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Abstract: The increasing network speeds of today’s Internet require high-performance, high-
throughput network devices. However, the lack of affordable, flexible, and readily available devices 
poses a challenge for packet classification and filtering. This problem is exacerbated by the increase 
in volumetric Distributed Denial-of-Service (DDoS) attacks, which require efficient packet pro-
cessing and filtering. To meet the demands of high-speed networks and configurable network pro-
cessing devices, this paper investigates a hybrid hardware/software packet filter prototype that com-
bines reconfigurable FPGA technology and high-speed software filtering on commodity hardware. 
It uses a novel approach that offloads filtering rules to the hardware and employs a Longest Prefix 
Matching (LPM) algorithm and allowlists/blocklists based on millions of IP prefixes. The hybrid 
filter demonstrates improvements over software-only filtering, achieving performance gains of 
nearly 30%, depending on the rulesets, offloading methods, and traffic types. The significance of 
this research lies in developing a cost-effective alternative to more-expensive or less-effective filters, 
providing high-speed DDoS packet filtering for IPv4 traffic, as it still dominates over IPv6. Deploy-
ing these filters on commodity hardware at the edge of the network can mitigate the impact of DDoS 
attacks on protected networks, enhancing the security of all devices on the network, including In-
ternet of Things (IoT) devices. 

Keywords: hybrid filters; DDoS mitigation; low power; FPGA; hardware/software packet proces-
sors; high performance 
 

1. Introduction 
The rapid growth of the Internet, amplified by the proliferation of Internet of Things 

(IoT) devices and coupled with increasing network speeds, requires the deployment of 
high-performance, high-throughput network devices that prioritize energy-efficient solu-
tions. In the context of IoT environments, the challenge lies in developing efficient mech-
anisms that can process packets rapidly while optimizing energy usage to meet their en-
ergy-constrained demands, even at the network edge. 

Packet processing in high-throughput networks is primarily the task of specialized 
hardware-based network devices that can quickly classify and filter packets, albeit with 
limitations. Performing this task programmatically on a 100 Gbps network requires packet 
filtering that can handle a throughput of over 148 million packets per second (Mpps). On 
a general-purpose computer with a processor speed of 4 GHz, this would mean that each 
packet should be processed in less than 27 clock cycles. 

Depending on the type of device, the classification of packets is based on certain cri-
teria, such as searching by destination MAC address or the VLAN tag in switches, or the 
source/destination IP address in routers and firewalls. Performing such checks within the 
required 27 clock cycles is a major challenge, as multiple operations or memory fetches 
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must be completed within this time frame. The 27 clock cycle example applies to the small-
est frame size traffic, when the device is at its busiest due to the shortest packet arrival 
times. Regardless of this, devices in the network infrastructure must be able to handle 
packets of all sizes at all speeds. Otherwise, if one device fails, its availability can no longer 
be guaranteed. 

Malicious users on the Internet exploit this fact and attempt to disable access to cer-
tain services through Denial of Service (DoS) attacks and Distributed Denial of Service 
(DDoS) attacks. According to various sources [1–3], DDoS attacks are becoming increas-
ingly common. In these attacks, infected computers under the control of attackers (called 
bots, often insecure computers or IoT devices) send traffic to the victim, consuming re-
sources and disrupting normal users. Defending against such attacks is very difficult, as 
there may be millions of these infected devices. Distinguishing the ‘good’ traffic from the 
‘bad’ and at the same time filtering it out is particularly problematic when dealing with 
very high network speeds. 

Despite current efforts to replace IPv4 with IPv6 in response to IPv4 address exhaus-
tion, there is no clear indication that this transition will occur in the near future. Since the 
percentage of total IPv6 traffic remains lower [4], the occurrence of IPv6 DDoS attacks is 
also relatively limited. Therefore, this paper focuses exclusively on IPv4 traffic and the 
mitigation of IPv4 DDoS attacks, as it is expected that IPv4 will still be in use for an ex-
tended period of time. 

It is important to differentiate between DDoS protection (mitigation) and DDoS de-
tection (recognition). DDoS mitigation systems may include DDoS detection, but this is 
not universally the case. This paper focuses primarily on packet filtering and the mitiga-
tion of detected DDoS attacks, assuming that other systems are responsible for the auto-
matic or non-automatic task of DDoS detection. 

The work is organized as follows. Section 2 gives an overview of related work in the 
protection against DDoS attacks. Section 3 describes a model of a hybrid hardware/soft-
ware datapath used for high-speed packet filtering. Section 4 explains the benchmark 
methodology and showcases the results of the hybrid filter compared to the software-only 
filter. Finally, Section 5 provides the conclusion. 

