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Abstract: Normal-hearing people use sound as a cue to recognize various events that occur in
their surrounding environment; however, this is not possible for deaf and hearing of hard (DHH)
people, and in such a context they may not be able to freely detect their surrounding environment.
Therefore, there is an opportunity to create a convenient device that can detect sounds occurring
in daily life and present them visually instead of auditorily. Additionally, it is of great importance
to appropriately evaluate how such a supporting device would change the lives of DHH people.
The current study proposes an augmented-reality-based system for presenting household sounds to
DHH people as visual information. We examined the effect of displaying both the icons indicating
sounds classified by machine learning and a dynamic spectrogram indicating the real-time time–
frequency characteristics of the environmental sounds. First, the issues that DHH people perceive as
problems in their daily lives were investigated through a survey, suggesting that DHH people need
to visualize their surrounding sound environment. Then, after the accuracy of the machine-learning-
based classifier installed in the proposed system was validated, the subjective impression of how the
proposed system increased the comfort of daily life was obtained through a field experiment in a real
residence. The results confirmed that the comfort of daily life in household spaces can be improved
by combining not only the classification results of machine learning but also the real-time display
of spectrograms.

Keywords: deaf and hard-of-hearing (DHH) people; augmented reality; environmental sound
recognition; machine learning; dynamic spectrogram

1. Introduction
Background and Previous Research

According to the World Health Organization, there are more than 360 million deaf
and hard-of-hearing (DHH) people worldwide who are considered to have partial or
complete hearing impairment [1]. These DHH people have difficulty hearing sounds in
their surroundings. In particular, visual and auditory information is used for various
environmental perceptions, the importance of which varies from situation to situation [2].

In such cases where either visual or auditory information is missing, it may not be
possible to obtain sufficient environmental information needed for the comfort, safety, and
security of human life. In such a situation, DHH people have difficulty receiving environ-
mental sound information, which makes it difficult for them to perform environmental
sound recognition (ESR) in their everyday life and make decisions based on auditory infor-
mation, as is the case for people with normal hearing. For some cochlear implant patients,
environmental rehabilitation may be beneficial [3], with the potential for low-cost and
effective rehabilitation using ESR [4], and the application of sound visualization techniques
using onomatopoeia [5] have been developed. Pick-by-Vision, which uses smart glasses to
visually assist order pickers in their work tasks, has also been demonstrated [3–6].

Various environmental sound classification (ESC) technologies based on machine
learning (ML) have been investigated in recent years as an alternative to human perception
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of environmental sounds. One review [7] suggested that the benefits of ESC are the
development of hearing aids, crime investigation, and security systems, and that ML-based
ESC can be largely applied to industry. ML classifiers include support vector machines [8],
K-nearest neighbor [8], decision trees [9], and hidden Markov models [10]. In addition,
novel methods such as convolutional neural networks [11], multilayer perceptrons [12],
and recurrent neural networks [13] are used extensively.

To enhance DHH people’s hearing ability, hardware that incorporates algorithms
for the various ESR techniques described above is being developed. For example, some
technologies can facilitate communication between sign-language users and non-sign-
language users, such as the technology to convert sign language into linguistic information
using Android terminals [14] and mobile terminals that recognize gestures by using smart
gloves [15]. There are also technologies to support communication between differently
abled people and those with visual, auditory, or speech impairments by converting speech
signals into textual data [16]. Furthermore, we can also find studies (e.g., [17]) that con-
sider wearable devices that notify DHH people by converting environmental sounds into
vibration. There are also examples of the development of systems that notify users of
such environmental sounds by means of smartphones [18]. In addition, technology has
been developed [19] in which subtitles representing the speaker’s words are provided in
real time on augmented-reality (AR) displays [19]. Ribeiro et al. [20] produced natural
maps of visual and auditory modalities by using technology that maps environmental
sounds as virtual objects on a head-mounted display, allowing for intuitive representation.
In addition, a case study has been conducted to investigate user preferences regarding
wearable or smart device environmental sound presentation technologies [21]. The visu-
alization of auditory information has been investigated in various fields, including the
study of physically visualizing the intensity of sound generated by sound sources using
a see-through head-mounted display [22], as well as in music, education, consumer elec-
tronics, marine science, medicine, and ecosystems [23–28]. By visualizing sound, it may be
possible to obtain a variety of information that cannot be obtained simply by hearing. A
number of technologies have been proposed to support the understanding of the sound
environment by visualizing sounds for DHH people. Various studies have been carried out
to visualize, for example, music. Basic music visualizations include 2D time-series displays
(e.g., waveforms and spectrograms) for characteristics such as pitch or loudness [29–32].
For DHH users specifically, Nanayakkara et al. [33] created an abstract display that changed
size, color, and brightness in step with the harmonics to enhance the musical experiences
of DHH people. New York City designed a wall display to convey musical frequencies
through light to teach music to DHH children [34].

Much research has been conducted on the visualization of environmental sounds. In
particular, some studies have investigated the visualization of common sounds by using
various smart devices to support DHH people [35–43]. As quite a practical study, Jain
et al. [42] investigated HomeSound, which visualizes sound to provide awareness of house-
hold sounds inside the homes of DHH people, suggesting a variety of preferable conditions
to display form factors such as smartphones or tablets, sound types such as alarms and
alerts, and sound characteristics such as location and time duration. Matthews et al. [35]
explored the requirements for the functionality of environmental sound visualization based
on feedback from DHH people and used several visualization systems, including spectro-
grams, to enable an understanding of environmental sounds that are useful to people with
hearing impairment.

