
Citation: Urblik, L.; Kajati, E.;

Papcun, P.; Zolotova, I. A Modular

Framework for Data Processing at the

Edge: Design and Implementation.

Sensors 2023, 23, 7662. https://

doi.org/10.3390/s23177662

Academic Editor: Peter Chong

Received: 28 July 2023

Revised: 26 August 2023

Accepted: 2 September 2023

Published: 4 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Modular Framework for Data Processing at the Edge:
Design and Implementation
Lubomir Urblik * , Erik Kajati , Peter Papcun and Iveta Zolotova *

Department of Cybernetics and Artificial Intelligence, Faculty of EE & Informatics, Technical University of Kosice,
042 00 Kosice, Slovakia; erik.kajati@tuke.sk (E.K.); peter.papcun@tuke.sk (P.P.)
* Correspondence: lubomir.urblik@tuke.sk (L.U.); iveta.zolotova@tuke.sk (I.Z.)

Abstract: There is a rapid increase in the number of edge devices in IoT solutions, generating
vast amounts of data that need to be processed and analyzed efficiently. Traditional cloud-based
architectures can face latency, bandwidth, and privacy challenges when dealing with this data
flood. There is currently no unified approach to the creation of edge computing solutions. This
work addresses this problem by exploring containerization for data processing solutions at the
network’s edge. The current approach involves creating a specialized application compatible with
the device used. Another approach involves using containerization for deployment and monitoring.
The heterogeneity of edge environments would greatly benefit from a universal modular platform.
Our proposed edge computing-based framework implements a streaming extract, transform, and
load pipeline for data processing and analysis using ZeroMQ as the communication backbone and
containerization for scalable deployment. Results demonstrate the effectiveness of the proposed
framework, making it suitable for time-sensitive IoT applications.

Keywords: containerization; edge computing; data processing framework; Kubernetes; Docker

1. Introduction

The proliferation of devices at the edge of the network, year-on-year increments in
computing power, more energy-saving devices, and small form-factor devices are creating
new kinds of technological challenges and are generating a significant volume of data
that were not anticipated when the cloud-based computing paradigm was developed.
The volume of data being processed, the prioritization of processes, and the requirements
for a low response critical for some applications have led to shifting computing resources
as close as possible to the sources of these data. Edge devices may be consuming as well
as producing data, so it is necessary to move some aspects of the infrastructure closer.
Edge computing and cloud computing are not mutually exclusive. The issue is about
extending and offloading demand from remote servers and reducing the load on the
global network [1].

The Internet of Things (IoT) plays a significant role in this computing paradigm. Ef-
ficient data processing has become a critical aspect of IoT applications, enabling better
monitoring, analysis, decision-making, and automation of various applications [2]. How-
ever, efficiently processing and managing vast amounts of data poses significant challenges,
particularly regarding latency, bandwidth, and privacy. Edge computing is an emerging
paradigm that aims to address these challenges by processing data closer to their source,
reducing the need for data to travel long distances to centralized data centers [3]. This
approach results in lower latency, reduced bandwidth and consumption, and improved
data protection. However, efficiently deploying and managing applications at the edge
remains a complex task [4].

Containerization has proven to be a powerful technology for deploying and managing
applications. It offers improved scalability, portability, and resource utilization. Containers

Sensors 2023, 23, 7662. https://doi.org/10.3390/s23177662 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23177662
https://doi.org/10.3390/s23177662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-0131-9887
https://orcid.org/0000-0002-4182-6162
https://orcid.org/0000-0002-3937-286X
https://orcid.org/0000-0002-2816-2306
https://doi.org/10.3390/s23177662
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23177662?type=check_update&version=2


Sensors 2023, 23, 7662 2 of 25

enable lightweight, isolated environments for running applications, making it easier to
manage and scale applications across heterogeneous edge computing infrastructures [5–7].

In addition, Infrastructure as Code (IaC) allows for the streamlined management
of infrastructure resources, enabling consistent and repeatable deployments. Using IaC,
developers and operators can automate the provisioning and management of infrastructure
resources, reducing the likelihood of human error and increasing the efficiency of the
deployment process [8].

The rapid development of dedicated edge devices brings new opportunities as the
performance of the devices increases. The variety in architectures, platforms, performance,
and power of these devices presents a challenge in ensuring the compatibility of created
solutions. The lack of standardized communication between parts of the solutions also
poses a problem. To ensure the reusability of created solutions and compatibility with
as many devices as possible, we propose a novel framework based on Docker containers.
The framework employs a pipeline approach to data processing while providing an easy
way to modify the pipeline steps.

This work describes the implementation of the framework using a few custom-built
services. By employing the pipeline approach, the framework allows for easy modification
and extension of the services offered, providing a foundation for other solutions.

2. Background

This section provides an overview of the key concepts and technologies underpinning
the proposed system, laying the foundation for a deeper understanding of the subse-
quent sections.

2.1. Containerization and Its Benefits

Containerization is a lightweight virtualization technique that runs applications in
isolated environments. A container image packages an application with all its dependencies,
allowing it to be executed consistently across different platforms and environments. Docker
is one of the most widely used containerization platforms, providing a robust ecosystem of
tools and services for building, deploying, and managing containers. As shown in Figure 1,
many required dependencies are omitted in containerized applications [9].

Figure 1. Architectures of virtual machines and containers.

2.2. Container Orchestration

Container orchestration is about managing and automating multiple containerized
applications running on a cluster of machines instead of containerization, which focuses on
creating isolated environments for applications and their dependencies. While containeriza-
tion enables applications to run consistently across different platforms and environments,
container orchestration ensures that these applications are efficiently deployed, scaled,
and managed to meet high availability, resilience, and load-balancing demands. Kubernetes
is an open-source container orchestration platform that simplifies the management of con-



Sensors 2023, 23, 7662 3 of 25

tainerized applications across clusters of machines. Kubernetes provides various features,
such as automatic scaling, rolling updates, and self-healing, to ensure that applications
remain highly available and resilient [10].

2.3. Edge Computing and Its Importance

Rather than relying solely on centralized data centers or cloud infrastructure, edge
computing is a distributed computing paradigm that moves data processing, storage,
and analytics closer to the data source, such as IoT devices and sensors. This approach
addresses several of the challenges associated with large-scale IoT deployments and offers
multiple benefits:

• Reduced latency;
• Improved bandwidth utilization;
• Improved privacy;
• Improved scalability and efficiency.

Reduced latency is one of the key benefits of edge computing, as data are processed
closer to their source, resulting in faster response times for applications that rely on real-
time decisions. This is particularly important in scenarios such as autonomous vehicles,
industrial automation, healthcare, and smart cities, where low-latency responses are critical
to the safety, efficiency, and overall performance of the system [11].

Improved bandwidth utilization also comes into play as edge computing reduces the
need to send raw data across the network to a central processing facility. By processing
data locally, we can reduce network traffic and communication costs by minimizing the
data transmitted over the network [12].

In addition, this approach improves privacy and security by allowing sensitive data to
be processed and stored locally without leaving a local firewall. This helps protect data
from potential breaches and leaks [13].

The system can handle increased data volume and workload better by distributing
computing tasks across multiple edge nodes. Furthermore, by performing computations at
the edge, data centers and cloud infrastructures can offload a portion of their workload,
resulting in lower energy consumption and a reduced environmental impact [14].

2.4. Infrastructure as Code

Infrastructure as Code is an approach that automates the management and deploy-
ment of infrastructure using code and configuration files rather than through manual
processes or custom scripts. IaC enables developers to define, version, and maintain infras-
tructure components consistently and repeatably, similar to how software applications are
developed and maintained. The key benefits are consistency and repeatability, automation,
and reduced costs. Depending on the specific tool, IaC can use declarative or imperative
methods to create and manage the infrastructure [15].

2.5. Real-Time Data Processing Tools

Real-time data processing tools are crucial for modern applications that analyze and
react to data in motion. These tools enable large volumes of data to be processed with low
latency, ensuring that insights can be generated faster and decisions can be made quicker.
In IoT and edge computing, real-time data processing tools enable rapid decision-making,
anomaly detection, and dynamic system adaptation [16].

ETL processes are essential aspects of data processing. They involve extracting data
from different sources, transforming it into a desired format, and loading it into a target
system for further analysis or storage [17].

Streaming ETL is an extension of traditional ETL processes. It is specifically designed
to handle continuous data streams in real time. Streaming ETL enables continuous data
ingestion, transformation, and output with minimal latency. Unlike batch-based ETL, data
are extracted, transformed, and loaded regularly. This approach is especially suited for



Sensors 2023, 23, 7662 4 of 25

modern applications with time-critical requirements like the IoT, event-driven architectures,
and real-time analytics [18].