2. Related Work 
The current state of protection against DDoS attacks relies on using one of three types 

of protection approaches: third-party delegation, on-site infrastructure protection, or a 
combination of both. Third-party delegation routes all traffic to a DDoS protection service, 
which then “scrubs” the dangerous and suspicious traffic as needed and redirects legiti-
mate traffic to its destination. However, this redirection of traffic raises potential issues if 
the traffic is sensitive to even minor delays or contains sensitive and private information 
that third parties should not have access to (e.g., in the financial sector). 

On-site protection is achieved by devices capable of filtering traffic using specialized 
hardware, software, or a hybrid of both. Hardware-based filtering is performed by devices 
designed specifically for this purpose. These devices offer high throughput, but come with 
high annual licensing costs for the associated software. Apart from the cost, negative as-
pects of such devices include inflexibility and complexity when it comes to modifications 
or updates [5]; so, after a few years, they no longer meet the requirements of current net-
work speeds. In addition, the use of primarily TCAM (ternary content-addressable 
memory) technology in these devices contributes to their high power consumption [5,6], 
which exacerbates their disadvantages. Other technologies used for this type of filtering 
include ASIC (application-specific integrated circuit) and FPGAs (field-programmable 
gate arrays), with ASIC having similar disadvantages to TCAM, including the high price 
of its development, but FPGAs standing out from both of them by being reprogrammable. 

Software frameworks for fast packet processing on general-purpose computers have 
emerged in recent years. These frameworks, such as Netmap [7], DPDK [8], and XDP/eBPF 
[9], when combined with sufficiently adequate hardware, can achieve packet processing 
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results comparable to hardware filters. They provide flexibility and control over the filters 
created with them because they are simpler and programmable compared to most hard-
ware-based systems. Software-defined networking (SDN) using OpenFlow [10] and con-
tent delivery networks (CDNs) [11] have also been explored, but encounter architectural 
limitations [12] for the mitigation of large volumetric DDoS attacks [13,14]. 

Hybrid protection combines hardware- and software-based protection, often utiliz-
ing some form of hardware to partially (or fully) handle the filtering process and “offload” 
software-based filtering, which is expected to have lower performance. This is why hybrid 
hardware/software solutions combining software with non-expensive, off-the-shelf hard-
ware (e.g., FPGAs [15–20], GPUs [21–24], or smart NICs [25–27]) offer a flexible and cost-
effective approach. 

In [15], packet processing is performed using eBPF, with its implementation running 
entirely on FPGAs, while [16] describes a framework for offloading click router function-
ality that also runs entirely on FPGAs. In these systems, the CPU is primarily used for 
system preparation and transport to the hardware component, and so there is no “hybrid-
ity” in the packet processing itself. However, in [17,20], offloading is achieved by moving 
a limited number of filtering rules to the FPGA, while the remaining rules are executed 
on the host machine using the Linux firewall. This reduces the load on the CPU due to the 
smaller number of rules on the host. The work of [18] and its improved version [19] 
achieve offloading in a similar manner, but for higher traffic throughput, along with im-
provements related to storing rules on the FPGA. The filtering method in all of these men-
tioned systems has limitations on the number of rules that can be offloaded, depending 
on the implementation and the resources available on the FPGA. This makes them incon-
venient for defending against large volumetric DDoS attacks. In addition, modifying rules 
on the FPGA requires re-synthesizing the bitfile in the worst case, which is time-consum-
ing and does not provide a fast defense in case of a DDoS attack. 

In [21], the authors present ways to improve CPU packet processing using some prin-
ciples of GPU processing (e.g., latency hiding). This work’s actual contribution is that the 
CPU is capable of processing packets faster than the GPU in certain cases, without the 
negative consequences associated with GPUs. The systems in [22–24] perform packet op-
erations entirely on the GPU, i.e., they utilize the parallelism of the GPU in different ways 
to process a large number of packets simultaneously. In this way, the GPU effectively acts 
as a large number of CPUs. A similar mode of operation is found in [25], where all “heavy” 
packet processing is conducted on the GPU, while simpler tasks are left for processing on 
the CPU. All GPU-assisted hybrid solutions face latency issues due to the batch processing 
of packets and may introduce packet re-ordering. They are also not compatible with all 
GPUs and are less energy-efficient than FPGAs. 