In light of these previous studies, various technologies for visualizing sound have
been proposed to support people with hearing disabilities. Among these, the spectrogram,
which can visualize both the time and frequency characteristics of sound, has benefits, but
there have not been many examples of the visualization of a wide range of environmental
sounds using spectrograms for the purpose of supporting DHH people.
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Spectrograms have been used by DHH people to recognize speech [44–51]. The
first attempts to read speech from spectrograms were made by Potter et al. [44], with
limited success. In recent years, Hillier et al. [51] proposed a modified spectrogram that
incorporated increased frequency resolution and the enhancement of important sound
information, resulting in improved word recognition from 23% to 80%. The spectrogram has
been gradually increasingly used in hearing-aid technology, but visualization technologies
based on the spectrogram remain in the developmental stage and cannot yet adequately
support DHH people.

Normal-hearing people use sound as a cue to recognize various sound-related events
that occur in their surrounding environment. However, it is difficult for DHH people to
freely detect the surrounding sound environment. Therefore, the purpose of the present
study is first to create a convenient device that can detect sounds occurring in daily life and
present the detected sound-related events as visually related measures. Secondly, how the
created supporting device could change the lives of DHH people is appropriately evaluated
from the viewpoint of increasing QOL.

To achieve the above two objectives, this study first extracts the sounds of daily life
that DHH people have trouble hearing in their dwellings, based on the results of interviews
and previous research, and then constructs an AR-based presentation system that can
convert these sounds from the dwellings into visual information in real time. This system
stands on the following two techniques: one is an ESR technique using machine learning
and the other is an active method of ESR by the users themselves using spectrograms,
which has been identified as useful in previous studies but has not yet reached the practical
stage of knowledge. The system enables the detection of what kinds of sounds are being
generated, and whether the successful detection reduces the stress of the user and ulti-
mately provides comfortability of daily life, which were examined in an onsite subjective
evaluation experiment.

2. Research Flow and Basic Survey on Background of Research Problem
2.1. Purpose and Research Flow

The present paper is organized into the following five sections. The relationship
between the investigated content in each of the sections is indicated in Figure 1. First,
Section 2 describes how the issues that DHH people perceive as problems in their daily
lives were investigated through a hearing survey of current and previous studies. Then,
Section 3 describes the proposed system that is designed to display a dynamic spectrogram
in real time as well as icons indicating the surrounding environmental sounds judged by an
ML classifier. In this proposed system, the trained classifier for the target household sounds
that are suggested as the key sounds in Section 2 are installed. So, the ML-based classifier
for the abovementioned target household sounds is generated in Section 4 and installed
in the proposed system. Then, the effectiveness of the proposed method is verified in
Section 5. It should be noted that the natural use of the dynamic spectrogram to analogize
“what the sound is” requires training. So, before the main Experiment II, Experiment I in
Section 5.1 examines whether training to accurately estimate the sound from the dynamic
spectrogram is effective, showing that three replicates of training and confirmation trials
improved the accuracy of sound recognition. Then, all the trained subjects participated in
Experiment II in Section 5.2 where the ESR performance using the presentation system with
and without the spectrogram was comparatively discussed through subjective impressions,
including ease of use and perceived comfortability.

2.2. Survey on Daily Problems of DHH People

To understand the actual situation regarding the relationship between DHH peo-
ple and environmental sounds in their daily lives, DHH people were surveyed through
interviews. The questions of the survey as addressed the following three issues:

1. What are the environmental sounds that are difficult to hear in their daily lives?
2. What are the problems of not being able to hear the abovementioned sounds?
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3. How do people obtain or not obtain information on surrounding sounds?

The current interviews were conducted as a focus group interview [52] against three
subjects with post-lingual hearing loss via sign-language interpreters. As the number of
subjects in the current interview provided qualitative interview [53] results, the quantitative
aspect of this survey was supplemented by a multifaceted comparison with previous
studies. Specifically, reference [54], in which the abovementioned problems in daily life
were investigated through a large survey conducted with deaf people. The survey in this
reference investigated the difficulties caused by hearing impairment in various required
activities between waking up in the morning and going to bed at night. The main issues
that were most frequently mentioned by respondents were extracted. It should be noted
that in the above reference (ICCD 1995) [54], questionnaire response data were obtained
for the respondents belonging to a total of four categories regarding the degree of hearing
impairment: A: able to hear sounds with the bare ear; B: able to somewhat hear sounds
with the bare ear; C: unable to hear sounds at all; D: degree of hearing ability unknown.
Out of a total of 228 data points, the results of the 180 respondents who chose C were cited.
It should be noted that the proportion of male and female respondents in this reference
was 34.7% and 65.3%, respectively, and the ages of the respondents were distributed over a
wide range, with the most common age group being the 50s, representing 24.5% of all the
respondents. The proportion of hearing-aid users was 61.4%. In addition to this reference,
other papers [18,36,43,55,56] were also cited to enhance the results.
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Table 1 summarizes the comments raised in response to the above three questions
asked in the interview of the current investigation and the previous references. In this
table, each issue is classified into the following categories: general issues, interior issues,
exterior issues, and interior and exterior issues. Additionally, the relevant sub-categories
are mainly classified into “auditory detection”, “visual detection” and other sub-categories
such as “detecting events”, “communication” and “reading text”. Then, the check marks
are assigned to each of the references where the corresponding comments are described. In
addition, the column of reference [54] includes the comment contents with the number of
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respondents in addition to the check marks, while the rightmost column shows the other
references that had similar comments.

Table 1. Survey results of the current and previous interviews. The check marks are assigned to each
of the references where the corresponding comments are described.