Streaming ETL processes have three primary components, as seen in Figure 2. First,
data ingestion involves continuously consuming data from various sources, such as IoT
devices or application events. Data ingestion components utilize streaming technologies
like Apache Kafka or other messaging systems to receive and buffer data streams. Second,
data transformation processes transform the ingested data in real time according to specified
rules and logic. Transformation may include data cleansing, enrichment, aggregation,
format conversions, or normalization. Lastly, data output involves loading transformed
data immediately into target systems for further analysis, storage, or visualization. Output
systems may include databases, data warehouses, or other analytics platforms, depending
on the specific requirements of the application [19].

Figure 2. Streaming ETL data flow diagram.

In this section, we will mention some works related to our article that served as either
direct or indirect inspiration and solved similar problems or utilized the same technologies
as our team. This section is divided into multiple subsections based on the main focus of
the work.

2.6. Edge Computing

Al-Rakhami et al. [20] describe running regularized extreme learning machine neural
networks in a containerized environment on an inexpensive edge device. The proposed
framework divides the components into layers, which communicate using REST API to
provide abstraction and independence to each component. The study focused on machine
learning applications in an edge environment, specifically the classification of a person’s
movement. The subjects were wearing multiple accelerometers and gyroscopes, the data
from which were sent to a Raspberry Pi, which then processed and classified these data
into five movement categories.

Kristiani et al. [21] created an air quality monitoring system using Docker, Kubernetes,
and OpenStack. The devices collected data from the sensors and used MQTT to send
them to the edge, where it was processed and saved, and in the case of an abnormal value,
an alarm was sent using MQTT. The data were then sent to the cloud for long-term storage,
analysis, and visualization. Docker created a unified environment for all edge devices and
made deployment easier as the services were containerized and deployed across all devices.

Ren et al. [22] describe the advantages of edge computing with a focus on personal
computing services. Their experiments compare various communication methods, namely
Wi-Fi, BLE, 4G, and wired Internet, and their combinations. The tests are divided into
three categories: edge only, edge and cloud, and cloud only. Their results show a decrease
in latency whenever edge computing is used, especially whenever machine learning is
applied, as the processing time is much shorter than the data transmission time.

González et al. [23] describe a data analysis pipeline used for biomedical images.
The raw images are taken from imaging devices, such as microscopes or cameras, and with
the application of AI, cells are detected and selected. Afterward, each cell is analyzed,
the results of which are aggregated and saved. This pipeline approach gives the researchers



Sensors 2023, 23, 7662 5 of 25

more time for other tasks, such as experiments or research, as the data processing is almost
entirely automated.

Abdellatif et al. [24] describe the various uses of edge computing in smart health. These
include the detection of emergencies, such as falls, by using cameras or accelerometers
situated in the room or on the patient. Another is a patient data aggregator, which uses
various sensors spread across the patient’s body to measure vital signs. These are then
sent to a nearby hub for processing and storage. Many heart-related emergencies are
detectable by sensors long before the patient feels them, so latency becomes an important
factor, and having a nearby edge node improves the quality of services that come with a
direct-to-cloud connection.

Khan et al. [25] surveyed the various use cases of edge computing in smart cities.
The expected rise of autonomous vehicles, which require a lot of processing power, can
lead to quicker and better responses to traffic accidents. By placing edge nodes near the
roads, they can contact the emergency units if a nearby vehicle has an accident. They can
also evaluate the accident’s seriousness and appropriately relay the information to the
rescuers [26]. Another possible use case is the detection of forest fires using unmanned
aerial vehicles, such as drones. By either placing an edge node nearby or directly on the
drone, we can ensure a much higher quality of service and, therefore, faster and better
detection of possible fires. The UAVs can also serve as a communication infrastructure
for rescue units in places where regular infrastructure is not sufficient [27,28]. The current
parking infrastructure suffers from inefficient management, as drivers often have to drive
all over and look for an empty spot. Some parking garages include distance sensors to
detect where a car is present in a space, but these can be tricked with a shopping cart or
cannot detect a parked motorcycle. By employing various artificial intelligence methods,
such as neural networks, we can detect vehicles and their license plates and navigate the
drivers to the nearest empty parking space [29,30].

Feng et al. [31] mention several possible edge computing applications in smart grids.
As the voltage and frequency of electricity change dynamically, regulating these parameters
requires real-time monitoring, which is a good fit for edge computing. Maintainers can
also use these edge nodes, as they can provide accurate and real-time information about
the current state of the infrastructure and help locate faults. Analyzing the data collected
by the sensors connected to the distribution network can help owners forecast load or
demand better. Using only the cloud is not feasible in such a case, as the amount of data
collected would overwhelm the network and require less granularity, possibly resulting
in a less accurate model. By collecting these data at the edge and then sending the re-
sults of computations to the cloud, the granularity is preserved, and higher accuracy can
be achieved.

Meani et al. [32] proposed the utilization of edge computing in smart retail. By col-
lecting data about users, such as demographics, and time-related data, such as time of
year, time of day, and time spent in specific areas of the shopping center, in combination
with center-related data, such as layout, paths, areas of interest, and the mapping of the
stores, an application can offer personalized offers targeted at a single user. As shopping
centers provide free Wi-Fi to users, communication between their mobile devices and the
edge components occurs faster than with the cloud. This increases data throughput at a
lower latency, leading to faster total processing time. Smart farming is another area that
benefits significantly from adopting edge computing. Connecting the devices to the Internet
might be problematic on bigger fields, as the signal might not reach them. Placing a few
devices along the field that connect can help with this connectivity, but it will also lead to
an increase in latency as the number of hops required to reach the cloud will increase. This
becomes a non-problem if the processing takes place on the devices themselves.

Gireest et al. [33] created one such example: a Raspberry Pi is used with cheap, off-the-
shelf sensors and actuators to create an automated irrigation system. As the temperature
and humidity change, so must the irrigation. Otherwise, water might be wasted or insuffi-



Sensors 2023, 23, 7662 6 of 25

cient. A more efficient system can be created by continuously measuring these values and
adapting to the changes, leading to better yields.

Similarly to the detection of fires, drones can be used to monitor the fields, as described
by Oghaz et al. [34]. By placing an edge computing module, such as an SBC, onto the drone,
we can monitor the crops in real time and apply various detection algorithms. After a
drone detects a diseased plant, it can move closer to the plant, pull it out, or spray it with a
pesticide to prevent further spread. Moreover, if the drone is insufficient, it can mark the
diseased plant for another robot or person to care for. Such monitoring can also monitor
plant growth and predict yield and profit. Many nutrient deficiencies are also detectable
from the air. Another possible use of UAVs in farming is the collection of data from the
sensors, as these can be placed far out of reach. A drone regularly flies over these points
and collects all the data without the devices having to send the data all the time.

One of the main limitations of edge computing is the power available to these devices.
Typical cloud servers can consume hundreds or even thousands of watts of power. Pom-
sar et al. [35] describe the devices available for AI applications at the edge. Their study
focused on devices with low power requirements: less than 40 W. The study also highlights
another problem with edge computing: the variety of devices available. The performance
of the devices in the study ranges from 0.472 tera operations per second (TOPS) to 32 TOPS,
a difference of almost 7000% between the weakest and the strongest devices.

2.7. Frameworks

Pääkkönen et al. [36] propose a reference architecture for machine learning develop-
ment and deployment in edge environments as an extension of the traditional Big Data
reference architecture. Compared with a more traditional approach, which uses high-
performance computers, edge environments may be constrained by size, performance,
or energy consumption. This presents new challenges when developing machine learning
solutions for edge, and requires the different processing and preprocessing tasks to be split
between multiple environments and devices to achieve the best possible results. We con-
sider this reference architecture an excellent starting point as it encompasses almost every
part of edge computing. We find it lacks specific details on how the specific tasks and ser-
vices should be created and deployed to the devices. This might lead to an incompatibility
between different layers of the solution.

Bao et al. [37] propose a federated learning framework for use in edge-cloud collabo-
rative computing, as the combination of federated learning and edge computing solves the
privacy and security problems inherent in many areas, such as medical data. Computation
offloading is widely used in the cloud-edge collaborative architecture, and the application
of federated learning can take advantage of it to prolong the battery life of mobile devices.
Another possible application is caching on the edge. To learn user preferences based on
their age, gender, occupation, etc., the use of centralized learning becomes unavailable due
to privacy concerns. By moving the learning to the edge, we can tailor the experiences to the
users, as we can access their personal data without sharing it anywhere. This framework
is focused on federated learning, which is an important part of edge computing but is
not the only part. The framework could be extended to include other parts, such as data
preprocessing, cleaning, or filtering.

