

Sensors 2023, 23, 7636. https://doi.org/10.3390/s23177636 www.mdpi.com/journal/sensors

Article

Enhancing Mitigation of Volumetric DDoS Attacks: A Hybrid
FPGA/Software Filtering Datapath
Denis Salopek * and Miljenko Mikuc

Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia;
miljenko.mikuc@fer.hr
* Correspondence: denis.salopek@fer.hr

Abstract: The increasing network speeds of today’s Internet require high-performance, high-
throughput network devices. However, the lack of affordable, flexible, and readily available devices
poses a challenge for packet classification and filtering. This problem is exacerbated by the increase
in volumetric Distributed Denial-of-Service (DDoS) attacks, which require efficient packet pro-
cessing and filtering. To meet the demands of high-speed networks and configurable network pro-
cessing devices, this paper investigates a hybrid hardware/software packet filter prototype that com-
bines reconfigurable FPGA technology and high-speed software filtering on commodity hardware.
It uses a novel approach that offloads filtering rules to the hardware and employs a Longest Prefix
Matching (LPM) algorithm and allowlists/blocklists based on millions of IP prefixes. The hybrid
filter demonstrates improvements over software-only filtering, achieving performance gains of
nearly 30%, depending on the rulesets, offloading methods, and traffic types. The significance of
this research lies in developing a cost-effective alternative to more-expensive or less-effective filters,
providing high-speed DDoS packet filtering for IPv4 traffic, as it still dominates over IPv6. Deploy-
ing these filters on commodity hardware at the edge of the network can mitigate the impact of DDoS
attacks on protected networks, enhancing the security of all devices on the network, including In-
ternet of Things (IoT) devices.

Keywords: hybrid filters; DDoS mitigation; low power; FPGA; hardware/software packet proces-
sors; high performance

1. Introduction
The rapid growth of the Internet, amplified by the proliferation of Internet of Things

(IoT) devices and coupled with increasing network speeds, requires the deployment of
high-performance, high-throughput network devices that prioritize energy-efficient solu-
tions. In the context of IoT environments, the challenge lies in developing efficient mech-
anisms that can process packets rapidly while optimizing energy usage to meet their en-
ergy-constrained demands, even at the network edge.

Packet processing in high-throughput networks is primarily the task of specialized
hardware-based network devices that can quickly classify and filter packets, albeit with
limitations. Performing this task programmatically on a 100 Gbps network requires packet
filtering that can handle a throughput of over 148 million packets per second (Mpps). On
a general-purpose computer with a processor speed of 4 GHz, this would mean that each
packet should be processed in less than 27 clock cycles.

Depending on the type of device, the classification of packets is based on certain cri-
teria, such as searching by destination MAC address or the VLAN tag in switches, or the
source/destination IP address in routers and firewalls. Performing such checks within the
required 27 clock cycles is a major challenge, as multiple operations or memory fetches

Citation: Salopek, D.; Mikuc, M.

Enhancing Mitigation of Volumetric

DDoS Attacks: A Hybrid FPGA/

Software Filtering Datapath. Sensors

2023, 23, 7636. https://doi.org/

10.3390/s23177636

Academic Editor: Xiaojie Wang

Received: 29 July 2023

Revised: 25 August 2023

Accepted: 1 September 2023

Published: 3 September 2023

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Sensors 2023, 23, 7636 2 of 19

must be completed within this time frame. The 27 clock cycle example applies to the small-
est frame size traffic, when the device is at its busiest due to the shortest packet arrival
times. Regardless of this, devices in the network infrastructure must be able to handle
packets of all sizes at all speeds. Otherwise, if one device fails, its availability can no longer
be guaranteed.

Malicious users on the Internet exploit this fact and attempt to disable access to cer-
tain services through Denial of Service (DoS) attacks and Distributed Denial of Service
(DDoS) attacks. According to various sources [1–3], DDoS attacks are becoming increas-
ingly common. In these attacks, infected computers under the control of attackers (called
bots, often insecure computers or IoT devices) send traffic to the victim, consuming re-
sources and disrupting normal users. Defending against such attacks is very difficult, as
there may be millions of these infected devices. Distinguishing the ‘good’ traffic from the
‘bad’ and at the same time filtering it out is particularly problematic when dealing with
very high network speeds.

Despite current efforts to replace IPv4 with IPv6 in response to IPv4 address exhaus-
tion, there is no clear indication that this transition will occur in the near future. Since the
percentage of total IPv6 traffic remains lower [4], the occurrence of IPv6 DDoS attacks is
also relatively limited. Therefore, this paper focuses exclusively on IPv4 traffic and the
mitigation of IPv4 DDoS attacks, as it is expected that IPv4 will still be in use for an ex-
tended period of time.

It is important to differentiate between DDoS protection (mitigation) and DDoS de-
tection (recognition). DDoS mitigation systems may include DDoS detection, but this is
not universally the case. This paper focuses primarily on packet filtering and the mitiga-
tion of detected DDoS attacks, assuming that other systems are responsible for the auto-
matic or non-automatic task of DDoS detection.

The work is organized as follows. Section 2 gives an overview of related work in the
protection against DDoS attacks. Section 3 describes a model of a hybrid hardware/soft-
ware datapath used for high-speed packet filtering. Section 4 explains the benchmark
methodology and showcases the results of the hybrid filter compared to the software-only
filter. Finally, Section 5 provides the conclusion.

2. Related Work
The current state of protection against DDoS attacks relies on using one of three types

of protection approaches: third-party delegation, on-site infrastructure protection, or a
combination of both. Third-party delegation routes all traffic to a DDoS protection service,
which then “scrubs” the dangerous and suspicious traffic as needed and redirects legiti-
mate traffic to its destination. However, this redirection of traffic raises potential issues if
the traffic is sensitive to even minor delays or contains sensitive and private information
that third parties should not have access to (e.g., in the financial sector).

On-site protection is achieved by devices capable of filtering traffic using specialized
hardware, software, or a hybrid of both. Hardware-based filtering is performed by devices
designed specifically for this purpose. These devices offer high throughput, but come with
high annual licensing costs for the associated software. Apart from the cost, negative as-
pects of such devices include inflexibility and complexity when it comes to modifications
or updates [5]; so, after a few years, they no longer meet the requirements of current net-
work speeds. In addition, the use of primarily TCAM (ternary content-addressable
memory) technology in these devices contributes to their high power consumption [5,6],
which exacerbates their disadvantages. Other technologies used for this type of filtering
include ASIC (application-specific integrated circuit) and FPGAs (field-programmable
gate arrays), with ASIC having similar disadvantages to TCAM, including the high price
of its development, but FPGAs standing out from both of them by being reprogrammable.