The system in [26], like some of those previously mentioned, involves transferring a 
certain number of rules to the (memory-limited) SmartNIC, while leaving the rest on the 
host computer. An approach to packet processing similar to our paper can be found in 
[27,28]. They also utilize some method of preprocessing of packets (generating metadata) 
that takes place before the actual packet processing on the CPU. However, these papers 
do not address cases involving defense against large volumetric DDoS attacks and the 
challenges associated with them. Instead, they use SmartNICs for packet preprocessing in 
conjunction with other applications (e.g., key–value stores or GRE termination). 

Protection against DDoS attacks is approached in a similar way to a standard firewall, 
where rulelists are created with various fields to be checked (e.g., source or destination IP 
address, transport layer protocol, or ports) and each packet traverses these lists, compar-
ing its header against the specified fields. In some cases, attempts are made to minimize 
these rulelists, or Packet Classification Engines (PCEs) are used to achieve a filtering 
method that requires minimal memory fetches. However, these tools work under the 
premise that protection against DDoS attacks is only possible with a large number of sep-
arate rules, requiring tens of thousands or even millions of such records. 
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To assess the effectiveness of DDoS filtering solutions, it is important to consider the 
type and volume of traffic used in testing. Any solution should be exposed to traffic that 
mirrors real DDoS attacks. A simulation of the attack can be achieved by flooding the filter 
with synthetic traffic containing randomly generated IP addresses or using existing traces 
of actual DDoS attacks. Some vendors [29,30] utilize genuine DDoS traffic, as they have 
access to extensive real-world data and traffic with various DDoS attack scenarios. How-
ever, since most researchers do not have access to such data, they resort to synthetic traffic 
to simulate DDoS attacks in their tests [18,19,26,31,32]. Synthetic traffic with a large pool 
of randomly generated IP addresses can approximate DDoS attacks, but in previously 
mentioned works, this is limited to tens of thousands of IP addresses and is therefore not 
capable of replicating the scale of today’s volumetric DDoS attacks. For example, the at-
tack on Dyn in 2016 involved tens of millions of different IP addresses, as shown through 
various analyses [33–35]. Therefore, any effective DDoS filtering system must be able to 
withstand such large-scale attacks. 

In addition to the “active” defenses against DDoS attacks mentioned above, it is 
worth mentioning so-called blackhole routing. In this method, the victim’s IP address is 
reported to the network service provider, which then redirects all traffic destined for that 
IP address to a “black hole”, effectively discarding it. This protects the rest of the network 
by saving bandwidth by eliminating a significant portion of malicious traffic, while effec-
tively fulfilling the attackers’ goal by rendering the victim inaccessible to other users. 

3. Hybrid System Model 
This paper, based on the research from one of the author’s previous work [36], builds 

upon our previous studies [37] which aimed to enhance existing software-based filtering 
to protect against volumetric DDoS attacks by replacing large rulelists with more compact 
ones. At the same time, additional tables are used to store IP addresses or subnets (e.g., 
whitelists or blacklists), and so these can be retrieved much faster using Longest Prefix 
Matching (LPM). In this paper, we propose a hybrid filtering system using a combination 
of FPGA hardware and software support based on the aforementioned LPM filtering. This 
moves away from the paradigm that defense against DDoS attacks requires the mainte-
nance of monolithic lists with complex rules. 

The packets to be filtered first pass through the hardware, which parses them and, if 
necessary, generates metadata that are passed to the software filter. The software filter 
receives the packets that are then metadata-enriched and, depending on its programming, 
parses them and performs the required actions which are determined from the ruleset 
given to the system, explained later in this chapter. 

When using allowlists/blocklists for filtering, the LPM algorithm plays a crucial role 
in extracting data from each list to determine whether the IP address being checked be-
longs to a specific list. Various LPM algorithms can be used for this task, but the current 
implementation of the filter uses the DXR algorithm from [38,39], specifically the D16X4R 
version. 

The DXR algorithm compresses and stores a list in compact structures with a small 
memory footprint. The algorithm consists of three stages (D16, X4, and R), all originally 
executed in software. However, in the hybrid implementation, a modified version of the 
algorithm is used. The first two stages (D16 and X4—indexing and memory retrieval using 
a total of 20 bits) are separated from the last one and executed in hardware. Then, the 
hardware passes the result of these two stages (the 32-bit index and a range included in 
the metadata of the packet) to the software. In the last stage of the algorithm, a binary 
search is performed over the received range (R—range lookup) until it reaches its end and 
returns the final result representing the “next-hop” for a given LPM table or a null value, 
indicating no match. 