Category Sub-
Category Coded Contents Current

Interview

Reference (ICCD 1995) [54]
Other ReferencesNumber of

Respondent
Answered
Contents

General
issue

Detecting
evenets

Difficulty of detecting
events 4 — 4 Jain et al., 2020 [42]

Communication
Difficulty in

communicating with
others

4 — —

Reading text
Difficulty in reading text
with a natural hearing

impairment person
4 — 4 John et al., 2016 [57]

Interior
issue

Auditory
and

vibration
detection

Difficulty of waking up
without alarm 4

4 45/180 Feel difficulty in
waking up alone 4

Matthews et al., 2006 [35]
Bragg et al., 2016 [18]

4 66/180
Usually wake up

by using
vibration alarm

4 Jain et al., 2020 [42]

Auditory
detection

Difficulty in detecting the
state of cooking — 4 61/180 Feel difficulty in

detecting boiling 4 Jain et al., 2020 [42]

Auditory
detection

Difficulty of detecting
status change of home

appliances (such as
kettles, microwave ovens,

and smoke detectors)

— — 4
Matthews et al., 2006 [35]

Mielke et al., 2015 [56]
Bragg et al., 2016 [18]

Auditory
detection

Difficulty in detecting
operation sound (such as

vacuum cleaner or
running water)

4

4 23/180
Feel difficulty in

detecting
running water

4 Matthews et al., 2006 [35]

4 41/180

Feel difficulty in
detecting to left

washing machine
finished

4 Mielke et al., 2015 [56]

4 11/180
Feel difficulty in
detecting to left

vacuum cleaner on
—

Auditory
detection

Difficulty in detecting
rain 4 — —

Auditory
detection

Difficulty of detecting
knocking on doors 4 — 4

Matthews et al., 2006 [35]
Jain et al., 2020 [42]

Auditory
detection

Difficulty of detecting
transient sound like

dropping things
4 — 4 Bragg et al., 2016 [18]

Auditory
detection

Difficulty of detecting
someone coming to their

home
— 4 54/180

Feel difficulty in
detecting

someone come to
home

4
Mielke et al., 2015 [56]
Bragg et al., 2016 [18]
(detection of doorbell)

Auditory
detection

Difficulty of detecting
someone’s replying voice — 4 32/180

Feel difficulty of
detecting

someone’s
replying voice

4
Jain et al., 2020 [42]

(difficulty of detecting
voices directed to me)

Auditory
detection

Difficulty of detectin
baby crying — — 4

Mielke et al., 2015 [56]
Jain et al., 2020 [42]

Visual
detection

Alternative methods for
event detection; use of

visual information such
as flashing lights

4 — 4 Jain et al., 2020 [42]
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Table 1. Cont.

Category Sub-
Category Coded Contents Current

Interview

Reference (ICCD 1995) [54]
Other ReferencesNumber of

Respondent
Answered
Contents

Exterior
issue

Auditory
detection

Difficulty in detecting
information such as
approaching vehicle

sounds or someone’s call

4 4 72/180

Feel difficulty in
detecting

approaching
vehicles and

someone’s call

4
Nakagawa et al., 2007 [55]

Bragg et al., 2016 [18]

Auditory
detection

Difficulty in detecting
platform or internal
announcements or

emergency broadcasts

— 4 82/180

Feel difficulty in
detecting

platform or
internal

announcements
or emergency

broadcasts

4 Bragg et al., 2016 [18]

Auditory
detection

Difficulty in detecting
store clerk’s call of his

and her name
—

4 103/180

Feel difficulty in
detecting

hospital clerk’s
call

—

4 72/180

Feel difficulty in
detecting clerk’s
call of banks or

post offices

—

Auditory
detection

Difficulty in
communicating with

doctor in hospital
4 4 79/180

Feel difficulty in
communicating
with doctor in

hospital

—

Auditory
detection

Difficulty in
communicating with

deriver of taxi
—

4 62/180

Drivers talk
while facing

forward, so you
don’t realise they

are talking

—

4 31/180

Telling the driver
where you are

going is not
understood

—

Auditory
detection

Difficulty in hearing the
sirens of police cars or

ambulances
— 4 21/180

Feel difficulty in
hearing the

sirens of police
cars or

ambulances
when driving

4
Mielke et al., 2015 [56]
Bragg et al., 2016 [18]
Jain et al., 2020 [42]

Auditory
detection

Difficulty in
communicating with

store clerk
— 4 70/180

Feed difficulty in
hearing the

clerk’s
explanation of

products

—

Interior
and

exterior
issues

Auditory
detection

Difficulty of detecting the
sound of someone’s

approaching footsteps
4 — 4 Jain et al., 2020 [42]

Auditory
detection

Difficulty in using
telephone — 4 39/180

Feel difficulty in
using telephone
in case of calling

ambulances

—

Auditory
detection

Difficulty in obtaining
information in case of

disaster
— 4 39/180

Feel difficulty in
obtaining

information in
case of disaster

—
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First, three comments on the issues from a general perspective of daily life are shown.
One is that DHH people have trouble detecting sound-related events, while relatedly, they
also have difficulty communicating with others. The former issue was also mentioned by
Jain et al. [42]. Moreover, as a comment related to communication with others, it was noted
that reading text is difficult for people with a natural hearing impairment. In reference [57],
similar difficulties reading texts are also mentioned for DHH people. Therefore, many DHH
people use sign language [58] and lip-reading [59] as tools for interpersonal communication.
As these are the main languages of people born with hearing impairment, the language and
grammar they acquire are unique to sign language, and they are likely to have difficulties
with reading and writing [60], as well as understanding the sentences of people with
normal hearing when writing. Therefore, it is also said that they may also have difficulty
converting speech into language and understanding it.