Software frameworks for fast packet processing on general-purpose computers have
emerged in recent years. These frameworks, such as Netmap [7], DPDK [8], and XDP/eBPF
[9], when combined with sufficiently adequate hardware, can achieve packet processing

Sensors 2023, 23, 7636 3 of 19

results comparable to hardware filters. They provide flexibility and control over the filters
created with them because they are simpler and programmable compared to most hard-
ware-based systems. Software-defined networking (SDN) using OpenFlow [10] and con-
tent delivery networks (CDNs) [11] have also been explored, but encounter architectural
limitations [12] for the mitigation of large volumetric DDoS attacks [13,14].

Hybrid protection combines hardware- and software-based protection, often utiliz-
ing some form of hardware to partially (or fully) handle the filtering process and “offload”
software-based filtering, which is expected to have lower performance. This is why hybrid
hardware/software solutions combining software with non-expensive, off-the-shelf hard-
ware (e.g., FPGAs [15–20], GPUs [21–24], or smart NICs [25–27]) offer a flexible and cost-
effective approach.

In [15], packet processing is performed using eBPF, with its implementation running
entirely on FPGAs, while [16] describes a framework for offloading click router function-
ality that also runs entirely on FPGAs. In these systems, the CPU is primarily used for
system preparation and transport to the hardware component, and so there is no “hybrid-
ity” in the packet processing itself. However, in [17,20], offloading is achieved by moving
a limited number of filtering rules to the FPGA, while the remaining rules are executed
on the host machine using the Linux firewall. This reduces the load on the CPU due to the
smaller number of rules on the host. The work of [18] and its improved version [19]
achieve offloading in a similar manner, but for higher traffic throughput, along with im-
provements related to storing rules on the FPGA. The filtering method in all of these men-
tioned systems has limitations on the number of rules that can be offloaded, depending
on the implementation and the resources available on the FPGA. This makes them incon-
venient for defending against large volumetric DDoS attacks. In addition, modifying rules
on the FPGA requires re-synthesizing the bitfile in the worst case, which is time-consum-
ing and does not provide a fast defense in case of a DDoS attack.

In [21], the authors present ways to improve CPU packet processing using some prin-
ciples of GPU processing (e.g., latency hiding). This work’s actual contribution is that the
CPU is capable of processing packets faster than the GPU in certain cases, without the
negative consequences associated with GPUs. The systems in [22–24] perform packet op-
erations entirely on the GPU, i.e., they utilize the parallelism of the GPU in different ways
to process a large number of packets simultaneously. In this way, the GPU effectively acts
as a large number of CPUs. A similar mode of operation is found in [25], where all “heavy”
packet processing is conducted on the GPU, while simpler tasks are left for processing on
the CPU. All GPU-assisted hybrid solutions face latency issues due to the batch processing
of packets and may introduce packet re-ordering. They are also not compatible with all
GPUs and are less energy-efficient than FPGAs.

The system in [26], like some of those previously mentioned, involves transferring a
certain number of rules to the (memory-limited) SmartNIC, while leaving the rest on the
host computer. An approach to packet processing similar to our paper can be found in
[27,28]. They also utilize some method of preprocessing of packets (generating metadata)
that takes place before the actual packet processing on the CPU. However, these papers
do not address cases involving defense against large volumetric DDoS attacks and the
challenges associated with them. Instead, they use SmartNICs for packet preprocessing in
conjunction with other applications (e.g., key–value stores or GRE termination).

Protection against DDoS attacks is approached in a similar way to a standard firewall,
where rulelists are created with various fields to be checked (e.g., source or destination IP
address, transport layer protocol, or ports) and each packet traverses these lists, compar-
ing its header against the specified fields. In some cases, attempts are made to minimize
these rulelists, or Packet Classification Engines (PCEs) are used to achieve a filtering
method that requires minimal memory fetches. However, these tools work under the
premise that protection against DDoS attacks is only possible with a large number of sep-
arate rules, requiring tens of thousands or even millions of such records.

Sensors 2023, 23, 7636 4 of 19

To assess the effectiveness of DDoS filtering solutions, it is important to consider the
type and volume of traffic used in testing. Any solution should be exposed to traffic that
mirrors real DDoS attacks. A simulation of the attack can be achieved by flooding the filter
with synthetic traffic containing randomly generated IP addresses or using existing traces
of actual DDoS attacks. Some vendors [29,30] utilize genuine DDoS traffic, as they have
access to extensive real-world data and traffic with various DDoS attack scenarios. How-
ever, since most researchers do not have access to such data, they resort to synthetic traffic
to simulate DDoS attacks in their tests [18,19,26,31,32]. Synthetic traffic with a large pool
of randomly generated IP addresses can approximate DDoS attacks, but in previously
mentioned works, this is limited to tens of thousands of IP addresses and is therefore not
capable of replicating the scale of today’s volumetric DDoS attacks. For example, the at-
tack on Dyn in 2016 involved tens of millions of different IP addresses, as shown through
various analyses [33–35]. Therefore, any effective DDoS filtering system must be able to
withstand such large-scale attacks.

In addition to the “active” defenses against DDoS attacks mentioned above, it is
worth mentioning so-called blackhole routing. In this method, the victim’s IP address is
reported to the network service provider, which then redirects all traffic destined for that
IP address to a “black hole”, effectively discarding it. This protects the rest of the network
by saving bandwidth by eliminating a significant portion of malicious traffic, while effec-
tively fulfilling the attackers’ goal by rendering the victim inaccessible to other users.

3. Hybrid System Model
This paper, based on the research from one of the author’s previous work [36], builds

upon our previous studies [37] which aimed to enhance existing software-based filtering
to protect against volumetric DDoS attacks by replacing large rulelists with more compact
ones. At the same time, additional tables are used to store IP addresses or subnets (e.g.,
whitelists or blacklists), and so these can be retrieved much faster using Longest Prefix
Matching (LPM). In this paper, we propose a hybrid filtering system using a combination
of FPGA hardware and software support based on the aforementioned LPM filtering. This
moves away from the paradigm that defense against DDoS attacks requires the mainte-
nance of monolithic lists with complex rules.