To select the best ruleset/metadata combination depending on pre-specified assump-
tions, parameters, and factors, we heuristically modeled a distributor part of the hybrid 
system. It acts as an intermediary and determines how packets are parsed in hardware, 
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what metadata are created, and which filter rules are appropriate for hardware offloading. 
It takes into account various parameters such as the ruleset, hardware, and software ca-
pabilities, network status, and traffic volume. 

3.1. Hardware 
FPGA technology was chosen for the hardware component due to its flexibility in 

terms of reconfiguration and the utilization of parallelism. This also made the FPGA a 
promising technology to improve the efficiency of packet processing in IoT environments 
[40]. NetFPGA SUME [41] is a development board for prototyping network functions for 
high-speed networks that has been used extensively in various research projects since 2015 
[42–47]. It provides prototyping capabilities for such a filter at 10 G network speeds and 
features a Xilinx Virtex-7 690T FPGA, four 10 GbE SFP+ interfaces, QDR II SRAM memory 
modules, DDR3 SODIMM memory modules, and other peripherals. 

The primary idea for our model was to configure NetFPGA SUME as an NIC on top 
of which the software filter would be deployed, and so it would serve as a standalone 
network middleware element installed at the edge of the network, as shown in Figure 1. 
The DMA engine used in the existing NetFPGA SUME Reference NIC project [48] was not 
designed to fully utilize the PCIe bus, and so the bandwidth between the NetFPGA SUME 
card and the operating system was poor. Attempting to create and implement an im-
proved version which would work in a high-speed environment on the existing hardware 
proved impossible without significant and complex modifications. 

 
Figure 1. Architecture of the proposed DDoS filtering system using NetFPGA SUME NIC. Regular 
arrows represent “real” packet datapaths, dashed arrows represent combined “real” packet and 
metadata datapaths, and dotted arrows represent internal communication between different mod-
ules of the system. 

Therefore, the model was modified to no longer use the PCIe bus for packet trans-
mission and to exclusively use Ethernet communication between the FPGA and the soft-
ware filter. Packets and metadata are passed from the FPGA to the software filter via 
Ethernet, achieving sufficiently high speeds for use in 10 G networks. The model, as 
shown in Figure 2, uses an additional NIC to receive packets with metadata and forwards 
them to the software filter. The NetFPGA SUME performs the necessary offload and pre-
filtering tasks, but the automatic forwarding of packets to the egress interface from hard-
ware is disabled. The model can be extended by enabling additional interface pairs to in-
crease the overall throughput. 
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Figure 2. Architecture of the implemented DDoS filtering system without using NetFPGA SUME 
NIC. Regular arrows represent “real” packet datapaths, dashed arrows represent combined “real” 
packet and metadata datapaths, and dotted arrows represent internal communication between dif-
ferent modules of the system. 

The hardware implementation demonstrates the hybrid filter prototype datapath on 
the NetFPGA SUME development board, using the AXI4-Stream protocol for inter-mod-
ule communication in the system pipeline. The pipeline is composed of modules con-
nected in series or parallel and consists of two parts: one part carries packets arriving from 
the incoming network interface, i.e., packets that are checked (filtered) and forwarded to 
the output interface if necessary, and control packets from the “Distributor” that regulate 
the internal logic within the hardware (e.g., setting memory values or enabling and disa-
bling certain parsers). All data required for filtering (e.g., source and destination IP ad-
dresses) are extracted from the “real” packets, and metadata are created based on this 
information. The metadata are appended to the end of the packets and forwarded to the 
software filter. 

Two types of memory modules are used in the implementation: Block Random Ac-
cess Memory (BRAM) and Quad Data Rate Static Random Access Memory (QDR SRAM). 
BRAM is a memory integrated on the FPGA board with limited capacity and very low 
latency (readout requires up to two clock cycles), while QDR is an external memory mod-
ule with a larger capacity but slightly higher latency (about 20 clock cycles to readout). 
Both types of memory are suitable for high-speed operation, which is why they are used 
for packet filtering. In particular, they store the data required for the partial execution of 
the LPM algorithm, or other partially offloadable rule patterns which the hardware sends 
to the software filter in the metadata. 