Rong et al. [38] propose an industrial edge-cloud collaborative computing platform
for building and deploying IoT applications. This platform utilizes a pipeline-based model
for streaming data from IoT devices. The problem of heterogeneity in edge devices is
solved by an abstraction that declares the properties and behaviors of devices. They also
provide pre-implemented functions, which can be used as steps in the pipeline. The M:N
relationship between devices and pipelines allows us to use multiple pipelines for a single
device or connect multiple devices to a single pipeline. The effectiveness of this solution is
described in a real-world example where multiple cameras were deployed to detect sewage
dumping. The authors focused on AI for edge computing, more specifically, computer
vision and the application of AI to video streams. We consider their pipeline approach



Sensors 2023, 23, 7662 7 of 25

an excellent tool, as it removes the need to redeploy the entire application in the case of
minor changes. The authors make no mention of compatibility with various edge devices,
which might prove problematic. They also train the models in the cloud, which sparks
privacy concerns.

Lalanda et al. [39] created a modular platform aimed at smart homes that has since
been expanded to other areas, such as smart manufacturing or smart building. This platform
allows the connection of various devices, the development of data processing modules,
and a dedicated simulator to test devices and modules. Unlike our framework, which
is based on containerization and Docker, this solution is based on OSGi [40], a dynamic
module system for Java. The modules can be created inside a dedicated IDE containing
several wizards that help during the development. After creating a module, it can be
deployed directly from the IDE to a remote platform. The framework displays great
modularity but is limited to only one programming language: Java. We consider this a
drawback, as many data-related and machine learning tasks are performed in Python. It
can also lead to device incompatibility as it requires the Java Runtime.

Xu et al. [41] describe an edge computing platform that allows connected devices
to communicate through HTTP or CoAP protocols. The platform allows bidirectional
communication to obtain data from the devices or send commands, such as changing the
parameters, to the devices. To connect a device, an object containing the basic information
is created, containing values such as device name, protocol to be used, device address, port
number, etc. When a device is connected, value descriptors must be set, which contain basic
information about the value, such as type, min, max, and default value. This approach
allows heterogeneous devices to be connected to a unified platform. The platform also
allows for the creation of commands, which can contain parameters, expected return values,
and descriptions. The abstraction of the connected devices provides a great way to ensure
compatibility. The authors have focused only on the connection of devices and not the
processing of the data exchanged between them. With some expansion and combination
with a data processing framework, their method can serve as a great building block for
edge computing solutions.

Trakadas et al. [42] propose a meta-OS, named RAMOS, aimed at edge computing.
The authors consider the current hierarchical approach to the edge-fog-cloud continuum a
barrier to the cooperation and collaboration of devices in IoT solutions. Their proposed
solution, built on top of existing operating systems, aims to swap this approach for a more
decentralized and distributed architecture. Unlike a more traditional approach in which
cloud nodes take on the manager role, the authors propose multi-agent collaboration to
achieve complex tasks without needing a central manager. By decentralizing the decision-
making processes, the solution becomes more resilient to outages as it eliminates multiple
points of failure. RAMOS aims to disrupt the current business models by returning the data
back to producers. According to the authors, the current data balance between cloud and
edge is 80–20%, highlighting the proliferation of cloud computing in the IoT. The authors
envision a unified system, spanning everything from simple MCUs to high-performance
servers, all using RAMOS. The nodes themselves are divided into two categories: atoms
and molecules. Atoms are more simplistic nodes, providing basic computing capabilities
and services. Molecules are more advanced nodes consisting of several Atoms and can
provide the full functionality of RAMOS. These nodes advertise their capabilities, such
as computing resources, services, and storage, using Agents. The Scheduler then looks
at a list containing the Agents and decides where and how to process the data. RAMOS
depends on a very high level of abstraction to unify the variety of devices used in the IoT.
Implementing such an abstract solution may prove challenging due to different architec-
tures, communication protocols and standards, and the sheer variety of available devices.
Nevertheless, the potential of such a solution is immense and could transform the current
approach to IoT solutions to be more collaborative, cooperative, and resource-efficient.

Srirama et al. [43] describe a fog computing framework named FogDEFT, which uses
containerization to solve the problem of heterogeneity in IoT solutions. This framework



Sensors 2023, 23, 7662 8 of 25

aims to utilize the OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) modeling language in fog applications. Although traditionally aimed at cloud
applications utilizing services from known providers, the authors were able to extend
TOSCA to the fog. The services themselves use Docker to solve the problems of different
operating systems. To solve the problem of different hardware platforms, the authors
utilize Buildx, a tool provided by Docker that allows an image to be built for multiple
platforms, i.e., AMD64 and ARM64. The framework was used for climate control in a
convention center. The solution consisted of multiple Arduino MCUs, Raspberry Pi SBCs,
and an AMD64 server.

One of the main advantages of cloud computing is access to virtually infinite resources.
Recent years have seen a massive increase in the application of AI and ML in solutions.
While powerful, these solutions tend to be demanding on the hardware. Edge devices
cannot currently compete and require a slightly different approach. TinyML is a category
of machine learning aimed at edge devices, which are constrained by the available per-
formance, power, or size. The models created using this approach consume less energy
and achieve better performance and comparable results when running on low-power
devices such as SBCs. Lootus et al. [44] created a containerized framework for the de-
ployment and monitoring of TinyML applications, named Runes, at the edge. One of
the main drawbacks of AI at the edge is the need for the optimization of used hardware.
As previously mentioned, the differences in available computing power in edge devices are
immense. This extends to services available on these devices. The authors’ framework aims
to optimize the created applications and ensure their compatibility with devices before
deployment. The deployment of these applications is similar to Docker. The configuration
is described in a Runefile, similar to a Dockerfile, which contains the basic information
about the requirements of the image. It also contains the instructions that are executed
when creating a Rune container. When deploying a new container, the framework first
determines whether the device satisfies all requirements, such as communication protocols
or connected devices. After a device is deemed capable, the container is created. To deploy
Runes to multiple devices, the authors provide another tool named Hammer. This tool
allows remote deployment to any connected device running RunicOS. We consider this
work impressive, but the authors limit their framework to only AI/ML applications. There
is no mention of any possible preprocessing to be performed using this framework, which
limits the potential of this platform.

Edge computing provides an excellent opportunity for IoT solutions, as relying solely
on the cloud may prove difficult in many situations. The works described in this chapter
provide a great look at the potential of edge computing. However, this potential will not
be fully utilized without a reference architecture. Due to the sheer number and variety of
edge devices, a unified approach to this problem must be taken. During our research, we
have found several key points that we consider vital to this problem:

• Containerization: By packing together all the required libraries and settings, we can
remove the headache of finding a version compatible with our device.

• Container orchestration: Tools like Kubernetes allow us to remotely manage the
containers running on our devices.

• Data format unification: The sheer number of IoT devices brings communication
challenges. Different devices use different data formats to convey their data to the
edge or cloud. By ensuring that the data are formatted before being processed, we can
solve this problem.

• Modularity: Due to the wide array of IoT applications, the system should apply to as
many of them as possible. An easy-to-modify framework that allows the developers
to modify existing processing tasks and seamlessly add new ones will be necessary.

The table comparing the mentioned related works and our framework using the factors
we consider important is shown in Table 1. The “x” denotes that the paper concerns itself
with this category, the “-” that it does not.



Sensors 2023, 23, 7662 9 of 25

Table 1. Comparison of the mentioned frameworks.

Containerization Orchestration
Data

Preprocessing Implementation

Pääkkönen, P. et al. [36] - - x x

Bao, G. et al. [37] - - - -

Rong, G. et al. [38] x - - x

Lalanda, P. et al. [39] - x x x

Xu, R. et al. [41] x x x x

Trakadas, P. et al. [42] - x x -

Srirama, Satish N. et al. [43] x x x x

Lootus, M. et al. [44] x x - x

Our framework x x x x

3. Proposed Streaming ETL Framework

To address the challenges of real-time data processing in IoT applications, we present
a comprehensive Streaming ETL framework. The design incorporates partially decentral-
ized communication using the ZMQ event bus, an approach similar to [31], and MQTT
broker, facilitating communication between the Streaming ETL services and the IoT devices.
The modular system can be easily scaled thanks to a partially decentralized architecture.

Containerization technology, which provides a consistent environment for the applica-
tion and its dependencies, plays a key role in ensuring the modularity and portability of
the framework [41]. While simplifying deployment and management, this feature allows
for smooth integration with infrastructure. As a result, the proposed framework can be
easily adapted to different use cases and requirements, demonstrating its versatility in the
face of diverse IoT application needs.

Furthermore, combining ZMQ and MQTT communication technologies enables ef-
ficient data transfer and processing even in high-volume or limited networked scenarios.
The lightweight nature of MQTT makes it well-suited for constrained environments and
low-bandwidth networks [38], while ZMQ’s asynchronous messaging capabilities provide
reliable and high-performance communication between ETL services. Both chosen com-
munication technologies use publish–subscribe architecture, contributing to the system’s
modularity. The proposed architecture design with the event bus and event platform can
be seen in Figure 3.