The packets to be filtered first pass through the hardware, which parses them and, if
necessary, generates metadata that are passed to the software filter. The software filter
receives the packets that are then metadata-enriched and, depending on its programming,
parses them and performs the required actions which are determined from the ruleset
given to the system, explained later in this chapter.

When using allowlists/blocklists for filtering, the LPM algorithm plays a crucial role
in extracting data from each list to determine whether the IP address being checked be-
longs to a specific list. Various LPM algorithms can be used for this task, but the current
implementation of the filter uses the DXR algorithm from [38,39], specifically the D16X4R
version.

The DXR algorithm compresses and stores a list in compact structures with a small
memory footprint. The algorithm consists of three stages (D16, X4, and R), all originally
executed in software. However, in the hybrid implementation, a modified version of the
algorithm is used. The first two stages (D16 and X4—indexing and memory retrieval using
a total of 20 bits) are separated from the last one and executed in hardware. Then, the
hardware passes the result of these two stages (the 32-bit index and a range included in
the metadata of the packet) to the software. In the last stage of the algorithm, a binary
search is performed over the received range (R—range lookup) until it reaches its end and
returns the final result representing the “next-hop” for a given LPM table or a null value,
indicating no match.

To select the best ruleset/metadata combination depending on pre-specified assump-
tions, parameters, and factors, we heuristically modeled a distributor part of the hybrid
system. It acts as an intermediary and determines how packets are parsed in hardware,

Sensors 2023, 23, 7636 5 of 19

what metadata are created, and which filter rules are appropriate for hardware offloading.
It takes into account various parameters such as the ruleset, hardware, and software ca-
pabilities, network status, and traffic volume.

3.1. Hardware
FPGA technology was chosen for the hardware component due to its flexibility in

terms of reconfiguration and the utilization of parallelism. This also made the FPGA a
promising technology to improve the efficiency of packet processing in IoT environments
[40]. NetFPGA SUME [41] is a development board for prototyping network functions for
high-speed networks that has been used extensively in various research projects since 2015
[42–47]. It provides prototyping capabilities for such a filter at 10 G network speeds and
features a Xilinx Virtex-7 690T FPGA, four 10 GbE SFP+ interfaces, QDR II SRAM memory
modules, DDR3 SODIMM memory modules, and other peripherals.

The primary idea for our model was to configure NetFPGA SUME as an NIC on top
of which the software filter would be deployed, and so it would serve as a standalone
network middleware element installed at the edge of the network, as shown in Figure 1.
The DMA engine used in the existing NetFPGA SUME Reference NIC project [48] was not
designed to fully utilize the PCIe bus, and so the bandwidth between the NetFPGA SUME
card and the operating system was poor. Attempting to create and implement an im-
proved version which would work in a high-speed environment on the existing hardware
proved impossible without significant and complex modifications.

Figure 1. Architecture of the proposed DDoS filtering system using NetFPGA SUME NIC. Regular
arrows represent “real” packet datapaths, dashed arrows represent combined “real” packet and
metadata datapaths, and dotted arrows represent internal communication between different mod-
ules of the system.

Therefore, the model was modified to no longer use the PCIe bus for packet trans-
mission and to exclusively use Ethernet communication between the FPGA and the soft-
ware filter. Packets and metadata are passed from the FPGA to the software filter via
Ethernet, achieving sufficiently high speeds for use in 10 G networks. The model, as
shown in Figure 2, uses an additional NIC to receive packets with metadata and forwards
them to the software filter. The NetFPGA SUME performs the necessary offload and pre-
filtering tasks, but the automatic forwarding of packets to the egress interface from hard-
ware is disabled. The model can be extended by enabling additional interface pairs to in-
crease the overall throughput.

Sensors 2023, 23, 7636 6 of 19

Figure 2. Architecture of the implemented DDoS filtering system without using NetFPGA SUME
NIC. Regular arrows represent “real” packet datapaths, dashed arrows represent combined “real”
packet and metadata datapaths, and dotted arrows represent internal communication between dif-
ferent modules of the system.

The hardware implementation demonstrates the hybrid filter prototype datapath on
the NetFPGA SUME development board, using the AXI4-Stream protocol for inter-mod-
ule communication in the system pipeline. The pipeline is composed of modules con-
nected in series or parallel and consists of two parts: one part carries packets arriving from
the incoming network interface, i.e., packets that are checked (filtered) and forwarded to
the output interface if necessary, and control packets from the “Distributor” that regulate
the internal logic within the hardware (e.g., setting memory values or enabling and disa-
bling certain parsers). All data required for filtering (e.g., source and destination IP ad-
dresses) are extracted from the “real” packets, and metadata are created based on this
information. The metadata are appended to the end of the packets and forwarded to the
software filter.

Two types of memory modules are used in the implementation: Block Random Ac-
cess Memory (BRAM) and Quad Data Rate Static Random Access Memory (QDR SRAM).
BRAM is a memory integrated on the FPGA board with limited capacity and very low
latency (readout requires up to two clock cycles), while QDR is an external memory mod-
ule with a larger capacity but slightly higher latency (about 20 clock cycles to readout).
Both types of memory are suitable for high-speed operation, which is why they are used
for packet filtering. In particular, they store the data required for the partial execution of
the LPM algorithm, or other partially offloadable rule patterns which the hardware sends
to the software filter in the metadata.

3.2. Software
The proposed system utilizes the Restricted Feature-set Packet Filter (RFPF)—a soft-

ware filter developed in our previous research [36]. RFPF is a high-performance IPv4 traf-
fic filter proven to be capable of filtering DDoS traffic at 10 G speeds using only one CPU
core. It works by binding to two network interfaces using the Netmap software framework
and generates C code from a predefined rulelist. The generated code is converted into a
dynamically executable program that is inserted between the network interfaces to filter
traffic in both directions. In this work, it is adapted to the hybrid mode of operation, con-
sidering how the filtering is performed in hardware and how the information from the

Sensors 2023, 23, 7636 7 of 19

metadata are used in the software filtering. The software filter separates the metadata ar-
riving from the hardware from the packets themselves and uses them for further pro-
cessing.