Next, 11 issues related to the interior events were commented on. Among these, a
comment related to visual issues was made, as well as auditory issues. There are sound-
related events that are difficult to detect by DHH people. For example, it is difficult for
them to wake up on time because they cannot hear alarm sounds, which was commented
by 45 people among the 180 in the reference [54]. These are also suggested by past re-
search. Difficulties cooking were also mentioned in previous studies, but not in the current
interview. The previous study also indicated that they miss sound cues from appliances
such as kettles, microwave ovens, and smoke detectors. They also made comments such
as “I have left the vacuum cleaner running all night” [35]. The previous study in [54]
also indicated comments on the difficulties related to running water (23/180), washing
machines (41/180), and vacuum cleaners (11/180). Related to these issues, the current
interview also indicated the frustration of not being able to notice familiar environmental
sounds, such as the water-running sound because of forgetting to turn off the tap. Addi-
tionally, the current interview showed that the subject failed to take in the laundry that
was hanging outdoors when it started to rain. On the other hand, some issues related
to people other than themselves were suggested by the current and previous interviews.
These interviews showed an issue where DHH people cannot detect the sound of knocking
on doors, while previous ones showed the difficulties detecting the doorbell sounds of
someone coming home, the replying voice of someone, and a baby crying. Specifically,
54 respondents among the 180 in the previous interview (ICCD 1995) [54] suggested having
difficulty detecting someone coming home. Related to this, Matthews et al. [35] stated that
it is very inconvenient to wait for visitors because they cannot hear the knock on the door
and have to visually check every few minutes, which is an important aspect in terms of
communication with others. Unlike the auditory issues discussed above, the visual issue of
using devices such as flashing lights as alternative methods to detect sound-related events
is commented on in the current interview, while a similar comment about DHH people
waking up using a vibration alarm instead of sounding alarm was made in all the studies.
However, comments were also made in the current interview that such visual information
is inconvenient because it cannot be noticed unless the object is within the user’s field
of view.

Next, the exterior issues were described. It was commented in the current interview
that they are unable to predict accidental events from information such as approaching
vehicle sounds. In the previous literature, it has been reported that they feel unable to hear
sounds related to hazard avoidance, such as emergency alarms, car horns, and the sound of
approaching vehicles [55]. In addition, acquiring information on the exterior world through
auditory information, such as noticing the sound of a vehicle approaching from behind, is
important because it is one of the essential functions of hearing [61] and is an important
aspect for DHH people to perceive the environment. In the previous interview [54], many
problems in the exterior environment were commented on. For example, in addition to
the above issue regarding the difficulty detecting approaching vehicles, other primary
difficulties are observed in detecting public announcements (82/180) or a clerk’s call at the
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hospital (103/180) or banks or post offices (72/180), and communicating with a doctor in a
hospital (79/180) or clerks in stores (70/180).

As the issues related to both auditory and visual information, the inability to detect
the sound of someone’s approaching footsteps was mentioned in the current and previous
interviews. In this case, people with unimpaired hearing can recognize that someone is
approaching them and can take the next action, for example, to turn around and look. How-
ever, DHH people cannot hear footsteps, so they cannot realize that someone is approaching
them and cannot react to the approach. Other difficulties using telephones or obtaining
information in cases of disaster were also mentioned in the previous interview [54], though
the number of the respondents was not large.

As mentioned above, in the interviews with DHH people, there was a great need to
know about environmental sounds in the home as well as in workplaces or public places.
This is thought to be due to the importance of being aware of the sound environment in the
home, where the majority of daily life is spent, and living comfortably.

3. Proposed AR Presentation System
3.1. Overview of Proposed System

This study developed and validated a visual presentation system for environmental
sounds. It displays both the results of environmental sound identification by ML as icons
and a dynamic spectrogram from environmental sound analysis in real time. The icons
and spectrograms are presented on smart glasses, and viewing this display allows the
user to visually identify current environmental sounds. In this study, the effectiveness
of the proposed system regarding the degree of recognition of environmental sounds
occurring in a house was evaluated by conducting experiments simulating daily life with
normal-hearing subjects who wore soundproof earmuffs to simulate hearing impairment.

Currently, it is not easy to accurately recognize environmental sounds using ML, which
may lead to an accumulation of frustration for the user if classification results are based
on incorrect recognition results. However, because the time and frequency characteristics
of environmental sounds can be visualized with a spectrogram, a number of studies have
attempted to detect spoken voice content from a spectrogram display. However, because
environmental sounds are relatively difficult to recognize due to the problem of background
noise [62] and the complexity of sound due to its rhythm and frequency characteristics,
there have been few studies on techniques for estimating them from the spectrogram.
Therefore, by presenting both icon and spectrogram displays of environmental sounds
based on ML results, there is a possibility that the accuracy of the visual recognition of
environmental sounds can be improved by having the two functions complement each
other. Although spectrograms are difficult for ordinary users to understand, training can
possibly also have an effect on ESR, as the recognition accuracy has been improved by
training in the field of speech recognition [35,51–57]. Therefore, training on ESR was carried
out in this study and its effects are discussed. Furthermore, an ESR experiment using the
visualization system proposed in this paper was conducted on subjects whose recognition
rate was improved by the training.

3.2. Details of Proposed System

The appearance of the proposed system, the presented AR images including the ML-
based icons and spectrograms on the display, and an example of the icons finally adopted
in the validation experiment in Section 5 are shown in Figure 2a–c, respectively. As shown
in Figure 2b, the subjects wear the smart glasses (Epson, BT-35E, Suwa, Japan) and perform
the daily tasks described below while viewing the spectrogram and icons that change
dynamically at every moment. To make it as easy as possible to obtain visual information
in the field of view, the spectrogram is placed as close as possible to the left side and the
icons to the right side. It should be noted that smart glasses have been used in various other
fields of research [63–66] and are considered to be reliable in terms of their performance.
For example, they have been used to assist in procedures such as bronchoscopy [63,64],
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needle biopsy for breast tumors [65], and in research cases aimed at very practical purposes
such as completely different warehouse operations. The performance is expected to meet
the requirements of the medical and more practical engineering fields.
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Figure 2. Overview of the proposed AR-based visual presentation system. (a) The subject cooking
with the proposed system, (b) the AR view displayed on the smart glasses, and each of the icons
for various sounds: (c-1) alarm, (c-2) intercom, (c-3) object dropping, (c-4) door opening or closing,
(c-5) knocking on the door, (c-6) footsteps, (c-7) running water, and (c-8) human voice.