Figure 3. Architecture of the proposed framework.

A robust and flexible infrastructure that can adapt to the dynamic demands of IoT
applications can be achieved by combining Kubernetes and Terraform. With its declarative
approach, Terraform enables seamless infrastructure management and versioning, paving



Sensors 2023, 23, 7662 10 of 25

the way for rapid development and deployment of the solution. Using Terraform with
Kubernetes ensures that infrastructure changes can be applied consistently and reliably
across environments, simplifying the transition from development to production [21].

This combination of technologies also promotes more manageable and maintainable
infrastructure by encouraging the adoption of IaC practices. By treating infrastructure as
code, the system’s configuration can be versioned and tested, increasing confidence in the
stability of the deployed solution. Overall, the integration of Kubernetes and Terraform
provides a solid foundation for the Streaming ETL framework, ensuring its adaptability,
reliability, and efficiency in meeting the diverse needs of IoT applications.

Our programming language of choice for the Streaming ETL services’ development
was Python. However, using the ZMQ event bus in our framework adds an extra layer of
modularity, allowing the integration of components to be written in different programming
languages such as C, C++, Java, JavaScript, Go, C#, and many others. This language-
agnostic approach allows future researchers and developers to leverage the strengths of
different programming languages when building individual components, increasing the
flexibility and adaptability of the overall system.

As a result, the system can be easily extended by adding more services (subscribers
and/or publishers) into the ETL ZMQ event bus, as can be seen in Figure 4, or can be
customized to meet the unique requirements of different IoT applications and environments.
By incorporating this level of modularity and versatility into the implementation, our
framework becomes more robust and capable of handling the complex and evolving
challenges associated with IoT data processing.

Figure 4. Streaming ETL ZMQ eventbus.

In the following sections, we will look at the details of each service we have imple-
mented as part of our Streaming ETL framework. We will discuss their functionalities, used
technologies, and how they work together to provide efficient real-time data processing
tools for not only IoT applications. In this project, we have developed a standardized
framework for real-time data processing that can be customized for different applications.
By following this framework, the user can create a data processing pipeline tailored to
their specific needs, taking advantage of containerization, edge computing, automated
infrastructure on Kubernetes, and efficient communication protocols.

3.1. Input Data Transformation Service

The input data transformation service is an essential part of this framework. The data
formats most commonly used in IoT solutions include JSON, raw values in either numerical
or string form, and binary data. To ensure that all these types are usable in our framework,
they must first be transformed into a unified format. The transformer processes raw data
that are collected from various IoT devices. The service takes incoming data, applies
transformation rules, and converts them into a standardized JSON format that can be easily
consumed by subsequent components in the system, such as filtering and data analysis
services. Data fields are standardized to general names during the transformation process,
and measured values are rounded to two decimal places. After transformation, data are
sent to the ZMQ event bus, making them available for other services. Standardization



Sensors 2023, 23, 7662 11 of 25

is the first step toward an autonomous AI algorithm capable of selecting and managing
processing tasks to be applied to the data.

This service can receive data from MQTT devices via the MQTT broker, which we call
push devices, or from REST API clients, which we call fetch devices. For REST API clients,
we implemented a modular client that fetches data from the endpoint every n seconds,
where n is configured in the environment variables of this service. By standardizing data,
the input data transformation service increases the overall efficiency and interoperability of
the system, ensuring a seamless integration with other back-end services.

3.2. Filtering Mechanism

Reducing the volume of data stored in the database is the responsibility of the filtering
service. This is performed by applying pre-defined filters to the transformed data, ensuring
that only relevant and necessary information is forwarded to subsequent components in
the system.

By filtering data, the service helps optimize storage and processing requirements and
reduce network bandwidth consumption. This efficiency is particularly important in IoT
applications, where devices can generate massive amounts of data, but not all may be
relevant or useful.

In addition, the service integrates modular filtering algorithms. Implemented filters in-
clude a value change filter that only sends data to the ZMQ event bus for further processing
when a new value differs from the previous one. Another filter deals with numerical values
with a set precision. In this case, data are only passed to the ZMQ event bus for further
processing if a new value has changed by more than the set precision. These filters can be
easily extended and adapted to suit different data processing requirements and scenarios.

3.3. Analyzing Service

Analyzing service is the next component in the Streaming ETL system, designed to
perform analysis on transformed data to extract valuable insights. This service has three
components: Redis Logger, Redis Consumer, and Redis Streams. These elements and
dataflow can be seen in Figure 5.

Figure 5. Dataflow of analysis service.

Redis Logger reads transformed data from the ZMQ event bus and sends them to
Redis Streams, an in-memory data structure for managing and processing real-time data
streams. Redis Streams provides efficient stream processing capabilities, making it an ideal
choice for IoT applications that require rapid analysis of large volumes of data.

Redis Consumer reads data from Redis Streams and analyzes the last n records.
The analysis includes calculating the slope and rate of change of values such as temper-
ature and humidity. These insights can then be used to support decision-making. It is
important to state that within the analyzing service, any number of Redis consumers can be
incorporated to meet the requirements of each specific application as needed. The service
enables faster decision-making based on analyzed data by using Redis Streams for real-time
data analysis.



Sensors 2023, 23, 7662 12 of 25

3.4. MongoDB Time Series and Logging Service

MongoDB Time Series and logging service represent the final components of the
Streaming ETL system, responsible for storing processed data from IoT devices. This service
uses the MongoDB Time Series database, a specialized data storage solution designed to
handle time-based data with high ingestion rates and large volumes. By utilizing a time
series database, the system can efficiently store, index, and query large volumes of time-
stamped data, making it easier to perform historical analysis and identify trends over
time. In addition, the MongoDB Time Series provides flexibility to handle different data
types commonly found in IoT applications, such as temperature, humidity, and many other
sensor readings.

The logging service reads filtered data from the ZMQ event bus and stores them
in the MongoDB Time Series database. In addition to transformed and filtered data,
the logging service also includes information about the location of the device, the device
ID, and metadata about the processes performed on the received data. This additional
information provides valuable context for understanding and analyzing IoT data, enabling
more informed decision-making and a better understanding of overall system performance.

3.5. Deploying Framework to Kubernetes Cluster

We deployed the containerized framework on a laboratory edge server running the
Proxmox hypervisor. This is an open-source virtualization platform based on Debian
GNU/Linux. Proxmox uses Kernel-based Virtual Machine (KVM) and Linux Containers
(LXC) technologies to manage and create virtual machines and containers. We created
two virtual machines that form a Kubernetes cluster consisting of a manager node and
a worker node. The manager node is responsible for the management of the cluster and
the coordination of its activities. In contrast, the worker node runs containerized ETL
services, MongoDB Time Series database, and MQTT broker. Instead of using Dockershim
to connect Kubernetes to the Docker container engine, we chose CRI-O, a Kubernetes
Container Runtime Interface (CRI) implementation. This was performed because CRI-O
is specifically designed and optimized to meet the requirements of Kubernetes. The full
architecture of our framework is shown in Figure 6.

Figure 6. Full diagram of our framework.



Sensors 2023, 23, 7662 13 of 25

4. Testing of the Framework

To evaluate our framework, we have focused on analyzing the round-trip time (RTT)
metric across ETL services within a series of tests. The tests included different numbers of
measurements (10, 100, and 1000) and different time delays (1 ms, 10 ms, and 100 ms) be-
tween measurements. These parameters were selected to simulate different scenarios, such
as a short burst with 10 values and 1 ms time delay or a long burst with 1000 measurements
and 1 ms time delay. The burst, 1 ms time delay, can simulate an industrial sensor that
requires an instant response to measured values. The longer delay can simulate commercial
IoT sensors, such as temperature sensors, where the increased delay does not cause any
problems. We expected the RTT to decrease as the time delay decreased due to the dynamic
frequency boosting of modern CPUs. To test the framework, we have chosen two different
approaches that allowed us to verify the efficiency and performance of our framework on
different modern hardware platforms. First, we tested the framework on a 64-bit ARM
processor and then on a 64-bit x86 processor. We allocated eight CPU cores and 8192 MB of
RAM in both environments for the test environment.

The chosen architecture for testing the framework can be seen in Figure 7. Since
we focused on testing ETL services within our proposed framework, we omitted actual
IoT devices from our test environment because of the lack of computing resources and
limited control over data transfer rates. For this reason, we designed a test container that
could simulate an IoT device and allow us to adjust the speed and volume of the data
feed as needed. The test container generates and sends data to the ZMQ event bus and
then receives them to calculate RTT. We also omitted the MQTT broker and decided not to
include the analysis service in the test as it does not play a primary role in data processing
and depends on a required application. This proposed architecture allowed us to perform
load tests on the designed services and ZMQ communication while giving us control over
parameters we could change for different test scenarios.