3.3. Rule Categorization
The rulesets used in the model consist of rules which are grouped and categorized

by whether they are filtered in hardware, software, or both components. The rules consist
of one action and one or more patterns, in the following format:

action pattern {pattern...}

The action can be terminating (if further packet inspection is halted after the rule is
matched, e.g., A—Accept or D—Deny) or non-terminating (N—if the rule matching is con-
tinued even though the rule is matched). Additionally, the action may have a counting (c—
when the software component must be notified that the rule was matched) or non-counting
(n—if the rule does not require incrementing a counter) attribute. Patterns are divided into
three types: those that can be fully or partially processed in hardware (pO—fully of-
floadable and pP—partially offloadable) and those that cannot be processed in hardware
(pN—non-offloadable). The combination of patterns in a rule determines the overall rule
offloadability attribute: fully offloadable (O), partially offloadable type 0 (P0), partially of-
floadable type 1 (P1), partially offloadable type 2 (P2), and non-offloadable (N), as shown
in Table 1.

Table 1. Rule offloadability matched with pattern combination types. Multiple repetitions (once or
more) of types of patterns combination are marked with ()+. Multiple repetitions (zero times or more)
of types of patterns are marked with ()*.

Rule Offloadability Combination of Patterns
O (pO)+
P0 (pN)+(pO)+
P1 (pP)+(pN)*
P2 (pP)+(pN)*(pO)+
N (pN)+

Combining the pattern offloadability attributes (five options), terminating attributes
(three options), and counting attributes (two options), there are a total of 30 possible com-
binations of rule types that can be categorized by how they can be processed in hardware:
fully, partially, or not at all. In the context of DDoS protection used in this research, non-
terminating actions with the non-counting attribute make no sense, regardless of the pattern
offloadability (*Nn); therefore, they are not considered. Table 2 presents the remaining 25
combinations, categorized based on the offload type that they belong to.

Table 2. Offload types for rule categories.

Offload Type Rule Categories
Hardware ODn

Hybrid

OAc, OAn, ODc, ONc
P0Ac, P0An, P0Dc, P0Dn, P0Nc
P1Ac, P1An, P1Dc, P1Dn, P1Nc
P2Ac, P2An, P2Dc, P2Dn, P2Nc

Software NAc, NAn, NDc, NDn, NNc

An example of a pseudo ruleset with several different rule types categorized accord-
ingly is shown and explained in Figure 3.

Sensors 2023, 23, 7636 8 of 19

Figure 3. Three types of rules, annotated with their categories. The first rule specifies that every TCP
packet with destination port 22 should be dropped and not counted (Deny with non-counting attrib-
ute). The second specifies that every packet with destination port 80 or 443 should be forwarded
and counted (Accept with counting attribute). The first two rules are terminating—the filter stops
parsing any subsequent rules if this rule is matched. The third rule is non-terminating. It specifies
that packets with the source IP address from the GOOD table and with destination port 80 should
be counted without any action—if there are rules after this one, they are checked.

When taking into consideration the information to be exchanged between the hard-
ware and the software during the filtering process, the categories can be classified into
eight groups, with each group utilizing one of the four different metadata types, as
demonstrated in Table 3:
• metadata1—data used in partially offloaded processing (e.g., protocol type, IP address

source/destination, port number, or partial data used for an LPM algorithm).
• metadata2—data used in fully offloaded processing (a binary value for every p0 pat-

tern from partially offloaded rules, whether the hardware processing matched the
rule or it did not).

• metadata3—data used for all counting rules (a binary value for every counting rule,
whether the hardware processing matched the rule or it did not).

• metadata4—data used when a terminating rule is matched (8-bit data noting the rule
number that first matched).

Table 3. Metadata fields for different rule categories. The ‘*’ character replaces any other attribute.

Rules
Metadata Type

metadata1 metadata2 metadata3 metadata4
ODn - - - -/x
OAn - - - x
ONc - - x -

O[A|D]c - - - x
P0** - x - -
P1** x - - -
P2** x x - -
N** - - - -

As shown in Table 3, fully offloadable rules with the “Deny” terminating attribute and
no counting attribute (ODn) can be offloaded to hardware without sending metadata to
software exclusively if they appear at the beginning of the ruleset. Otherwise, the result
of their check must be sent to the software using the same metadata as the fully offloadable

Sensors 2023, 23, 7636 9 of 19

rules with the “Accept” terminating attribute and no counting attribute (OAn). However,
the implementation architecture used for this filter limits the inclusion of these two cate-
gories (ODn and OAn) in the performance evaluation presented in this paper.

The evaluation is solely conducted for all of the other groups of rules (except for N**
group rules, which are non-offloadable by default). The matching of the fully offloadable
non-terminating rules with the counting attribute (ONc) should only increment the counter
in the software, and so they require one bit for each rule that can be counted. Fully of-
floadable rules with both terminating and counting attributes (O[A|D]c) need to send only
the ordinal number of the first terminating rule that matches in hardware. For each combi-
nation of partially offloadable P0 rules, only the results of each fully offloadable pattern
(pO) need to be sent to software as a true/false bitmap. For every combination of partially
offloadable P1 rules, the hardware computes the data for partially offloadable patterns (pP)
and sends it in full to the software. P2 rules have the same metadata requirements as P0
and P1 rules combined.

3.4. Use Case
Combined with an external DDoS detection system, the filtering system described in

this paper would effectively utilize the LPM search for IP addresses and subnets against
DDoS attacks even with millions of different attackers in a high-speed networking envi-
ronment. As an example, this kind of mitigation could be achieved using only seven rules
with six different tables (lists of IP addresses and subnets), as shown in Figure 4. As the
system is reconfigurable, various versions of rulesets could be made ready to be deployed
depending on the security status of the network.

Figure 4. Pseudo ruleset example for default security status. The ‘#’ characters denote comments.

All such rulesets include constant rules that always perform the same tasks, regard-
less of the security level of alert, as well as variable ones that change depending on the
security status. The rules from Figure 4 allow certain safe source hosts/networks to all
necessary parts of the internal network, possibly further specified by destination ports
(ADMIN table—e.g., third-party administrators that should always have access to the de-
vices in the network). Access is blocked to all other parts of the network that are not pub-
licly accessible (PUBLIC table—e.g., IP addresses of private email servers or IoT sensors)
and to known malicious IP addresses (BAD table—e.g., from publicly available collectors).
Additionally, traffic considered to be suspicious is exclusively monitored (SUSP table—
e.g., subnet ranges from regions known for espionage or DDoS attacks).