3.2. Software 
The proposed system utilizes the Restricted Feature-set Packet Filter (RFPF)—a soft-

ware filter developed in our previous research [36]. RFPF is a high-performance IPv4 traf-
fic filter proven to be capable of filtering DDoS traffic at 10 G speeds using only one CPU 
core. It works by binding to two network interfaces using the Netmap software framework 
and generates C code from a predefined rulelist. The generated code is converted into a 
dynamically executable program that is inserted between the network interfaces to filter 
traffic in both directions. In this work, it is adapted to the hybrid mode of operation, con-
sidering how the filtering is performed in hardware and how the information from the 
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metadata are used in the software filtering. The software filter separates the metadata ar-
riving from the hardware from the packets themselves and uses them for further pro-
cessing. 

3.3. Rule Categorization 
The rulesets used in the model consist of rules which are grouped and categorized 

by whether they are filtered in hardware, software, or both components. The rules consist 
of one action and one or more patterns, in the following format: 

action pattern {pattern...} 

The action can be terminating (if further packet inspection is halted after the rule is 
matched, e.g., A—Accept or D—Deny) or non-terminating (N—if the rule matching is con-
tinued even though the rule is matched). Additionally, the action may have a counting (c—
when the software component must be notified that the rule was matched) or non-counting 
(n—if the rule does not require incrementing a counter) attribute. Patterns are divided into 
three types: those that can be fully or partially processed in hardware (pO—fully of-
floadable and pP—partially offloadable) and those that cannot be processed in hardware 
(pN—non-offloadable). The combination of patterns in a rule determines the overall rule 
offloadability attribute: fully offloadable (O), partially offloadable type 0 (P0), partially of-
floadable type 1 (P1), partially offloadable type 2 (P2), and non-offloadable (N), as shown 
in Table 1. 

Table 1. Rule offloadability matched with pattern combination types. Multiple repetitions (once or 
more) of types of patterns combination are marked with ()+. Multiple repetitions (zero times or more) 
of types of patterns are marked with ()*. 

Rule Offloadability Combination of Patterns 
O (pO)+ 
P0 (pN)+(pO)+ 
P1 (pP)+(pN)* 
P2 (pP)+(pN)*(pO)+ 
N (pN)+ 

Combining the pattern offloadability attributes (five options), terminating attributes 
(three options), and counting attributes (two options), there are a total of 30 possible com-
binations of rule types that can be categorized by how they can be processed in hardware: 
fully, partially, or not at all. In the context of DDoS protection used in this research, non-
terminating actions with the non-counting attribute make no sense, regardless of the pattern 
offloadability (*Nn); therefore, they are not considered. Table 2 presents the remaining 25 
combinations, categorized based on the offload type that they belong to. 

Table 2. Offload types for rule categories. 

Offload Type Rule Categories 
Hardware ODn 

Hybrid 

OAc, OAn, ODc, ONc 
P0Ac, P0An, P0Dc, P0Dn, P0Nc 
P1Ac, P1An, P1Dc, P1Dn, P1Nc 
P2Ac, P2An, P2Dc, P2Dn, P2Nc 

Software NAc, NAn, NDc, NDn, NNc 

An example of a pseudo ruleset with several different rule types categorized accord-
ingly is shown and explained in Figure 3. 
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Figure 3. Three types of rules, annotated with their categories. The first rule specifies that every TCP 
packet with destination port 22 should be dropped and not counted (Deny with non-counting attrib-
ute). The second specifies that every packet with destination port 80 or 443 should be forwarded 
and counted (Accept with counting attribute). The first two rules are terminating—the filter stops 
parsing any subsequent rules if this rule is matched. The third rule is non-terminating. It specifies 
that packets with the source IP address from the GOOD table and with destination port 80 should 
be counted without any action—if there are rules after this one, they are checked. 

When taking into consideration the information to be exchanged between the hard-
ware and the software during the filtering process, the categories can be classified into 
eight groups, with each group utilizing one of the four different metadata types, as 
demonstrated in Table 3: 
• metadata1—data used in partially offloaded processing (e.g., protocol type, IP address 

source/destination, port number, or partial data used for an LPM algorithm). 
• metadata2—data used in fully offloaded processing (a binary value for every p0 pat-

tern from partially offloaded rules, whether the hardware processing matched the 
rule or it did not). 

• metadata3—data used for all counting rules (a binary value for every counting rule, 
whether the hardware processing matched the rule or it did not). 

• metadata4—data used when a terminating rule is matched (8-bit data noting the rule 
number that first matched). 

Table 3. Metadata fields for different rule categories. The ‘*’ character replaces any other attribute. 