Figure 7. Communication between our containers.

4.1. The Test Environment

For our testing, we took two different approaches, which allowed us to compare
the effectiveness and performance of two different hardware platforms. The first was a
64-bit ARM CPU, and the second was a 64-bit x86 CPU. This was performed to ensure
compatibility of our framework with the two most common CPU architectures used in
edge computing. We also wanted to test whether there were measurable differences in the
performance of our framework between them. The test scenarios were also selected to see
how they dealt with various workloads.

Table 2 shows the different platforms used in our testing. The Apple M1 CPU uses the
ARM big.LITTLE architecture [45], employing high-performance cores (CPU-p), named



Sensors 2023, 23, 7662 14 of 25

Firestorm, and energy-efficient cores (CPU-e), named Icestorm. This architecture allowed a
seamless switching of tasks between these different cores.

Table 2. Hardware used in testing.

ARM64 AMD64

Device Macbook Pro HP Server

CPU Apple M1 Intel Xeon Silver 4210R

CPU frequency Firestorm: 600–3228 MHz
Icestorm: 600–2064 MHz

2400–3200 MHz

CPU No. of cores 4× Firestorm (performance)
4× Icestorm (efficient)

12

RAM 16 GB 32 GB

Used cores 8 8

Used RAM 8 GB 8 GB

4.2. Tests on ARM64 with 100 ms Delay

Test No. 1 consisted of 10 measurements of RTT across ETL services with a 100 ms delay
between measurements. The median of this set of measurements was 5.392 ms, and the
average was 5.729 ms, implying that the measurements’ distribution was approximately
symmetrical. The standard deviation was 1.265 ms, implying that most values were close
to the average. Other details are shown in Table 3. From the plot in Figure 8, we conclude
that there was no increased activity in efficient cores. The performance cores worked at
high frequencies, regardless of the test.

Figure 8. ARM64 Test No. 1: Round trip time across services, 10 times with a 100 ms delay.

Test No. 2 consisted of 100 measurements of RTT across ETL services with a 100 ms
delay between measurements. The median was 5.313 ms, and the average was 5.055 ms,
implying that most measurements were close to the average. The standard deviation was
1.965 ms, which means that the values of the measurements are significantly different from
the average and thus the distribution of the measurements is quite scattered. Other details
can be seen in Table 3. From the plot in Figure 9, we can see that in some periods of the test,
the RTT time is significantly reduced due to the higher clock speed of the efficient cores.
In these intervals, the efficient cores were at their maximum clock speed. The performance
cores operate at high frequencies, regardless of the test.



Sensors 2023, 23, 7662 15 of 25

Figure 9. ARM64 Test No. 2: Round trip time across ETL services, 100 times with 100 ms delay.

Test No. 3 consisted of 1000 measurements of RTT with a delay of 100 ms between
measurements, where the median was 5.208 ms, and the average was 4.932 ms, indicating
that most measurements were close to the average. The standard deviation was 1.505 ms,
indicating a slight scatter of measurements and confirming that the distribution of mea-
surements was approximately normal. The other data can be seen in Table 3. The plot in
Figure 10 did not show a significant improvement in RTT time during the higher clock
speeds of the efficient cores over the longer measurement period, and the performance
cores operated at high frequencies independently of the test.

Figure 10. ARM64 Test No. 3: Round trip time across ETL services, 1000 times with 100 ms delay.

4.3. Tests on ARM64 with 10 ms Delay

For the following tests, we have decided to omit the plots as they were too similar to
the plots in previous tests and therefore had little value.

Test No. 4 consisted of 10 measurements of RTT with a delay of 10 ms between
measurements. The median was 5.189 ms, and the average was 5.036 ms, indicating
that most measurements were close to the average. The standard deviation of the set of
measurements was 1.177 ms, indicating that the distribution of measurements was slightly
scattered. The other data can be seen in Table 3. We found a lower median in test No. 4
compared to test No. 1, where the difference was 0.203 ms, indicating a smaller RTT metric.

Test No. 5 consisted of 100 measurements of RTT with a delay of 10 ms between
measurements. The median was 4.692 ms, and the average was 4.492 ms, indicating
that most measurements were close to the average. The standard deviation of the set of
measurements was 1.175 ms, indicating that the values of the measurements were slightly
different from the average. Thus, the distribution of the measurements is slightly scattered.
The other data can be seen in Table 3. Compared to test No. 2, we observed a median time
lower by 0.621 ms in test No. 5, which could indicate a lower RTT metric.



Sensors 2023, 23, 7662 16 of 25

Test No. 6 consisted of 1000 measurements of RTT with a delay of 10 ms between
measurements. The median was 4.561 ms, and the average was 4.218 ms, indicating
that most measurements were close to the average. The standard deviation of the set of
measurements was 1.449 ms, indicating that the values of the measurements were slightly
different from the average. The other data can be seen in the table (Table 3). We observed
a 0.647 ms lower median time in test No. 6 compared to test No. 3, which could indicate
lower RTT metrics.

4.4. Tests on ARM64 with 1 ms Delay

Test No. 7 consisted of 10 measurements of RTT with a delay of 1 ms between mea-
surements. The median was 4.352 ms, and the average was 4.653 ms, indicating that most
measurements were close to the average. The standard deviation of the measurements was
0.837 ms, indicating that the measurements differed little from the average. Thus, the distri-
bution of the measurements was poorly dispersed. The other data can be seen in Table 3.
From the plot in Figure 11, we conclude that the efficient cores had no increased activity
during the test. The performance cores were operating at high frequencies, regardless of
the test. Compared to test No. 4, the median in test No. 7 was 0.837 ms lower, which could
indicate better RTT metrics.

Figure 11. ARM64 Test No. 7: Round trip time across ETL services, 10 times with 1 ms delay.

Test No. 8 consisted of 100 measurements of RTT with a delay of 1 ms between
measurements. The median was 1.144 ms, and the mean was 1.852 ms, with a standard
deviation of 1.617 ms, indicating a slight scatter in the measurements. The other data can
be seen in Table 3. In the plot in Figure 12, we can see a significant decrease in RTT values
at the maximum clock frequency of the efficient cores. The performance cores worked at
high frequencies, regardless of the test. We observed a 3.548 ms lower median in test No. 8
compared to test No. 5, which could indicate a lower RTT metric.

Figure 12. ARM64 Test No. 8: Round trip time across ETL services, 100 times with 1 ms delay.



Sensors 2023, 23, 7662 17 of 25

Test No. 9 consisted of 1000 measurements of RTT with a delay of 1 ms between
measurements. The median was 2.504 ms, and the average was 2.428 ms, indicating that
most measurements were close to the average. The standard deviation was 1.013 ms,
indicating that the measurement values are slightly different from the average, and thus the
distribution of measurements is slightly scattered. The plot in Figure 13 shows the timescale
improvement in RTT values during the maximum clock frequency of the efficient cores.
The performance cores operated at high frequencies, regardless of the test. Compared to
test No. 6, we observed a lower median in test No. 9 (difference of 2.057 ms). This may
indicate lower RTT metric values. See Table 3 for more details.

Figure 13. ARM64 Test No. 9: Round trip time across ETL services, 1000 times with 1 ms delay.

4.5. Tests on AMD64 with 100 ms Delay

Test No. 1 consisted of 10 RTT measurements across ETL services with a delay of
100 ms between measurements. The median of the measurements was 2.616 ms, and the
mean was 2.719 ms, indicating that the distribution of measurements was approximately
symmetric. The standard deviation was 0.488 ms, indicating that most measurements were
close to the average. Other data can be seen in Table 3. From the graph in Figure 14, it can
be concluded that there was no significantly increased activity in the CPU cores during
the test.

Figure 14. AMD64 Test No. 1: Round trip time across ETL services, 10 times with 100 ms delay.

Test No. 2 consisted of 100 measurements of RTT across ETL services with a de-
lay of 100 ms between measurements. The median of this set of measurements was
2.563 ms, and the mean was 2.571 ms, indicating that the distribution of measurements
was approximately symmetric. The standard deviation was 0.239 ms, indicating that most
measurements were close to the average. Other data can be seen in Table 3. From the graph
in Figure 15, it can be concluded that there was an increase in the activity of the CPU cores
during the test.



Sensors 2023, 23, 7662 18 of 25

Figure 15. AMD64 Test No. 2: Round trip time across ETL services, 100 times with 100 ms delay.

Test No. 3 consisted of 1000 measurements of RTT communication across ETL services
with a delay of 100 ms between measurements. The median of this set of measurements
was 2.529 ms, and the mean was 2.565 ms, indicating that the distribution of measurements
was approximately symmetric. The standard deviation was 0.233 ms, indicating that most
measurements were close to the average. Other data can be seen in Table 3. Test No. 3
showed increased activity of the cores during the test. The graph in Figure 16 shows that
the clock speed of the cores increased at the beginning of the test.