The rest of the ruleset depends on the situation and may change depending on
whether the network is under a DDoS attack and how severe it is. In the state of normal
network activity (i.e., without DDoS attacks), an external tool that monitors regular traffic
accumulates secure hosts/networks in a secure table that is always forwarded (GOOD ta-
ble—e.g., regular or unsuspicious users). Using LPM also allows for the fast classification

Sensors 2023, 23, 7636 10 of 19

of source addresses according to their geo-location, and so it always forwards specific
countries (GEOIP table—country for which the service is intended, neighboring countries,
or “friendly” countries). All other traffic is forwarded, but also monitored by an external
automatic DDoS attack detection system.

During the DDoS attack, instead of allowing all unknown traffic from the variable
part of the ruleset, the filter blocks everything except potentially secure tables (GOOD and
GEOIP). Since all other traffic is monitored, this helps to isolate the bad IP addresses and
adds them to the BAD table, which is updated accordingly. If necessary, the filter would
additionally reject the GEOIP table, as shown in Figure 5, if it is proven to be unsafe, until
the attack subsides or all the attackers are blocked.

Figure 5. Pseudo ruleset example for high-alert security status. The ‘#’ characters denote comments.

4. Benchmarks
Since the packets in the implementation of this filter are prepared independently by

hardware, with their metadata created before reaching the input interface of the software
component, the software is unaffected by how they were created.

To test and validate the system without the need for multiple hardware implementa-
tions, the measurements were designed to ensure the independence of packet preparation
and metadata creation. This was achieved by simulating the hardware part of the system
by creating the metadata programmatically. The pkt-gen tool (included in the Netmap
framework) was used on a separate computer to generate packets, create the necessary
metadata, attach it to the packets, and send them to the software filter, as shown in Figure
6. The filtered traffic is verified in the traffic sink, which also calculates the throughput of
incoming packets.

Sensors 2023, 23, 7636 11 of 19

Figure 6. Simulated hardware testbed (bypassing the NetFPGA SUME).

The test results are based on the 60 s average, and the CPU cycle counter in the soft-
ware filter is implemented using the assembler instruction rdtsc [49], which acquires the
processor’s timestamp counter before and after processing each batch of packets.

To validate and verify the results of the simulated measurements, some of the meas-
urements were performed on a real hybrid system that used FPGA hardware to generate
metadata.

4.1. Results
We present a comparison of filtering results with and without offloading on hard-

ware, using different hardware offloading configurations. The average total throughput
and the average number of CPU cycles per packet were measured, and two types of meas-
urements were performed: using random and specific traffic. Both types used randomly
generated traffic with either completely random source IP addresses or specifically
shaped traffic to seem like a DDoS attack. The specific traffic consisted of a combination of
“normal” random traffic and randomly selected IP addresses from a large pool of mali-
cious IP addresses. In this way, we could demonstrate how the filter performed under
pressure, when the filtering load was high. All of the tests were set so that the bandwidth
never reached the maximum possible value for the system. Additionally, to allow for bet-
ter control and consistency of tests, all of the tests were performed on a system with a
single CPU core at reduced frequency. For this reason, the efficiency of the two filtering
methods could be compared based on the number of packets processed per second and
the number of CPU cycles required to process one packet.

The measurements were categorized by rulelists, which were tested with associated
metadata specific to the rules within them. Multiple measurements were conducted for
each rulelist to obtain average results for all of the hardware offloading configurations:
without any hardware offloading (only the software filter without metadata) as a point of
reference, and then with modified parameters for hardware offloading. Each individual
rulelist consisted of multiple rules, created in such a way to test the offloading of a single
metadata type and, in some cases, combinations of multiple types of metadata. The de-
tailed explanations and extended results of these experiments can be found in [36].

Sensors 2023, 23, 7636 12 of 19

The rulesets used in tests were divided into two groups, depending on the type of
rules used in them. One group used only non-terminating rules, forcing the software filter
to process each of them before forwarding the packet to the egress interface. This ensured
that the same number of processing operations were performed for each packet, making
the filtering comparable for all of the tests for the same group. The average software-only
filtering throughput and cycle count for each type of ruleset in this group are shown in
Figure 7.

(a)

(b)

Sensors 2023, 23, 7636 13 of 19

Figure 7. Software-only average filtering throughput and average cycle count of rulesets without
terminating rules for (a) random traffic and (b) specific traffic.

The second group used both non-terminating and terminating (Accept) rules. If the
packet matched the terminating rule, it no longer needed to be processed, and so the sub-
sequent rules were not checked. For this reason, the maximum throughput for these tests
was slightly higher than the throughput for the tests from the first group of rulesets. The
average software-only filtering throughput and cycle count for each type of ruleset in this
group are shown in Figure 8.

(a)

(b)

Sensors 2023, 23, 7636 14 of 19

Figure 8. Software-only average filtering throughput and average cycle count of rulesets with termi-
nating rules for (a) random traffic and (b) specific traffic.

Figure 9 illustrates the average CPU cycle count reduction achieved when using
metadata for filter offloading, considering both random and specific traffic. The total
throughput increase closely correlates with the CPU cycle decrease, and so it is not shown.

(a)

(b)

Figure 9. Improvements in average CPU cycle count for (a) random traffic and (b) specific traffic. Both
types of ruleset are combined in this figure: with terminating rules (dark) and without terminating
rules (light).

The results in Figure 9 use the metadata notation from Table 3 and show that tests
using rulesets with terminating rules (OAc) show the greatest improvements for both types
of traffic. For random traffic, the greatest improvement is seen using the ruleset with rules
that partially offload the LPM algorithm, combined with rules that fully offload simple
port checks to hardware with 20.2% fewer CPU cycles. For specific traffic, it is the variation
in a ruleset that fully offloads simple port checks to hardware with 28.9% fewer cycles.

The second highest test in both random and specific traffic cases uses the “realistic”
version of the LPM ruleset with rules that can be assumed to be used in a realistic scenario,

Sensors 2023, 23, 7636 15 of 19

similar to the rules shown in Figure 4. Using the P1** partial LPM offloading, it achieved
a 17.8% reduction in CPU cycles for random and 23.6% for specific traffic. Other cases with
the highest improvements for both types of traffic are those combining P1** or P2** partial
LPM offloading with other metadata for an around 10% reduction in CPU cycles.

