifically lighting—in a growth chamber, so the number of nodes represents the number
of the growth chambers, and the size of the indoor farming facility can be estimated based
on it.

The nodes used in the simulation are the Zolertia Z1 motes (https://github.com/
contiki-os/contiki/wiki/Zolertia-z1-motes (accessed on 20 March 2023)) generally used in
WSN. They are equipped with the second generation of Texas Instruments’ MSP430F2617
low-power and efficient microcontroller (https://www.ti.com/product/MSP430F2617
(accessed on 20 March 2023)) containing a 16-bit RISC CPU functioning at 16 MHz clock

https://github.com/contiki-os/contiki/wiki/Zolertia-z1-motes
https://github.com/contiki-os/contiki/wiki/Zolertia-z1-motes
https://www.ti.com/product/MSP430F2617
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speed, a built-in clock, an 8 KB RAM, and a 92 KB Flash memory. They are also equipped
with the CC2420 transceiver, which operates at 2.4 GHz and has a data rate of 250 Kbps.

Figure 4. The network simulation in the 60 nodes case; the first node is the server, and the other
nodes are clients.

5.2. Distributed Remote Control Results

The proposed method for the remote distributed control of grow lights was pro-
grammed in C language and implemented in the root node. Three different types of LED
lights were considered in each growth chamber: PAR lights with intensity ranging from 100
to 900 µmol · m−2 · s−1, far-red lights with intensity ranging from 5 to 20 µmol · m−2 · s−1,
and UV lights with intensity ranging from 1 to 9 µmol ·m−2 · s−1. This range of different
values was used to test the control method; they are not exact values, but they are within
the range of values needed by some plants grown in indoor environments. The maximum
illuminance produced by these LED lights is supposed to be equal to 1000 µmol ·m−2 · s−1.
The network was then simulated under the previously mentioned conditions, and the
obtained results in the case of 10 nodes are given in Figures 5–11. Figure 5 is produced
by the server, and it shows the PAR light intensities measured by the sensors connected
to the clients in the 9 growth chambers of the indoor farming facility. The measurements
are noisy, and it can be noticed that they rapidly converge to the desired values. The
control values sent from the server to the clients to obtain the previous measurements
are given by Figure 6; notice that these values are not affected by sensor noises. Similarly,
Figures 7 and 9 are produced by the server, and they show the far-red and UV light inten-
sities measured by the clients in the 9 growth chambers, respectively. It can be noticed
that the control method also works for these types of temporary and low intensity light
treatments. The light intensities converge to the desired values, and despite the fact that
the treatments do not start at the same time in all the growth chambers, they all have the
same duration as fixed from the server, which is the most important for plants. These
different starting times of the light treatments are negligible (in milliseconds) and depend
on the routes chosen by the routing protocol based on the selected OF, the topology of
the nodes, data scheduling, and the performance of the network. The control values of
far-red and UV lights sent from the server to the clients that led to one obtaining these
measurements are given in Figures 8 and 10, respectively. It is worth mentioning that,
due to data loss that can occur during communication, some values are missing and are
replaced by interpolation so that the previous figures can be obtained from the recipient
side. Figure 11 shows the communication sequence between the clients and the server
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during this light control process; this can change depending on the topology of the nodes,
the scheduling algorithm, and the route chosen by the routing protocol depending on the
used OF. This figure can give us an intuition about why the far-red and UV light treatments
do not start at the same time in all the growth chambers.
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Figure 5. PAR light measurements sent from the clients to the server.
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Figure 6. PAR light control values sent from the server to the clients.
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Figure 7. Far-red light measurements sent from the clients to the server.
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Figure 8. Far-red light control values sent from the server to the clients.
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Figure 9. Ultraviolet light measurements sent from the clients to the server.
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Figure 10. Ultraviolet light control values sent from the server to the clients.
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Figure 11. The communication sequence to the server during the light control process.

5.3. Network Performance Evaluation

After showing that the control method works, it is necessary to see if the data trans-
mission in the constructed network is good enough to ensure that the measured sensor
values and the computed control values reach their destination and prove the efficiency
of the overall system. The network was evaluated in terms of data transmission quality,
including the amount of packet loss and the delay in packet delivery. It was also evaluated
in terms of the energy consumed by the nodes for computation, data sending, and listening
(waiting for data). To do so, the system was simulated for 10,000 s under the conditions
listed in Table 1, and the evaluation metrics were computed for a network size varying
from 10 to 60 nodes. The packet loss ratio (PLR) is computed by Equation (3):

PLR =

(
1− ∑ Received packets

∑ Sent packets

)
100 (3)

the obtained results are shown in Figure 12, where it can be seen that the packet loss ratio
increases with the network size. This graph shows that there is no big difference between
the three RPL OFs, but the MRHOF-energy OF shows the highest packet loss ratio because
it basically chooses the forwarding nodes based on their energy consumption and not based
on the success of packet transmission like the MRHOF-ETX.