The process flow for recognizing environmental sounds and displaying icons and
spectrograms is shown in Figure 3. First, environmental sounds generated in the surround-
ings are continuously detected by a microphone. The sound pressure waveform detected
by the omnidirectional microphone attached to a sound level meter (Rion, NL-62) is output
from the sound level meter and input to a laptop PC for control via an audio interface
(Steinberg, UR22mkII, Hamburg, Germany). Then, the sound pressure waveforms are
classified by the ML-based classifier and converted into a spectrogram. Herein, the conver-
sion of sound waves into the spectrogram was conducted using the Spectrum Analyzer
of Matlab. The setting of the analyzer was as follows: a sampling frequency of 48 kHz,
a method of “Filter bank” [67], a frequency range of 70 Hz to 7 kHz, a time duration of
9 s, a unit of dBm/Hz, and a logarithmic frequency scale. By setting these parameters, the
time–frequency characteristics of the sound waveforms of the newest 9 s were continu-
ously displayed.
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Figure 3. Flowchart of the visual presentation system, including the signal processing of ML-based
classification and time-frequency analysis to output the spectrogram.

The sound level meter is inserted in the side pocket of a backpack so that the micro-
phone part protrudes from the backpack and can appropriately capture nearby environ-
mental sounds. As shown in the flowchart, when the sound pressure waveform captured
by the microphone is input into the processing system, the system first determines whether
the sound pressure level exceeds the pre-measured sound pressure level of the background
noise in the target room. The in situ background noise level was measured by a sound
level meter prior to the experiment on each experimental day, and the measured value of
the level was input into the software and used as the threshold value of the background
noise. In the residential space where the experiment was conducted, there was a concern
that some icons would be displayed even though no household sounds were heard, due
to fluctuations of the sound pressure level inside the room caused by such external noise
as vehicles running. For this reason, time-series data on the sound pressure level in the
experimental room during the daytime hours were obtained in advance, and the standard
deviation for the sound pressure level was calculated, which tended to converge around
2 dB. Therefore, taking into account this fluctuation, a threshold sound pressure level was
set to the value of 5 dB plus the sound pressure level averaged over 30 s, when no vehicle
running noise was heard. When the sound pressure level exceeds the threshold value set
as above, the measured sound pressure waveform is input into the classifier generated
by ML in advance, and the type of environmental sound is determined. When the sound
pressure level is below the threshold value, the environmental sound is not classified,
and no icon is displayed. Thus, if the user is alone in the house and it is very quiet, then
only a spectrogram without any sound icons is displayed on the screen. In the processing
system, the ML classification results are updated every 3 s. This is because almost all
single-occurrence sounds are rarely shorter than 3 s, considering the reverberation in the
room where they occur. The intention was to increase the time interval between updates
of the icons as much as possible, because it has been noted [35] that when visualizing
information of environmental sounds on a display, frequent changes can be distracting,
and users seek visual silence. However, because the spectrogram of the acoustic signal
over 9 s is always displayed, the user can check the spectral characteristics up to 9 s ago.
This time length was also chosen to reduce the stress on the user as much as possible as
described above while displaying for as long a time as possible, and conversely to ensure
that the notation of the spectrogram of the sound would not become too small or difficult
to understand by being too long.
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3.3. Limitations of Proposed System

The current system is limited to the most prominent sounds generated inside a house,
and the display system depends on the results of the ML classification. Although it is
necessary to recognize the sounds of the external environment, the background noise in
external environments is prominent and real-time ESR by ML is currently still difficult [43].
In addition, it is difficult to conduct onsite outside experiments that are safe for subjects, so
this study was limited to household interior sounds. However, in view of the final results of
this study, it is considered to have the potential to be applied to outdoor ESR in the future.

From a software perspective, the system in this study used a Mathematica-based clas-
sifier for environmental sound recognition, while the dynamic spectrogram was displayed
by Matlab. In terms of integration and extensibility, it is preferable to unify the operation on
python or Matlab, but in this study, the environmental sound detection was first examined
using the function on Mathematica. So, in order to make use of the learned classifier as it
was, a separate Matlab-based spectrum analyzer function was additionally used to display
the dynamic spectrogram. In the future, it will be efficient to operate the system uniformly
on a single software package, and as described below, the selection of software is also a key
factor when looking at the generalization of the system.

In this study, the visual contents converted from auditory information were displayed
using see-through AR glasses. Since these are output through software processing, it may
cause delays due to the processing and may induce cybersickness, which has recently
become apparent [68]. In the present study, the subjects were taught to immediately
verbally request that the experiment be stopped immediately if they had symptoms of VR
sickness. However, since no subject offered to do so, it was assumed that VR delays that
would make them feel sick did not occur in the least. However, such factors that undermine
user convenience should be eliminated, and considering that the processing system will be
moved online or that the processing unit will be embedded in the glass itself, it is necessary
to continuously examine the impact of processing system delays. Furthermore, in the
future, when considering the lightweighting and generalization of the system, it will be
necessary to additionally verify to what extent the performance of the processor can be
reduced and still be used within the range of delays that are practically available.

Household sounds, such as the sound of running water in a distant kitchen, have
very low sound pressure levels, and show almost the same level of sound pressure as
background noise, but their low sound pressure levels do not mean that they are less
important. In the present study, the sound pressure level was set to the level of the
background noise plus 5 dB, which eliminated the possibility that meaningless background
noise would be recognized as an environmental sound. On the contrary, there were some
cases where sounds with very low sound pressure levels were not recognized. Such
misleading results may be improved by considering not only the threshold determination
of the sound pressure level, but also the spectrogram of the background sound. However,
while such an improvement in accuracy is possible, the computational load increases, so it
should be an issue for the future.