Rules 
Metadata Type 

metadata1 metadata2 metadata3 metadata4 
ODn - - - -/x 
OAn - - - x 
ONc - - x - 

O[A|D]c - - - x 
P0** - x - - 
P1** x - - - 
P2** x x - - 
N** - - - - 

As shown in Table 3, fully offloadable rules with the “Deny” terminating attribute and 
no counting attribute (ODn) can be offloaded to hardware without sending metadata to 
software exclusively if they appear at the beginning of the ruleset. Otherwise, the result 
of their check must be sent to the software using the same metadata as the fully offloadable 
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rules with the “Accept” terminating attribute and no counting attribute (OAn). However, 
the implementation architecture used for this filter limits the inclusion of these two cate-
gories (ODn and OAn) in the performance evaluation presented in this paper. 

The evaluation is solely conducted for all of the other groups of rules (except for N** 
group rules, which are non-offloadable by default). The matching of the fully offloadable 
non-terminating rules with the counting attribute (ONc) should only increment the counter 
in the software, and so they require one bit for each rule that can be counted. Fully of-
floadable rules with both terminating and counting attributes (O[A|D]c) need to send only 
the ordinal number of the first terminating rule that matches in hardware. For each combi-
nation of partially offloadable P0 rules, only the results of each fully offloadable pattern 
(pO) need to be sent to software as a true/false bitmap. For every combination of partially 
offloadable P1 rules, the hardware computes the data for partially offloadable patterns (pP) 
and sends it in full to the software. P2 rules have the same metadata requirements as P0 
and P1 rules combined. 

3.4. Use Case 
Combined with an external DDoS detection system, the filtering system described in 

this paper would effectively utilize the LPM search for IP addresses and subnets against 
DDoS attacks even with millions of different attackers in a high-speed networking envi-
ronment. As an example, this kind of mitigation could be achieved using only seven rules 
with six different tables (lists of IP addresses and subnets), as shown in Figure 4. As the 
system is reconfigurable, various versions of rulesets could be made ready to be deployed 
depending on the security status of the network. 

 
Figure 4. Pseudo ruleset example for default security status. The ‘#’ characters denote comments. 

All such rulesets include constant rules that always perform the same tasks, regard-
less of the security level of alert, as well as variable ones that change depending on the 
security status. The rules from Figure 4 allow certain safe source hosts/networks to all 
necessary parts of the internal network, possibly further specified by destination ports 
(ADMIN table—e.g., third-party administrators that should always have access to the de-
vices in the network). Access is blocked to all other parts of the network that are not pub-
licly accessible (PUBLIC table—e.g., IP addresses of private email servers or IoT sensors) 
and to known malicious IP addresses (BAD table—e.g., from publicly available collectors). 
Additionally, traffic considered to be suspicious is exclusively monitored (SUSP table—
e.g., subnet ranges from regions known for espionage or DDoS attacks). 

The rest of the ruleset depends on the situation and may change depending on 
whether the network is under a DDoS attack and how severe it is. In the state of normal 
network activity (i.e., without DDoS attacks), an external tool that monitors regular traffic 
accumulates secure hosts/networks in a secure table that is always forwarded (GOOD ta-
ble—e.g., regular or unsuspicious users). Using LPM also allows for the fast classification 
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of source addresses according to their geo-location, and so it always forwards specific 
countries (GEOIP table—country for which the service is intended, neighboring countries, 
or “friendly” countries). All other traffic is forwarded, but also monitored by an external 
automatic DDoS attack detection system. 

During the DDoS attack, instead of allowing all unknown traffic from the variable 
part of the ruleset, the filter blocks everything except potentially secure tables (GOOD and 
GEOIP). Since all other traffic is monitored, this helps to isolate the bad IP addresses and 
adds them to the BAD table, which is updated accordingly. If necessary, the filter would 
additionally reject the GEOIP table, as shown in Figure 5, if it is proven to be unsafe, until 
the attack subsides or all the attackers are blocked. 

 
Figure 5. Pseudo ruleset example for high-alert security status. The ‘#’ characters denote comments. 

4. Benchmarks 
Since the packets in the implementation of this filter are prepared independently by 

hardware, with their metadata created before reaching the input interface of the software 
component, the software is unaffected by how they were created. 

To test and validate the system without the need for multiple hardware implementa-
tions, the measurements were designed to ensure the independence of packet preparation 
and metadata creation. This was achieved by simulating the hardware part of the system 
by creating the metadata programmatically. The pkt-gen tool (included in the Netmap 
framework) was used on a separate computer to generate packets, create the necessary 
metadata, attach it to the packets, and send them to the software filter, as shown in Figure 
6. The filtered traffic is verified in the traffic sink, which also calculates the throughput of 
incoming packets. 
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Figure 6. Simulated hardware testbed (bypassing the NetFPGA SUME). 