The end-to-end delay or the latency is computed by Equation (4):

Delay =
n

∑
i=1

(RTi − STi) (4)

where RTi is the packet receiving time of the node i and STi is its packet sending time.
Similarly, the time of packet delivery also increases with the network size; this is because
the packets pass through a higher number of forwarding nodes before reaching their
destination as shown in Figure 13. The objective function OF0 performs better in this case
since it is designed to choose the shortest path to the destination, which reduces the number
of forwarding nodes for the packets.

A high packet loss ratio and delay can occur in the case of large size networks; see, for
instance, the 60 nodes case in Figures 12 and 13. To see if this affects the control method and
changes the light conditions in the growth chambers, another simulation with 60 nodes was
performed. The obtained light measurements that were sent from the clients and received
by the server are shown in Figure 14, while the control values sent from the server to the
clients are plotted in Figure 15. Notice that the control process was not affected in this case,
and all the measured light intensities converge to the desired values.

The energy is computed by the Energest tool (Powertrace in Contiki); the resulting
energy consumption value is the sum of the amounts consumed by the microcontroller
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in the CPU processing mode, CPU low-power mode, data transmission mode, and data
listening mode. The total energy consumption of the network naturally increases with
the number of nodes, as shown in Figure 16. In this case, the objective functions OF0
and MRHOF-energy perform better than MRHOF-ETX. The reasons for this are that the
MRHOF-ETX calculation method is computationally more expensive than the other OFs
and may consume more energy; also, the routes chosen by the MRHOF-ETX are not
necessarily the shortest ones but the ones that ensure the packet delivery. Figures 17 and 18
show the evolution of the energy consumption over time for the 10 and 60 nodes cases,
respectively. It can be seen that the energy consumption stabilizes after a certain time when
the network configuration is finished, the routes are established, and the computation time
spent on the routing process decreases. For small networks (Figure 17), all the OFs give
the same performance after network stabilization, in terms of energy consumption, while
the difference between them appears in large networks (Figure 18), where the previous
observation on the high energy consumption of MRHOF-ETX is confirmed.
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Figure 12. Packet loss ratio depending on the size of the network.
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Figure 13. Accumulated end-to-end delay depending on the size of the network.
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Figure 14. PAR light measurements sent from the clients to the server, 60 nodes case.
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Figure 15. PAR light control values sent from the server to the clients, 60 nodes case.
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Figure 16. Total energy consumption of all the nodes depending on the size of the network.
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Figure 17. Total energy consumption of all the nodes depending on the simulation time
(10 nodes case).
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Figure 18. Total energy consumption of all the nodes depending on the simulation time
(60 nodes case).

6. Conclusions

The benefits and the drawbacks of smart indoor agriculture were discussed in this
article, with more emphasis given to its energy consumption as its biggest disadvantage.
The research was focused on tools and methods to reduce its energy consumption. Prelim-
inary studies discussed the choice of hardware like energy-efficient LEDs instead of the
other types of grow lights, PWM LED drivers that allow one to reduce the intensity of the
emitted light without affecting its quality, and low-power microcontrollers to collect sensor
data and control the LED drivers according to the user’s requirements. The main contri-
bution is focused on the software part of the problem, where a low-computational-cost
control algorithm is proposed based on the Newton method, which iteratively updates the
control values only when the light intensity is different from the desired one. Furthermore,
energy-efficient methods for data transmission are used, allowing one to easily monitor
the growth conditions by using wireless communication technologies and implementing
communication protocols like RPL that are designed for constrained networks. The results
showed that the control method performs well in small- and large-scale plant factories, and
the network evaluation results showed that the data transmission quality decreases when
the network size is large and when trying to reduce the energy consumption of the network
by considering the MRHOF-energy objective function. Yet, it has been shown that, despite
this decrease in the data transmission quality, which occurs only in extreme communication



Sensors 2023, 23, 7670 17 of 20

conditions when the devices are out of the range, the control method was still able to ensure
the proper management of the light conditions, even in large-scale plant factories. It can be
concluded that improving the energy efficiency of the production process while ensuring
optimal growth conditions for plants is still possible and appears to be the best solution for
future food security challenges. Different methods for the wireless management of all the
growth factors, including light, temperature, humidity, ventilation, and substrate quality to
maximize the plants yields in plant factories, could be the subject of future research.
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IPv6 Internet protocol version 6
6LoWPAN IPv6 over low-power wireless personal area networks
RPL Routing protocol for low-power and lossy networks
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AM Amplitude modulation
PI Proportional integral
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WSN Wireless sensor network
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MRHOF-ETX Minimum rank with hysteresis objective function-expected transmission count
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