As previously mentioned, the results shown are all based on tests using metadata
pre-generated by the packet generator. To test the hardware part of the hybrid system,
i.e., how the system works when the NetFPGA generates the metadata and attaches it to
the packets, another set of tests was performed.

The test environment (testbed) for the hybrid tests, as shown in Figure 10, was similar
to the one used when the hardware part was simulated by the software metadata genera-
tor. The traffic generator is connected to the NetFPGA SUME ingress interface, and the
SUME egress interface is connected to the software filter ingress interface.

Figure 10. Hybrid hardware/software system testbed.

The tests for this hybrid system were performed in the same manner as the simulated
tests, except that the packet generator did not have to create metadata and attach it to the
packets. For this reason, it was expected that the results of all of the tests performed on
the hybrid system would match the results of the simulated hardware. In all of the tests
that were performed with the hybrid system, the average results of the hybrid system
matched the average results of the simulation almost perfectly. From these results, it can
be inferred that it is possible to achieve the same level of improvement over non-offloaded
filtering with other types of metadata if specific offload capabilities are implemented in
the hardware.

4.2. Improving Hybrid Filtering
The extent of improvement in each test may vary depending on the capabilities of the

hardware, with performance being further enhanced as more metadata are offloaded to
the hardware. Among the different metadata types, metadata1 requires the fewest and least
complex hardware updates to achieve a significant increase in DDoS protection. For ex-

Sensors 2023, 23, 7636 16 of 19

ample, to increase the total number of available LPM tables for hardware offloading, ad-
ditional memory needs to be installed in the hardware. The use of this additional memory
would not significantly impact the internal FPGA logic and overall system performance.
On the other hand, other metadata types require more complicated changes, as parallel-
ism cannot be leveraged as efficiently as in the case of metadata1. This could lead to delays
and performance degradation, especially when offloading a large number of rules to hard-
ware.

Improving the performance of the filter that uses hardware offloading means finding
a balance between the size of the metadata and their usefulness. Responding to changes
in the type and volume of traffic is also one of the most important matters to consider
when offloading and even beforehand when creating the ruleset. Therefore, in cases where
offloading has a negative impact on throughput, it can be bypassed and replaced with a
better configuration.

It is worth repeating that all of the tests (including those performed with real hard-
ware offloading) were performed on a system with a single CPU core at a reduced fre-
quency. Moreover, they were performed on a system corresponding to the model shown
in Figure 2. The results of a hybrid system without the limitations of this model would
certainly be even better.

5. Conclusions
In this paper, we presented a datapath model of a high-speed network traffic classi-

fier/filter based on a hybrid hardware/software combination of FPGA and off-the-shelf
computer software. The hardware component model comprises a reconfigurable FPGA
datapath capable of adapting to runtime packet classification changes in near real-time.
On the other hand, the software component is a modified version of the filter used in our
previous research, now equipped with additional functionality to receive metadata from
the hardware. This integration allows for more efficient packet filtering, leading to im-
proved performance over software-only packet filtering.

We have shown that the hybrid system can achieve filtering in networks with speeds
of 10 Gbps by heuristically distributing the workload between the hardware and software
components. This is achieved by carefully selecting packet filtering methods and metadata
that can be offloaded to the hardware, which optimizes the throughput of the system. To
test the system, we developed a method to empirically evaluate the distribution of the
workload between the hardware and software components. It bypasses the development
of complex hardware implementations by simulating the necessary offloading of hard-
ware to software.

The implemented model shows performance improvements in tests that include both
random traffic and traffic specifically designed to simulate DDoS attacks. It is shown that
offloading different types of rules to hardware, fully or partially, results in varying per-
formance improvements, with reductions of up to 30% in CPU cycles for certain offloads
and rule types. In packet filtering, the use of rules based on LPM offers the advantages of
higher throughput and simpler, more manageable rulesets. Therefore, these rulesets are
well suited for DDoS protection, and their effectiveness can be further enhanced by hard-
ware offloading.

In addition, the scalability of such a system should be emphasized, because efficient
use of the LPM algorithm for IP address lookup means that filtering does not depend on
the number of rules, but on the method of offloading parts of the filtering to the hardware.
With suitable hardware, it is expected that the improvement in such a system can be main-
tained at higher speeds.

Author Contributions: Conceptualization, D.S. and M.M.; methodology, D.S. and M.M.; software,
D.S.; validation, D.S.; investigation, D.S.; resources, M.M.; data curation, D.S.; writing—original
draft preparation, D.S.; writing—review and editing, D.S. and M.M.; visualization, D.S. and M.M.;
supervision, M.M. All authors have read and agreed to the published version of the manuscript.

Sensors 2023, 23, 7636 17 of 19

Funding: This work has been supported by the Croatian Science Foundation under the project IP-
2019-04-1986.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data analyzed during this study are included in this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Google. Exponential Growth in DDoS Attack Volumes. Available online: https://cloud.google.com/blog/products/identity-secu-

rity/identifying-and-protecting-against-the-largest-ddos-attacks (accessed on 24 July 2023).
2. Microsoft. 2022 in Review: DDoS Attack Trends and Insights. Available online: https://www.microsoft.com/en-us/secu-

rity/blog/2023/02/21/2022-in-review-ddos-attack-trends-and-insights/ (accessed on 24 July 2023).
3. Cloudflare. DDoS Threat Report for 2023 Q1. Available online: https://blog.cloudflare.com/ddos-threat-report-2023-q1/ (ac-

cessed on 24 July 2023).
4. RIPE Labs. IPv6 10 Years Out: An Analysis in Users, Tables, and Traffic. Available online: https://labs.ripe.net/author/wil-

helm/ipv6-10-years-out-an-analysis-in-users-tables-and-traffic/ (accessed on 24 July 2023).
5. Lakshminarayanan, K.; Rangarajan, A.; Venkatachary, S. Algorithms for advanced packet classification with ternary CAMs.