Because converting auditory information into other modalities and displaying it can
support DHH people, it is not necessary to limit the means of conversion of environmental
sounds to visual information. For example, Yağanoğlu and Köse [17] presented environ-
mental sounds to DHH people by means of vibrations, and their effectiveness was verified.
However, it is also considered that the amount of information that can be presented is
limited to the modal vibration alone, but such a system can be helpful for someone who
is also visually impaired. Moreover, AR devices are becoming gradually lighter [69] and
are expected to become increasingly convenient in the future. Furthermore, previous stud-
ies have pointed out that in sound visualization systems for DHH people, the type and
arrangement of the display are very important [42], suggesting that it is important to place
the information in an easily viewed position. With this in mind, the present study adopted
smart glasses to present visual information so that the sound information was always
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visible. However, the possibility of more intuitive ESR by additionally using vibration
information is also expected as a future work.

On the other hand, there have already been many attempts to visualize sound, such
as visualization using icons and spectrograms [35], or visualization methods using ges-
tures [50], which can make it easy to grasp sound intuitively. However, the present study
adopted only icons and spectrograms and investigated the effectiveness of displaying
both of them simultaneously on smart glasses. The current system did not focus on intu-
itive comprehension; therefore, in terms of intuitive understanding and comprehensibility,
the findings of the current study should be developed as a more user-friendly system in
future work.

4. ML-Based Environmental Sound Classifier

The flow of the current section regarding the generation and validation of the ML-
based environmental sound classifier is shown in Figure 1. First, as shown in the flow, the
detailed measurement methods of the data sets and the acoustic properties of the measured
sound data are described in Section 4.1. Then, the creation of the ML-based classifier
is described in Section 4.2. Finally, the validation results of the practical classification
performance of the resulting classifier are described in Section 4.3. The details of all
contents are described as follows.

4.1. Measurement of Training Data

Environmental sounds of daily life were recorded to obtain training data for use
in supervised ML. Specifically, the 12 kinds of environmental sounds shown in Table 2,
which can be detected in the household space of daily life, were adopted following the
survey results of Section 2. From the suggested issues related to the interior space, specific
keywords related to events that DHH people have trouble hearing are extracted as follows:
sounds of alarm, cooking, running water, washing machine, vacuum cleaner, raining,
knocking on door, dropping something, intercom (doorbell), human voice including baby
crying, and footsteps. The cooking and washing sounds are examined in Experiment II of
Section 5 because the timing of their finishing operations was considered an alarm sound
in the current study. So, among the above items, the sounds of alarm, intercom, human
voice, knocking on a door, and footsteps were adopted. In addition, although at a weak
sound pressure level, sounds related to the opening and closing of doors are important
information, as well as the sound of knocking on doors, and previous studies have also
commented on events where doors are opened and people approach [42]. Additionally,
as for the sound of dropping something, the sound of dropping a plastic bottle was used
as an example of a relatively clear sound, while the sound of dropping a purse was an
example of a sound that is relatively difficult to notice. It should be noted that, although the
sounds of an alarm and intercom are artificial electronic sounds and have similar acoustic
characteristics, their roles are different, such as the sound that announces the completion
of some home events and the sound that announces a visitor. Previous studies [42] have
also distinguished between doorbells and alarms. For these reasons, these sounds were
distinguished in this study. The above sounds were intentionally generated, and the sounds
were recorded at a sampling rate of 48,000 Hz using an omnidirectional microphone (Rion,
NL-62) and an audio interface (Steinberg, UR22mkII). The generation and validation of
classifier as well as the computational procedure of ESR in the validation experiments of
Section 5 were processed using a note PC with CPU and GPU (Mouse Computer, Tokyo,
Japan, NEXTGEAR-NOTE i5730SA1) as follows. The CPU was Core i7-7700HZ (2.8 GHz).
The GPU was GeForce GTX 1070 (8 GB GDDR5). The installed memory and HDD were
16 GB and 256 GB SSSD, respectively.
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Table 2. Twelve kinds of household environmental sounds examined in this study.

Categories Sounds

Tonal sounds

Alarm
Intercom
Human voice (male)
Human voice (female)

Transient sounds

Dropping purse
Dropping plastic bottle
Knocking on door
Opening door
Closing door
Footsteps

Steady-state sounds Running water on the sink
Running water on the washbasin

Among the 12 kinds of sounds, 10 of them, excluding male and female human voices,
were recorded in three different residences identified as rooms A, B, and C in Table 3,
while the human voices were measured inside an anechoic room. Detailed information on
these measurement rooms is shown in Table 3. The rooms where the target environmental
sounds were generated were 33.5 m2, 9.1 m2, 30.0 m2, and 3.8 m2. Each of these rooms was
located in different houses with wooden or reinforced-concrete structures. To increase the
prediction accuracy, environmental sounds were produced and measured inside rooms with
different sizes, furniture arrangements, door and floor materials, and acoustic conditions.

Table 3. Overview of target rooms A, B, and C and the anechoic room.

Structure of the Building Area of Space Measured Sounds

Room A Wooden structure 33. 5 m2

Alarm
Intercom

Dropping plastic bottle
Dropping purse
Opening door
Closing door

Knocking on door
Footsteps

Running water from the sink
Running water from the washbasin

Room B Reinforce-concrete structure 9.1 m2

Room C Reinforce concrete structure 30.0 m2

Anechoic room Wooden panel structure 3.8 m2 Human voice (male)
Human voice (female)

When recording these various environmental sounds, the waveforms measured using
common alarms, plastic bottles, purses, and pedestrians in each of rooms A, B, and C were
used for the sounds of alarms, dropping plastic bottles and purses, and footsteps, while the
other sounds were generated by different intercoms in each house or by running water into
sinks made of different materials in each house. For the voices, one male and one female in
their 20s were selected and the five kinds of Japanese vowels (/a/, /i/, /u/, /e/, and /o/)
uttered by them were adopted as the sound data of voices.