Figure 16. AMD64 Test No. 3: Round trip time across ETL services, 1000 times with 100 ms delay.

4.6. Tests on AMD64 with 10 ms Delay

For the following tests, we decided to omit the plots as they were too similar to the
plots in previous tests and therefore had little value.

Test No. 4 was performed with a delay of 10 ms between measurements and consisted
of 10 measurements. The mean RTT was 2.162 ms, the median was 2.001 ms, and the
standard deviation was 0.538 ms. Compared to test No. 1, where the delay was 100 ms, we
can see that a lower delay between measurements resulted in lower RTTs. The other data
can be seen in Table 3.

Test No. 5 consisted of 100 measurements of RTT communication across ETL services
with a delay of 10 ms between measurements. The median of this set of measurements was
2.092 ms, and the mean was 2.170 ms, indicating that the distribution of measurements
was approximately symmetric. The standard deviation was 0.391 ms, indicating that most
measurements were close to the average. Other data can be seen in Table 3. Compared
with the second test, we can see that a delay of 10 ms showed lower RTT values.

Test No. 6 consisted of 1000 measurements of RTT communication across ETL services
with a delay of 10 ms between measurements. The median of this set of measurements was



Sensors 2023, 23, 7662 19 of 25

1.955 ms, and the average was 1.991 ms, indicating that the distribution of measurements
was approximately symmetric and most measurements were close to the average, as shown
by the low standard deviation value of 0.231 ms. Other data can be seen in Table 3. Test
No. 6 showed better results than Test No. 3. At a delay of 10 ms, the median RTT value
was slightly better (1.955 ms versus 2.529 ms).

4.7. Tests on AMD64 with 1 ms Delay

Test No. 7 consisted of 10 measurements of RTT across ETL services with a delay of
1 ms between measurements. The median of this set of measurements was 1.582 ms, and the
mean was 1.798 ms, indicating that the distribution of measurements was approximately
symmetric. The standard deviation was 0.660 ms. Other data can be seen in Table 3.
From the graph in Figure 17, it can be concluded that the activity of the CPU cores increased
during the test. Test No. 7, with a delay of 1 ms, had a median RTT of 1.582 ms, while Test
No. 4, with a delay of 10 ms, had a median RTT of 2.001 ms. This means that decreasing
the interval between sending data also decreased RTT values.

Test No. 8 consisted of 100 measurements of RTT across ETL services with a delay of
1 ms between measurements. The median of this set of measurements was 1.395 ms, and the
mean was 1.444 ms, indicating that the distribution of measurements was approximately
symmetric. The standard deviation was 0.244 ms, indicating that most measurements were
close to the average. The results of this test are similar to test No. 7, with a delay of 1 ms,
which was conducted with fewer measurements. The other data can be seen in Table 3.
The graph in Figure 18 shows a significant increase in the clock speed of the processor
cores during the test. Comparing with test No. 5, we can see that a lower median RTT of
1.395 ms was achieved in test No. 8 compared to 2.092 ms in test No. 5.

Figure 17. AMD64 Test No. 7: Round trip time across ETL services, 10 times with 1 ms delay.

Figure 18. AMD64 Test No. 8: Round trip time across ETL services, 100 times with 1 ms delay.



Sensors 2023, 23, 7662 20 of 25

Test No. 9 consisted of 1000 measurements of RTT communication across ETL services
with a delay of 1 ms between measurements. The median of this set of measurements was
1.425 ms, and the mean was 1.475 ms, indicating that the distribution of measurements
was approximately symmetric. The standard deviation was 0.317 ms, indicating that most
measurements were close to the average. Other data can be seen in Table 3. Compared
with previous tests, it can be seen that a short delay resulted in the lowest average value of
RTT. Comparing tests No. 6 and No. 9, we can observe lower mean and median values in
test No. 9. However, in test No. 9, the maximum value of RTT is significantly higher. In the
graph in Figure 19, we can see an increase in the clock speed of the CPU cores during the
test, which was fairly stable throughout the test.

Figure 19. AMD64 Test No. 9: Round trip time across ETL services, 1000 times with 1 ms delay.

Table 3. The results of measurements.

CPU Delay (ms)
No. of

Measure-
ments

Min (ms) Max (ms) Mean (ms) Median
(ms)

St. Dev.
(ms)

Test
Length

(ms)

ARM64

100

10 3.989 8.594 5.729 5.392 1.265 961.095

100 1.558 17.893 5.055 5.313 1.965 10,510.229

1000 1.483 17.132 4.932 5.208 1.505 105,961.698

10

10 2.916 7.528 5.036 5.189 1.177 139.874

100 1.486 7.948 4.492 4.692 1.175 1536.522

1000 1.258 16.844 4.218 4.561 1.449 15,173.540

1

10 4.181 6.967 4.653 4.352 0.837 52.037

100 0.995 10.667 1.852 1.144 1.617 306.143

1000 0.809 8.707 2.428 2.504 1.013 3753.324

AMD64

100

10 2.249 4.031 2.719 2.616 0.488 925.488

100 2.150 3.647 2.571 2.563 0.239 10,173.163

1000 2.149 4.251 2.565 2.519 0.233 102,658.166

10

10 1.844 3.620 2.162 2.001 0.528 109.515

100 1.589 4.268 2.170 2.091 0.391 1216.439

1000 1.564 3.531 1.991 1.955 0.231 12,107.133

1

10 1.213 3.501 1.798 1.582 0.660 24.666

100 1.176 3.416 1.444 1.395 0.244 248.040

1000 1.007 7.309 1.475 1.425 0.317 2555.661



Sensors 2023, 23, 7662 21 of 25

5. Discussion

Our test results provide valuable insight into the performance and efficiency of ETL
services across different hardware platforms and configurations. Using a simulated IoT
device as a test container allowed us to focus on data processing speeds and communication
between ETL services while maintaining control over transmission speed and other test
parameters. In addition, the decision to test the framework on ARM64 and x86 64-bit
processors allowed us to explore the performance and compatibility of our framework
across different modern hardware architectures.

The results show that the proposed framework performs well under varying condi-
tions, with the RTT metric remaining within acceptable limits throughout the tests. The tests
also show that the framework can handle a range of data transfer speeds and measure-
ment volumes, demonstrating its potential for scalability and adaptability to different IoT
deployment scenarios.

However, it is important to note that, while the test environment is comprehensive, it
does not cover all possible scenarios. Further testing with real IoT devices and different
network conditions may reveal additional challenges and potential optimizations for the
ETL services.

Figure 20 shows a significant difference in performance between the ARM64 and
AMD64 processors in our evaluation of the RTT metrics. As the number of measurements
increases, the ARM64 processor shows a greater decrease in median RTT than the AMD64
processor. This could be due to the differences in the architecture of the two processors.
On the other hand, the AMD64 processor shows consistently low latency across all test
scenarios, highlighting its suitability for real-time computing applications that require
minimal latency. In addition, the data show that as the time delay between measurements
decreases, the median RTT values for both processors tend to decrease, suggesting im-
proved performance with more frequent requests. Overall, these results provide valuable
insight into the performance of the two processors in real-time computing applications and
can help select the appropriate hardware for specific use cases.

The last test on both architectures shows that even when reaching the highest CPU fre-
quencies, the processing is not fast enough to process the data before new data are acquired.
This is shown in the results, where the mean and the median increased. The processing
queue will keep lengthening, and the processing times will increase.

The proposed framework shows promising performance and efficiency in processing
and communication between ETL services. Further research and testing with real-world
IoT devices, networks, and analytical services are required to better understand the frame-
work’s potential for use in different IoT scenarios.

Figure 20. Median values for different architectures and delays.



Sensors 2023, 23, 7662 22 of 25

The testing was performed on both ARM64 and AMD64 CPUs, as SBCs do not use a
unified CPU architecture, and we wanted to ensure that our framework was viable for both
architectures. Further testing is required to check if the differences between architectures
transfer to smaller devices.

Several research challenges still need to be addressed. The many devices used in edge
environments make task offloading and load balancing difficult. For latency-sensitive tasks,
the task offloading mechanism has to consider the distance to available nodes, their current
load, and their potential performance. Load balancing is also a more complex task as the
devices’ performance can vary greatly. Compatibility also needs to be considered, as the
devices may not be capable of completing all the required tasks, and the system, therefore,
has to consider the capabilities of other nodes [46].

Another research challenge arises in mobile edge computing, where the edge devices
or the users connected to them move. The solution must predict the movement and ensure
that the services are deployed to the devices when needed. The services also need to
be deployed quickly. An example of this might be a shopping center with an unevenly
spread-out crowd. As a large group of users moves, the solutions must scale the services
up. It also needs to scale the services down when no longer needed, leaving room for other
services to be deployed [47].