ACM SIGCOMM Comput. Commun. Rev. 2005, 35, 193–204. https://doi.org/10.1145/1090191.1080115.
6. Kannan, K.; Banerjee, S. Compact TCAM: Flow Entry Compaction in TCAM for Power Aware SDN. In Distributed Computing

and Networking. ICDCN 2013; Lecture Notes in Computer Science; Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha,
P., Eds., Springer: Berlin/Heidelberg, Germany, 2013, Volume 7730. https://doi.org/10.1007/978-3-642-35668-1_32.

7. Rizzo, L. Netmap: A novel framework for fast packet I/O. In Proceedings of the 21st USENIX Security Symposium (USENIX
Security 12), Bellevue, WA, USA, 8–10 August 2012; pp. 101–112.

8. Intel. Data Plane Development Kit (DPDK*). Available online: https://www.intel.com/content/www/us/en/developer/topic-
technology/networking/dpdk.html (accessed on 24 July 2023).

9. Miano, S.; Bertrone, M.; Risso, F.; Tumolo, M.; Bernal, M.V. Creating complex network services with EBPF: Experience and
lessons learned. In Proceedings of the 2018 IEEE 19th International Conference on High Performance Switching and Routing
(HPSR), Bucharest, Romania, 18–20 June 2018; pp. 1–8. https://doi.org/10.1109/HPSR.2018.8850758.

10. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74.
https://doi.org/10.1145/1355734.1355746.

11. Krishnamurthy, B.; Wills, C.; Zhang, Y. November. On the use and performance of content distribution networks. In Proceed-
ings of the 1st ACM SIGCOMM Workshop on Internet Measurement, San Francisco, CA, USA, 1–2 November 2001; pp. 169–
182. https://doi.org/10.1145/505202.505224.

12. Molnár, L.; Pongrácz, G.; Enyedi, G.; Kis, Z.L.; Csikor, L.; Juhász, F.; Kőrösi, A.; Rétvári, G. Dataplane specialization for high-
performance OpenFlow software switching. In Proceedings of the 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 22–
26 August 2016; pp. 539–552. https://doi.org/10.1145/2934872.2934887.

13. Mauricio, L.A.; Rubinstein, M.G.; Duarte, O.C. Proposing and evaluating the performance of a firewall implemented as a virtu-
alized network function. In Proceedings of the 2016 7th International Conference on the Network of the Future (NOF), Búzios,
Brazil, 16–18 November 2016; pp. 1–3. https://doi.org/10.1109/NOF.2016.7810127.

14. Imthiyas, M.; Wani, S.; Abdulghafor, R.A.A.; Ibrahim, A.A.; Mohammad, A.H. Ddos mitigation: A review of content delivery
network and its ddos defence techniques. Int. J. Perceptive Cogn. Comput. 2020, 6, 67–76.

15. Pacífico, R.D.; Castanho, M.S.; Vieira, L.F.; Vieira, M.A.; Duarte, L.F.; Nacif, J.A. Application layer packet classifier in hardware.
In Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France,
18–20 May 2021; pp. 515–522.

16. Li, B.; Tan, K.; Luo, L.; Peng, Y.; Luo, R.; Xu, N.; Xiong, Y.; Cheng, P.; Chen, E. Clicknp: Highly flexible and high performance
network processing with reconfigurable hardware. In Proceedings of the 2016 ACM SIGCOMM Conference, Florianopolis, Bra-
zil, 22–26 August 2016; pp. 1–14. https://doi.org/10.1145/2934872.2934897.

17. Chen, M.S.; Liao, M.Y.; Tsai, P.W.; Luo, M.Y.; Yang, C.S.; Yeh, C.E. Using netfpga to offload linux netfilter firewall. In Proceedings
of the 2nd North American NetFPGA Developers Workshop, Stanford, CA, USA, 12–13 August 2010.

18. Fiessler, A.; Hager, S.; Scheuermann, B.; Moore, A.W. HyPaFilter: A versatile hybrid FPGA packet filter. In Proceedings of the
2016 Symposium on Architectures for Networking and Communications Systems, Santa Clara, CA, USA, 17–18 March 2016;
pp. 25–36. https://doi.org/10.1145/2881025.2881033.

19. Fiessler, A.; Lorenz, C.; Hager, S.; Scheuermann, B.; Moore, A.W. Hypafilter+: Enhanced hybrid packet filtering using hardware
assisted classification and header space analysis. IEEE/ACM Trans. Netw. 2017, 25, 3655–3669.
https://doi.org/10.1109/TNET.2017.2749699.

Sensors 2023, 23, 7636 18 of 19

20. Weaver, N.; Paxson, V.; Gonzalez, J.M. The shunt: An FPGA-based accelerator for network intrusion prevention. In Proceedings
of the 2007 ACM/SIGDA 15th international symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 18–20 Feb-
ruary 2007; pp. 199–206.

21. Kalia, A.; Zhou, D.; Kaminsky, M.; Andersen, D.G. Raising the Bar for Using GPUs in Software Packet Processing. In Proceed-
ings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), Oakland, CA, USA, 4–6
May 2015; pp. 409–423.

22. Go, Y.; Jamshed, M.A.; Moon, Y.; Hwang, C.; Park, K. APUNet: Revitalizing GPU as packet processing accelerator. In Proceed-
ings of the 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), Boston, MA, USA, 27–29
March 2017; pp. 83–96.

23. Sun, W.; Ricci, R.. Fast and flexible: Parallel packet processing with GPUs and click. In Proceedings of the IEEE Architectures
for Networking and Communications Systems, San Jose, CA, USA, 21–22 October 2013; pp. 25–35.
https://doi.org/10.1109/ANCS.2013.6665173.

24. Vasiliadis, G.; Koromilas, L.; Polychronakis, M.; Ioannidis, S. GASPP: A GPU-Accelerated stateful packet processing framework.
In Proceedings of the 2014 USENIX Annual Technical Conference (USENIX ATC 14), Philadelphia, PA, USA, 19–20 June 2014;
pp. 321–332.

25. Han, S.; Jang, K.; Park, K.; Moon, S. PacketShader: A GPU-accelerated software router. ACM SIGCOMM Comput. Commun. Rev.
2010, 40, 195–206. https://doi.org/10.1145/1851275.1851207.

26. Miano, S.; Doriguzzi-Corin, R.; Risso, F.; Siracusa, D.; Sommese, R. Introducing smartnics in server-based data plane processing:
The ddos mitigation use case. IEEE Access 2019, 7, 107161–107170. https://doi.org/10.1109/ACCESS.2019.2933491.