The test results are based on the 60 s average, and the CPU cycle counter in the soft-
ware filter is implemented using the assembler instruction rdtsc [49], which acquires the 
processor’s timestamp counter before and after processing each batch of packets. 

To validate and verify the results of the simulated measurements, some of the meas-
urements were performed on a real hybrid system that used FPGA hardware to generate 
metadata. 

4.1. Results 
We present a comparison of filtering results with and without offloading on hard-

ware, using different hardware offloading configurations. The average total throughput 
and the average number of CPU cycles per packet were measured, and two types of meas-
urements were performed: using random and specific traffic. Both types used randomly 
generated traffic with either completely random source IP addresses or specifically 
shaped traffic to seem like a DDoS attack. The specific traffic consisted of a combination of 
“normal” random traffic and randomly selected IP addresses from a large pool of mali-
cious IP addresses. In this way, we could demonstrate how the filter performed under 
pressure, when the filtering load was high. All of the tests were set so that the bandwidth 
never reached the maximum possible value for the system. Additionally, to allow for bet-
ter control and consistency of tests, all of the tests were performed on a system with a 
single CPU core at reduced frequency. For this reason, the efficiency of the two filtering 
methods could be compared based on the number of packets processed per second and 
the number of CPU cycles required to process one packet. 

The measurements were categorized by rulelists, which were tested with associated 
metadata specific to the rules within them. Multiple measurements were conducted for 
each rulelist to obtain average results for all of the hardware offloading configurations: 
without any hardware offloading (only the software filter without metadata) as a point of 
reference, and then with modified parameters for hardware offloading. Each individual 
rulelist consisted of multiple rules, created in such a way to test the offloading of a single 
metadata type and, in some cases, combinations of multiple types of metadata. The de-
tailed explanations and extended results of these experiments can be found in [36]. 
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The rulesets used in tests were divided into two groups, depending on the type of 
rules used in them. One group used only non-terminating rules, forcing the software filter 
to process each of them before forwarding the packet to the egress interface. This ensured 
that the same number of processing operations were performed for each packet, making 
the filtering comparable for all of the tests for the same group. The average software-only 
filtering throughput and cycle count for each type of ruleset in this group are shown in 
Figure 7. 

(a) 
 

(b) 
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Figure 7. Software-only average filtering throughput and average cycle count of rulesets without 
terminating rules for (a) random traffic and (b) specific traffic. 

The second group used both non-terminating and terminating (Accept) rules. If the 
packet matched the terminating rule, it no longer needed to be processed, and so the sub-
sequent rules were not checked. For this reason, the maximum throughput for these tests 
was slightly higher than the throughput for the tests from the first group of rulesets. The 
average software-only filtering throughput and cycle count for each type of ruleset in this 
group are shown in Figure 8. 

 

 
(a) 

  

 

 
(b) 
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Figure 8. Software-only average filtering throughput and average cycle count of rulesets with termi-
nating rules for (a) random traffic and (b) specific traffic. 

Figure 9 illustrates the average CPU cycle count reduction achieved when using 
metadata for filter offloading, considering both random and specific traffic. The total 
throughput increase closely correlates with the CPU cycle decrease, and so it is not shown. 

(a) 

(b) 

Figure 9. Improvements in average CPU cycle count for (a) random traffic and (b) specific traffic. Both 
types of ruleset are combined in this figure: with terminating rules (dark) and without terminating 
rules (light). 

The results in Figure 9 use the metadata notation from Table 3 and show that tests 
using rulesets with terminating rules (OAc) show the greatest improvements for both types 
of traffic. For random traffic, the greatest improvement is seen using the ruleset with rules 
that partially offload the LPM algorithm, combined with rules that fully offload simple 
port checks to hardware with 20.2% fewer CPU cycles. For specific traffic, it is the variation 
in a ruleset that fully offloads simple port checks to hardware with 28.9% fewer cycles. 

The second highest test in both random and specific traffic cases uses the “realistic” 
version of the LPM ruleset with rules that can be assumed to be used in a realistic scenario, 
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similar to the rules shown in Figure 4. Using the P1** partial LPM offloading, it achieved 
a 17.8% reduction in CPU cycles for random and 23.6% for specific traffic. Other cases with 
the highest improvements for both types of traffic are those combining P1** or P2** partial 
LPM offloading with other metadata for an around 10% reduction in CPU cycles. 