The security in edge computing also needs to be addressed, as the devices themselves
may not support the security tools available for other devices. The variety of devices
requires a particular approach to ensuring that all the devices are protected. Even a single
vulnerable device endangers the whole network. The devices are also more prone to
physical attacks where the attacker gains physical access to the devices. The data need to be
protected on their entire journey from the sensor to the cloud, and they can be potentially
intercepted at any step [48].

6. Conclusions

Edge computing is a fast-growing field hindered by a lack of standardization. The va-
riety in edge devices collecting and generating the data proves to be an obstacle.

This article focused on creating a modular framework that allows developers to modify
and create data processing tasks on the edge. We first looked at the tools that can help
develop and deploy edge computing solutions like Docker, Kubernetes, and Terraform.
We then described the parts of our data processing pipeline and the architecture of our
framework that brought the pipeline together. Using containerization technology, the tasks
can be easily deployed, scaled, and monitored using an orchestrator. The pipeline approach
we have selected allows us to have better control over the processing performed. It also
allows us to reuse existing parts in new pipelines, leading to shorter development times.
We consider the following to be the main strengths of our framework: compatibility—using
Docker, we can deploy our framework to a wide array of SBCs, Mini-PCs, or servers;
modularity—new data processing tasks can be easily added to the processing pipeline;
agnosticism—our framework is not tied to any programming language. Parts of the
pipeline can use different languages or versions of the same language. We have also created
a unified testing platform that can be used to evaluate and compare the performance of
edge devices.

In our testing, we focused on the RTT metric in our pipeline. This was tested on
both the ARM64 and AMD64 platforms, and both were compatible. We have found that
increasing the frequency of sending data leads to decreased processing time. The testing was
performed using a synthetic sensor capable of simulating different sensors and generating
synthetic data. This tool will be expanded to include different scenarios and serve as a
standardized tool for criteria evaluation.

In the future, we plan on extending the framework with a graphical user interface
(GUI) similar to Apache Airflow. This approach will provide an easy way to modify the
data processing pipeline and allow even non-programmers to use the framework in their
solutions. We also plan on creating more modules that will be included with our framework



Sensors 2023, 23, 7662 23 of 25

and can be directly used or modified. These modules will include additional data analytics,
anomaly detection, and machine learning methods. Including advanced monitoring tools,
such as Grafana, is also planned. The user will have better and more user-friendly access to
their data with tables and graphs. The extension of the framework to include cloud nodes
is also in our scope, as we have previously mentioned that edge computing and cloud
computing are not competing technologies but rather complement each other.

Author Contributions: Conceptualization and methodology, L.U. and E.K.; software and original
draft preparation, L.U.; review and editing, L.U., E.K., P.P., and I.Z.; supervision, P.P.; project adminis-
tration and funding acquisition, I.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by APVV grant ENISaC—Edge-eNabled Intelligent Sensing and
Computing, number APVV-20-0247.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
study’s design; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
IaC Infrastructure as Code
ETL Extract, transform, load
MQTT Message Queuing Telemetry Transport
ZMQ ZeroMQ
REST Representational state transfer
API Application programming interface
HTTP Hypertext Transfer Protocol
CoAP Constrained Application Protocol
BLE Bluetooth Low Energy
AI Artificial intelligence
UAV Unmanned aerial vehicle
SBC Single-board computer
KVM Kernel-based Virtual Machine
LXC Linux Containers
CRI Container Runtime Interface
RTT Round-trip time

References
1. Pan, J.; McElhannon, J. Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J.

2018, 5, 439–449. [CrossRef]
2. Krishnamurthi, R.; Kumar, A.; Gopinathan, D.; Nayyar, A.; Qureshi, B. An Overview of IoT Sensor Data Processing, Fusion, and

Analysis Techniques. Sensors 2020, 20, 6076. [CrossRef]
3. Sulieman, N.A.; Ricciardi Celsi, L.; Li, W.; Zomaya, A.; Villari, M. Edge-Oriented Computing: A Survey on Research and Use

Cases. Energies 2022, 15, 452. [CrossRef]
4. Vaño, R.; Lacalle, I.; Sowiński, P.; S-Julián, R.; Palau, C.E. Cloud-Native Workload Orchestration at the Edge: A Deployment

Review and Future Directions. Sensors 2023, 23, 2215. [CrossRef] [PubMed]
5. Watada, J.; Roy, A.; Kadikar, R.; Pham, H.; Xu, B. Emerging trends, techniques and open issues of containerization: A Review.

IEEE Access 2019, 7, 152443–152472. [CrossRef]
6. Bentaleb, O.; Belloum, A.S.; Sebaa, A.; El-Maouhab, A. Containerization technologies: Taxonomies, applications and challenges.

J. Supercomput. 2021, 78, 1144–1181. [CrossRef]
7. Hossain, M.D.; Sultana, T.; Akhter, S.; Hossain, M.I.; Thu, N.T.; Huynh, L.N.; Lee, G.W.; Huh, E.N. The role of microservice

approach in edge computing: Opportunities, challenges, and research directions. ICT Express 2023. [CrossRef]
8. Teppan, H.; Fla, L.H.; Jaatun, M.G. A survey on infrastructure-as-code solutions for cloud development. In Proceedings

of the 2022 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Bangkok, Thailand,
13–16 December 2022. [CrossRef]

9. IBM. What Is Containerization? Available online: https://www.ibm.com/topics/containerization (accessed on 12 June 2023).

http://doi.org/10.1109/JIOT.2017.2767608
http://dx.doi.org/10.3390/s20216076
http://dx.doi.org/10.3390/en15020452
http://dx.doi.org/10.3390/s23042215
http://www.ncbi.nlm.nih.gov/pubmed/36850813
http://dx.doi.org/10.1109/ACCESS.2019.2945930
http://dx.doi.org/10.1007/s11227-021-03914-1
http://dx.doi.org/10.1016/j.icte.2023.06.006
http://dx.doi.org/10.1109/cloudcom55334.2022.00019
https://www.ibm.com/topics/containerization


Sensors 2023, 23, 7662 24 of 25

10. Casalicchio, E. Container Orchestration: A survey. Syst. Model. Methodol. Tools 2018, 221–235. [CrossRef]
11. Zhang, K.; Leng, S.; He, Y.; Maharjan, S.; Zhang, Y. Mobile edge computing and networking for green and low-latency internet of

things. IEEE Commun. Mag. 2018, 56, 39–45. [CrossRef]
12. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on Edge computing research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
13. Satyanarayanan, M. The emergence of Edge Computing. Computer 2017, 50, 30–39. [CrossRef]
14. Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the internet of things: A case study. IEEE Internet Things J. 2018,

5, 1275–1284. [CrossRef]
15. Morris, K. Infrastructure as Code: Managing Servers in the Cloud; O’Reilly Media: Sebastopol, CA, USA, 2016.
16. Wang, J.; Yang, Y.; Wang, T.; Sherratt, R.S.; Zhang, J. Big Data Service Architecture: A Survey. J. Internet Technol. 2020, 21, 393–405.
17. AWS. What Is ETL (Extract, Transform, Load). Available online: https://aws.amazon.com/what-is/etl/ (accessed on

12 June 2023).
18. Simitsis, A.; Skiadopoulos, S.; Vassiliadis, P. The History, Present, and Future of ETL Technology. In Proceedings of the 25th

International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data (DOLAP) co-located with the
26th International Conference on Extending Database Technology and the 26th International Conference on Database Theory
(EDBT/ICDT 2023), Ioannina, Greece, 28 March 2023. Available online: https://ceur-ws.org/Vol-3369/invited1.pdf (accessed on
12 June 2023).