To consider the characteristics of the sound data, spectrograms of the measured
environmental sounds are shown in Figure 4. Note that only the male voice is indicated
in this figure because the male and female voices had similar spectrograms. In these
spectrograms, as an example, all environmental sounds other than speech are shown as
waveforms measured in room C, while the speech data show the sound of the vowel
/a/ pronounced and recorded in the anechoic room. First, as the alarm and intercom
sounds consist of several pure tones superimposed on each other, characteristic peaks at
the frequencies of these pure tones can be seen. Although this feature is considered to be
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more easily recognizable than other environmental sounds, the similarity of the frequency
characteristics of the alarm and intercom sounds may raise concerns about misidentification
between alarm and intercom sounds.
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Figure 4. Spectrograms of each of the 12 measured sounds; (a) alarm, (b) intercom, (c) drop-
ping plastic bottle, (d) dropping purse, (e) opening door, (f) closing door, (g) knocking on door,
(h) footsteps, (i) running water from the sink, (j) running water from the washbasin, and (k) human
voice, respectively.

Next, the characteristics of the transient environmental sounds of dropping a plastic
bottle, dropping a purse, a door opening and closing, knocking on the door, and footsteps
are described. Note that the plastic bottle and the knocking sound were recorded as sounds
with several transient sounds continuously occurring due to several bounces of the dropped
object or three knocks. In terms of the frequency response, these pulsive sounds have a
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broadband frequency component that differs from a pure tone. Additionally, for these
sounds, the pulsive sounds occur first, after which the remaining sound decays. As the
average sound absorption coefficient in the measured room increases at higher frequencies,
the frequency response of the reverberation time is basically shorter when the frequency is
higher. As a result, all transient sounds tend to decay more quickly at higher frequencies.
The sounds of plastic bottles and purses dropping and knocking on doors are similar in that
they have a wide range of frequency components and may be misinterpreted. In addition,
the sound of knocking on doors could also be recognized in terms of such periodicity,
as they were learned as a knocking sound repeated three times. Although the sounds
of a door opening or closing show audible differences, there are not many differences in
the spectrograms, so it may be difficult to classify these sounds with ML. Second, each
flowing sound is a steady sound and has a broadband frequency component, which is
similar to the silent state and may be difficult to distinguish. However, in the present
study, if the sound pressure level in the field is below the threshold sound pressure level
of the background noise, then the sound is not classified using ML results, so it can be
distinguished from silence. Finally, it is assumed that the spectrogram of a voice is relatively
easy to distinguish from other environmental sounds, as it has discrete formant frequencies
that are represented as stripe patterns, which is quite different from the frequency response
of other environmental sounds.

4.2. Generation of Classifier of Environmental Sound by Supervised ML

To classify each environmental sound using ML, the classify function in Mathematica
from Wolfram Research was employed to perform supervised learning using the obtained
sound pressure waveforms. In supervised learning with Mathematica, the environmental
sound data are first converted into a mel-frequency spectrum, a multi-dimensional vector
is generated, and general processes such as normalization and dimensionality reduction
are applied to prepare the training data, which are then trained by a neural network. The
procedure indicated in Figure 5 and the following procedure describes the method to create
training data as the input data for this function.

1. Sound data for 5 s of each environmental sound were recorded in each of rooms A,
B, and C. Here, the sounds of alarm, intercom, dropping a plastic bottle and purse,
door opening and closing, and running water in the kitchen sink and washbasin were
recorded as four kinds of sound data obtained at four different receiving points. The
sounds of footsteps and knocking on a door were recorded as eight kinds of sound
data, including two kinds of knocking patterns (single or three times) and two kinds of
footsteps (approaching or moving away from the receiver) obtained at four different
receiving points. In total, 144 sound data sequences were obtained in the three rooms.

2. For the purpose of watering down the sound data, 20 kinds of sound data with a
time duration of 3 s were extracted from each of the original sound data sequences by
changing the starting point of the extraction in 0.1 s increments.

3. By carrying out the process described in step 2 for all of the measured environmen-
tal sounds, a total of 144 × 20 = 2880 sets of data were created. However, as the
sound data of human voices were measured only in an anechoic room, 40 kinds of
voice data, including 20 data sets for each of male and female voices, resulting in
40 × 20 = 800 sets of training data, were prepared and used as the training data for step 1.

4. As a result of following the above steps, 2880 + 800 = 3680 sets of training data were
obtained. Using these data, a classifier was generated, and the accuracy of classi-
fication with this classifier was verified. It should be noted that there is room for
considering whether excessively detailed ESR information should be presented to
DHH people. For example, sufficient consideration needs to be given to whether the
sound of running water in a sink or a washbasin should be classified and learned
as separate categories or as the same category of “running water sound”. From the
viewpoint of classifier generation, environmental sounds with similar characteristics
are difficult to distinguish from each other, so the balance between what kind of
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information a DHH person wants to know and how accurately the ML-based classifier
can classify the sounds are also important issues. Furthermore, how to set up the
categorization of environmental sounds in ML is also important, as the misclassifi-
cation of environmental sounds was indicated as a problem in a previous study [42].
Based on these considerations, the present study compared and evaluated each case
in which a total of 12 types of sounds, including the 10 environmental sounds and
2 male and 2 female voices described above, were learned by categorizing them into
10 or 8 types, as shown in Table 4. Note that, as described in Section 2, if the sound
pressure level was below the threshold sound pressure level, then it was judged to be
silent and not applied to the classifier; if the sound pressure level was greater than
the threshold level, then it was judged to be an environmental sound occurrence and
applied to the classifier.
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Figure 5. Flowchart of generation of classifier.
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Table 4. Two different divisions of environmental sounds into 8 or 10 sub-categories.