27. Kaufmann, A.; Peter, S.; Sharma, N.K.; Anderson, T.; Krishnamurthy, A. High performance packet processing with flexnic. In
Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating
Systems, Atlanta, GA, USA, 2–6 April 2016; pp. 67–81. https://doi.org/10.1145/2872362.2872367.

28. Li, B.; Ruan, Z.; Xiao, W.; Lu, Y.; Xiong, Y.; Putnam, A.; Chen, E.; Zhang, L. Kv-direct: High-performance in-memory key-value
store with programmable NIC. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, 28–
31 October 2017; pp. 137–152.

29. Bertin, G. XDP in practice: Integrating XDP into our DDoS mitigation pipeline. In Proceedings of the Technical Conference on
Linux Networking, NetDev, Le Westin Montréal, Canada, 6–8 April 2017; The NetDev Society: Nepean, ON, Canada, 2017;
Volume 2, pp. 1–5.

30. Deepak, A.; Huang, R.; Mehra, P. eBPF/XDP based firewall and packet filtering. In Proceedings of the Linux Plumbers Confer-
ence, Vancouver, BC, Canada, 13–15 November 2018.

31. Kirdan, E.; Raumer, D.; Emmerich, P.; Carle, G. Building a traffic policer for ddos mitigation on top of commodity hardware. In
Proceedings of the IEEE 2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy,
19–21 June 2018; pp. 1–5. https://doi.org/10.1109/ISNCC.2018.8531043.

32. AL-Musawi, B.Q.M. Mitigating DoS/DDoS attacks using iptables. Int. J. Eng. Technol. 2012, 12, 101–111.
33. Kaspersky. How to Not Break the Internet. Available online: https://www.kaspersky.com/blog/attack-on-dyn-explained/13325/

(accessed on 24 July 2023).
34. Red Button. Dyn (DynDNS) DDoS Attack Analysis. Available online: https://www.red-button.net/blog/dyn-dyndns-ddos-at-

tack/ (accessed on 24 July 2023).
35. CNBC. Massive Cyber Attack ‘Sophisticated, Highly Distributed’, Involving Millions of IP Addresses. Available online:

https://www.cnbc.com/2016/10/22/ddos-attack-sophisticated-highly-distributed-involved-millions-of-ip-addresses-dyn.html
(accessed on 24 July 2023).

36. Salopek, D. Hybrid Hardware/Software Datapath for Near Real-Time Reconfigurable High-Speed Packet Filtering. Ph.D. Thesis,
Department of Telecommunications, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia,
2022.

37. Salopek, D.; Zec, M.; Mikuc, M.; Vasić, V. Surgical DDoS Filtering With Fast LPM. IEEE Access 2022, 10, 4200–4208.
https://doi.org/10.1109/ACCESS.2022.3140522.

38. Zec, M.; Mikuc, M. Pushing the envelope: Beyond two billion IP routing lookups per second on commodity CPUs. In Proceed-
ings of the IEEE 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM),
Split, Croatia, 21–23 September 2017; pp. 1–6. https://doi.org/10.23919/SOFTCOM.2017.8115575.

39. Zec, M. Improving Performance in Software Internet Routers through Compact Lookup Structures and Efficient Datapaths.
Ph.D. Thesis, Department of Telecommunications, Faculty of Electrical Engineering and Computing, University of Zagreb, Za-
greb, Croatia, 2019.

40. Magyari, A.; Chen, Y. Review of state-of-the-art FPGA applications in IoT Networks. Sensors 2022, 22, 7496.
https://doi.org/10.3390/s22197496.

41. Zilberman, N.; Audzevich, Y.; Covington, G.A.; Moore, A.W. NetFPGA SUME: Toward 100 Gbps as research commodity. IEEE
Micro 2014, 34, 32–41. https://doi.org/10.1109/MM.2014.61.

42. Zilberman, N.; Audzevich, Y.; Kalogeridou, G.; Manihatty-Bojan, N.; Zhang, J.; Moore, A. NetFPGA: Rapid prototyping of net-
working devices in open source. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 363–364.
https://doi.org/10.1145/2829988.2790029.

Sensors 2023, 23, 7636 19 of 19

43. Zilberman, N.; Audzevich, Y.; Kalogeridou, G.; Bojan, N.M.; Zhang, J.; Moore, A.W. NetFPGA-rapid prototyping of high band-
width devices in open source. In Proceedings of the IEEE 2015 25th International Conference on Field Programmable Logic and
Applications (FPL), London, UK, 2–4 September 2015; p. 1. https://doi.org/10.1109/FPL.2015.7293966.

44. Su, T.; You, L.; Wang, Q.; Hou, C. The high speed switching experiment based on NetFPGA SUME. In Proceedings of the IEEE
2016 11th International Conference on Computer Science & Education (ICCSE), Nagoya, Japan, 23–25 August 2016; pp. 652–657.
https://doi.org/10.1109/ICCSE.2016.7581657.

45. Lai, Y.K.; Huang, P.Y.; Lee, H.P.; Tsai, C.L.; Chang, C.S.; Nguyen, M.H.; Lin, Y.J.; Liu, T.L.; Chen, J.H. Real-time ddos attack
detection using sketch-based entropy estimation on the netfpga sume platform. In Proceedings of the IEEE 2020 Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Auckland, New Zealand, 7–10
December 2020; pp. 1566–1570.

46. Gondaliya, H.; Sankaran, G.C.; Sivalingam, K.M. Comparative evaluation of IP address anti-spoofing mechanisms using a
P4/NetFPGA-based switch. In Proceedings of the 3rd P4 Workshop in Europe, Barcelona, Spain, 1 December 2020; pp. 1–6.
https://doi.org/10.1145/3426744.3431320.

47. Rodrigues, P.; Saquetti, M.; Bueno, G.; Cordeiro, W.; Azambuja, J. Virtualization of programmable forwarding planes with
p4vbox. J. Integr. Circuits Syst. 2021, 16, 1–8. https://doi.org/10.29292/jics.v16i2.329.

48. Github. NetFPGA SUME Reference NIC. Available online: https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/Net-
FPGA-SUME-Reference-NIC (accessed on 24 July 2023).

49. Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual. Available online: https://www.intel.com/con-
tent/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2b-manual.pdf (accessed on
24 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