As previously mentioned, the results shown are all based on tests using metadata 
pre-generated by the packet generator. To test the hardware part of the hybrid system, 
i.e., how the system works when the NetFPGA generates the metadata and attaches it to 
the packets, another set of tests was performed. 

The test environment (testbed) for the hybrid tests, as shown in Figure 10, was similar 
to the one used when the hardware part was simulated by the software metadata genera-
tor. The traffic generator is connected to the NetFPGA SUME ingress interface, and the 
SUME egress interface is connected to the software filter ingress interface. 

 
Figure 10. Hybrid hardware/software system testbed. 

The tests for this hybrid system were performed in the same manner as the simulated 
tests, except that the packet generator did not have to create metadata and attach it to the 
packets. For this reason, it was expected that the results of all of the tests performed on 
the hybrid system would match the results of the simulated hardware. In all of the tests 
that were performed with the hybrid system, the average results of the hybrid system 
matched the average results of the simulation almost perfectly. From these results, it can 
be inferred that it is possible to achieve the same level of improvement over non-offloaded 
filtering with other types of metadata if specific offload capabilities are implemented in 
the hardware. 

4.2. Improving Hybrid Filtering 
The extent of improvement in each test may vary depending on the capabilities of the 

hardware, with performance being further enhanced as more metadata are offloaded to 
the hardware. Among the different metadata types, metadata1 requires the fewest and least 
complex hardware updates to achieve a significant increase in DDoS protection. For ex-
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ample, to increase the total number of available LPM tables for hardware offloading, ad-
ditional memory needs to be installed in the hardware. The use of this additional memory 
would not significantly impact the internal FPGA logic and overall system performance. 
On the other hand, other metadata types require more complicated changes, as parallel-
ism cannot be leveraged as efficiently as in the case of metadata1. This could lead to delays 
and performance degradation, especially when offloading a large number of rules to hard-
ware. 

Improving the performance of the filter that uses hardware offloading means finding 
a balance between the size of the metadata and their usefulness. Responding to changes 
in the type and volume of traffic is also one of the most important matters to consider 
when offloading and even beforehand when creating the ruleset. Therefore, in cases where 
offloading has a negative impact on throughput, it can be bypassed and replaced with a 
better configuration. 

It is worth repeating that all of the tests (including those performed with real hard-
ware offloading) were performed on a system with a single CPU core at a reduced fre-
quency. Moreover, they were performed on a system corresponding to the model shown 
in Figure 2. The results of a hybrid system without the limitations of this model would 
certainly be even better. 

5. Conclusions 
In this paper, we presented a datapath model of a high-speed network traffic classi-

fier/filter based on a hybrid hardware/software combination of FPGA and off-the-shelf 
computer software. The hardware component model comprises a reconfigurable FPGA 
datapath capable of adapting to runtime packet classification changes in near real-time. 
On the other hand, the software component is a modified version of the filter used in our 
previous research, now equipped with additional functionality to receive metadata from 
the hardware. This integration allows for more efficient packet filtering, leading to im-
proved performance over software-only packet filtering. 

We have shown that the hybrid system can achieve filtering in networks with speeds 
of 10 Gbps by heuristically distributing the workload between the hardware and software 
components. This is achieved by carefully selecting packet filtering methods and metadata 
that can be offloaded to the hardware, which optimizes the throughput of the system. To 
test the system, we developed a method to empirically evaluate the distribution of the 
workload between the hardware and software components. It bypasses the development 
of complex hardware implementations by simulating the necessary offloading of hard-
ware to software. 

The implemented model shows performance improvements in tests that include both 
random traffic and traffic specifically designed to simulate DDoS attacks. It is shown that 
offloading different types of rules to hardware, fully or partially, results in varying per-
formance improvements, with reductions of up to 30% in CPU cycles for certain offloads 
and rule types. In packet filtering, the use of rules based on LPM offers the advantages of 
higher throughput and simpler, more manageable rulesets. Therefore, these rulesets are 
well suited for DDoS protection, and their effectiveness can be further enhanced by hard-
ware offloading. 

In addition, the scalability of such a system should be emphasized, because efficient 
use of the LPM algorithm for IP address lookup means that filtering does not depend on 
the number of rules, but on the method of offloading parts of the filtering to the hardware. 
With suitable hardware, it is expected that the improvement in such a system can be main-
tained at higher speeds. 
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