19. Pareek, A.; Khaladkar, B.; Sen, R.; Onat, B.; Nadimpalli, V.; Lakshminarayanan, M. Real-time ETL in Striim. In Proceedings of the
International Workshop on Real-Time Business Intelligence and Analytics, Rio de Janeiro, Brazil, 27 August 2018. [CrossRef]

20. Al-Rakhami, M.; Gumaei, A.; Alsahli, M.; Hassan, M.M.; Alamri, A.; Guerrieri, A.; Fortino, G. A lightweight and cost effective
edge intelligence architecture based on Containerization Technology. World Wide Web 2019, 23, 1341–1360. [CrossRef]

21. Kristiani, E.; Yang, C.T.; Huang, C.Y.; Wang, Y.T.; Ko, P.C. The implementation of a cloud-edge computing architecture using
OpenStack and Kubernetes for Air Quality Monitoring Application. Mob. Netw. Appl. 2020, 26, 1070–1092. [CrossRef]

22. Ren, L.; Zhang, Q.; Shi, W.; Peng, Y. Edge-based personal computing services: Fall detection as a pilot study. Computing 2019,
101, 1199–1223. [CrossRef]

23. González, G.; Evans, C.L. Biomedical image processing with containers and Deep Learning: An Automated Analysis Pipeline.
BioEssays 2019, 41, 1900004. [CrossRef]

24. Abdellatif, A.A.; Mohamed, A.; Chiasserini, C.F.; Tlili, M.; Erbad, A. Edge computing for Smart Health: Context-aware approaches,
opportunities, and challenges. IEEE Netw. 2019, 33, 196–203. [CrossRef]

25. Khan, L.U.; Yaqoob, I.; Tran, N.H.; Kazmi, S.M.; Dang, T.N.; Hong, C.S. Edge-computing-enabled smart cities: A comprehensive
survey. IEEE Internet Things J. 2020, 7, 10200–10232. [CrossRef]

26. Chen, L.; Englund, C. Every second counts: Integrating edge computing and service oriented architecture for automatic
emergency management. J. Adv. Transp. 2018, 2018, 7592926. [CrossRef]

27. Narang, M.; Xiang, S.; Liu, W.; Gutierrez, J.; Chiaraviglio, L.; Sathiaseelan, A.; Merwaday, A. UAV-assisted edge infrastructure
for challenged networks. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Atlanta, GA, USA, 1–4 May 2017. [CrossRef]

28. Avgeris, M.; Spatharakis, D.; Dechouniotis, D.; Kalatzis, N.; Roussaki, I.; Papavassiliou, S. Where there is fire there is smoke: A
scalable edge computing framework for early fire detection. Sensors 2019, 19, 639. [CrossRef]

29. Tang, C.; Wei, X.; Zhu, C.; Chen, W.; Rodrigues, J.J. Towards smart parking based on Fog Computing. IEEE Access 2018,
6, 70172–70185. [CrossRef]

30. Tandon, R.; Gupta, P.K. Optimizing Smart Parking System by using Fog Computing. Adv. Comput. Data Sci. 2019, 724–737.
31. Feng, C.; Wang, Y.; Chen, Q.; Ding, Y.; Strbac, G.; Kang, C. Smart Grid encounters Edge computing: Opportunities and

applications. Adv. Appl. Energy 2021, 1, 100006. [CrossRef]
32. Meani, C.; Paglierani, P.; Ropodi, A.; Stasinopoulos, N.; Tsagkaris, K.; Demestichas, P. Enabling Smart Retail through 5G Services

and Technologies. Architecture 2018, 2, 3.
33. T, G.K.; Shashank, K.V. Smart farming based on ai, edge computing and IOT. In Proceedings of the 2022 4th International

Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 21–23 August 2022. [CrossRef]
34. Maktabdar Oghaz, M.; Razaak, M.; Kerdegari, H.; Argyriou, V.; Remagnino, P. Scene and environment monitoring using aerial

imagery and deep learning. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor
Systems (DCOSS), Santorini Island, Greece, 29–31 May 2019. [CrossRef]

35. Pomsar, L.; Brecko, A.; Zolotova, I. Brief overview of edge ai accelerators for energy-constrained edge. In Proceedings of
the 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI), Poprad, Slovakia,
19–22 January 2022. [CrossRef]

36. Pääkkönen, P.; Pakkala, D. Extending reference architecture of Big Data Systems towards machine learning in edge computing
environments. J. Big Data 2020, 7, 25. [CrossRef]

37. Bao, G.; Guo, P. Federated learning in cloud-edge collaborative architecture: Key Technologies, applications and challenges. J.
Cloud Comput. 2022, 11, 94. [CrossRef]

38. Rong, G.; Xu, Y.; Tong, X.; Fan, H. An edge-cloud collaborative computing platform for building AIoT applications efficiently. J.
Cloud Comput. 2021, 10, 36. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-92378-9_14
http://dx.doi.org/10.1109/MCOM.2018.1700882
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1109/JIOT.2018.2805263
https://aws.amazon.com/what-is/etl/
https://ceur-ws.org/Vol-3369/invited1.pdf
http://dx.doi.org/10.1145/3242153.3242157
http://dx.doi.org/10.1007/s11280-019-00692-y
http://dx.doi.org/10.1007/s11036-020-01620-5
http://dx.doi.org/10.1007/s00607-018-00697-x
http://dx.doi.org/10.1002/bies.201900004
http://dx.doi.org/10.1109/MNET.2019.1800083
http://dx.doi.org/10.1109/JIOT.2020.2987070
http://dx.doi.org/10.1155/2018/7592926
http://dx.doi.org/10.1109/infcomw.2017.8116353
http://dx.doi.org/10.3390/s19030639
http://dx.doi.org/10.1109/ACCESS.2018.2880972
http://dx.doi.org/10.1016/j.adapen.2020.100006
http://dx.doi.org/10.1109/icirca54612.2022.9985023
http://dx.doi.org/10.1109/dcoss.2019.00078
http://dx.doi.org/10.1109/sami54271.2022.9780669
http://dx.doi.org/10.1186/s40537-020-00303-y
http://dx.doi.org/10.1186/s13677-022-00377-4
http://dx.doi.org/10.1186/s13677-021-00250-w


Sensors 2023, 23, 7662 25 of 25

39. Lalanda, P.; Hamon, C. A service-oriented edge platform for cyber-physical systems. CCF Trans. Pervasive Comput. Interact.
2020, 2, 206–217. [CrossRef]

40. IBM. The OSGi Framework. 2013. Available online: https://www.ibm.com/docs/en/was/8.5.5?topic=applications-osgi-
framework (accessed on 15 June 2023).

41. Xu, R.; Jin, W.; Kim, D.H. Knowledge-based Edge Computing framework based on CoAP and HTTP for enabling heterogeneous
connectivity. Pers. Ubiquitous Comput. 2020, 26, 329–344. [CrossRef]

42. Trakadas, P.; Masip-Bruin, X.; Facca, F.M.; Spantideas, S.T.; Giannopoulos, A.E.; Kapsalis, N.C.; Martins, R.; Bosani, E.; Ramon,
J.; Prats, R.G.; et al. A reference architecture for cloud—Edge meta-operating systems enabling cross-domain, data-intensive,
ML-assisted applications: Architectural overview and key concepts. Sensors 2022, 22, 9003. [CrossRef]

43. Srirama, S.N.; Basak, S. Fog computing out of the box with FOGDEFT framework: A case study. In Proceedings of the 2022 IEEE
15th International Conference on Cloud Computing (CLOUD), Barcelona, Spain, 10–16 July 2022. [CrossRef]

44. Lootus, M.; Thakore, K.; Leroux, S.; Trooskens, G.; Sharma, A.; Ly, H. A VM/containerized approach for scaling tinyml
applications. arXiv 2022, arXiv:2202.05057.

45. Arm. Big.LITTLE. Available online: https://www.arm.com/technologies/big-little (accessed on 8 June 2023).
46. Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge computing in industrial internet of things: Architecture,

advances and challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [CrossRef]
47. Kong, X.; Wu, Y.; Wang, H.; Xia, F. Edge computing for internet of everything: A survey. IEEE Internet Things J. 2022,

9, 23472–23485. [CrossRef]
48. Singh, A.; Satapathy, S.C.; Roy, A.; Gutub, A. AI-based Mobile Edge Computing for IOT: Applications, challenges, and future

scope. Arab. J. Sci. Eng. 2022, 47, 9801–9831. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s42486-020-00046-y
https://www.ibm.com/docs/en/was/8.5.5?topic=applications-osgi-framework
https://www.ibm.com/docs/en/was/8.5.5?topic=applications-osgi-framework
http://dx.doi.org/10.1007/s00779-020-01466-4
http://dx.doi.org/10.3390/s22229003
http://dx.doi.org/10.1109/cloud55607.2022.00057
https://www.arm.com/technologies/big-little
http://dx.doi.org/10.1109/COMST.2020.3009103
http://dx.doi.org/10.1109/JIOT.2022.3200431
http://dx.doi.org/10.1007/s13369-021-06348-2

	Introduction
	Background
	Containerization and Its Benefits
	Container Orchestration
	Edge Computing and Its Importance
	Infrastructure as Code
	Real-Time Data Processing Tools
	Edge Computing
	Frameworks

	Proposed Streaming ETL Framework
	Input Data Transformation Service
	Filtering Mechanism
	Analyzing Service
	MongoDB Time Series and Logging Service
	Deploying Framework to Kubernetes Cluster

	Testing of the Framework
	The Test Environment
	Tests on ARM64 with 100 ms Delay
	Tests on ARM64 with 10 ms Delay
	Tests on ARM64 with 1 ms Delay
	Tests on AMD64 with 100 ms Delay
	Tests on AMD64 with 10 ms Delay
	Tests on AMD64 with 1 ms Delay

	Discussion
	Conclusions
	References