Sounds
Categorization

Eight Types Ten Types

Alarm Alarm sounds Alarm sounds

Intercom Intercom sounds Intercom sounds

Dropping purse
Dropping sound

Sound of a dropping purse

Dropping plastic bottle Sound of dropping a plastic bottle

Opening door
Sound of opening/closing the door

Sound of opening the door

Closing door Sound of closing the door

Knocking on door Sound of knocking on the door Sound of knocking on the door

Footsteps Sound of footsteps Sound of footsteps

Running water on the sink
Sound of runnning water Sound of runnning water

Running water on the washbasin

Human voice (male)
Human voice Human voice

Human voice (female)

4.3. Validation Experiment for ML-Based Classifier
4.3.1. Method

Two types of continuous sound data were recorded to investigate the feasibility of
classifying environmental sounds in dwellings by ML. The first type of sound data was
recorded by intentionally and intermittently generating sounds other than the human voice.
This recording was carried out in room C, where the subjective evaluation experiment
described in the next section was conducted. The second type of sound data was recorded
by having a male and a female speak in an anechoic room. In the latter voice recording, each
of the male and female subjects was asked to utter a line of about 6 s each in Japanese to
introduce themselves with their name and the faculty they belonged to. As in the previous
section, a sound level meter (Rion, NL-62) with an omnidirectional microphone, a USB
audio interface (Steinberg, UR22mkII), and a laptop PC were used for recording. In this
recording, the environmental sounds were generated as randomly as possible. As a result,
two kinds of sound data with a duration of 417 s for environmental sounds in room C
and male and female speech data with a duration of 24 s were obtained. The measured
waveforms and spectrograms are shown in Figure 6. The non-voice environmental sounds
were then split into 157 segments of sound data 3 s-long, and the latter voice data into
8 speech data segments also 3 s-long.

4.3.2. Evaluation of Classification Results

The classification results can be expressed as a confusion matrix. The structure of the
confusion matrix is indicated in Table 5. In this table, the rows represent the true classes
of the samples, while the columns represent the predicted classes. Herein, to evaluate the
accuracy of the estimated results, we adopted the following four kinds of indices: accuracy,
recall, precision, and F-score calculated using TP, TN, FP, and FN, as indicated in the table.
Because the recall and precision have a trade-off relationship, the F-score, which is the
harmonic mean of recall and precision, is also used, as in Equation (4): the closer the
F-value is to 1, the more balanced and higher the performance is.

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Recall =
TP

TP + FN
, (2)
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Precision =
TP

TP + FP
, (3)

F-score =
2 × Recall × Precision

Recall + Precision
(4)

Table 5. Structure of the confusion matrix.

Predicted Class

Positive Negative

True class
Positive TP (True Positive) FN (False Negative)

Negative FP (False positive) TN (True Negative)

Sensors 2023, 23, 7616 18 of 34 
 

 

 
Figure 6. Time waveform and time–frequency spectrogram of (a-1,a-2) environmental sounds other 
than human voices and (b-1,b-2) human voices. 

4.3.2. Evaluation of Classification Results 
The classification results can be expressed as a confusion matrix. The structure of the 

confusion matrix is indicated in Table 5. In this table, the rows represent the true classes 
of the samples, while the columns represent the predicted classes. Herein, to evaluate the 
accuracy of the estimated results, we adopted the following four kinds of indices: accu-
racy, recall, precision, and F-score calculated using TP, TN, FP, and FN, as indicated in 
the table. Because the recall and precision have a trade-off relationship, the F-score, which 
is the harmonic mean of recall and precision, is also used, as in Equation (4): the closer the 
F-value is to 1, the more balanced and higher the performance is. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  ்௉ା்ே்௉ା்ேାி௉ାிே, (1)

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  ்௉்௉ାிே, (2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  ்௉்௉ାி௉, (3)

𝐹 െ 𝑠𝑐𝑜𝑟𝑒 ൌ  ଶ ൈ ோ௘௖௔௟௟ ൈ௉௥௘௖௜௦௜௢௡ோ௘௖௔௟௟ ା ௉௥௘௖௜௦௜௢௡ . (4)

Table 5. Structure of the confusion matrix. 

    Predicted Class 
    Positive Negative 

True class 
Positive TP (True Positive) FN (False Negative) 
Negative FP (False positive) TN (True Negative) 

4.3.3. Recognition Results and Discussion 
The 157 environmental sounds and 8 speech data sets were classified by an ML-based 

classifier, and the results were evaluated using the above methods. The evaluated results 

Figure 6. Time waveform and time–frequency spectrogram of (a-1,a-2) environmental sounds other
than human voices and (b-1,b-2) human voices.

4.3.3. Recognition Results and Discussion

The 157 environmental sounds and 8 speech data sets were classified by an ML-based
classifier, and the results were evaluated using the above methods. The evaluated results of
the classifier with 10 or 8 sub-categories are shown in Figure 7 as a confusion matrix and
Table 6 as the various indices.
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Table 6. Recognition accuracy of each condition of classification into 8 or 10 sub-categories.

Environmental Sounds Accuracy Recall Precision F-Score

8 Sub-Categories 10 Sub-Categories 8 10 8 10 8 10 8 10

A8 Alarm A10 Alarm

0.70 0.59

0.78 0.78 0.88 0.88 0.82 0.82

B8 Intercom B10 Intercom 0.75 0.75 0.75 0.75 0.75 0.75

C8 Dropping
C10 Dropping plastic bottle 0.86 0.6 0.67 0.75 0.75 0.67

D10 Dropping purse 0.86 1 0.67 0.17 0.75 0.3

D8 Opening/Closing door
E10 Opening door 0.78 0.5 0.8 0.43 0.79 0.47

F10 Closing door 0.78 0.29 0.8 0.55 0.79 0.38

E8 Knocking on door G10 Knocking on door 0.67 0.67 0.91 0.91 0.77 0.77

F8 Footsteps H10 Footsteps 0.67 0.67 0.36 0.53 0.47 0.59

G8 Running water I10 Running water 0.5 0.5 1 1 0.67 0.67

H8 Human voice J10 Human voice 1 1 0.73 0.73 0.84 0.84

I8 Silence K10 Silence 0.81 0.81 0.58 0.58 0.68 0.68

Sensors 2023, 23, 7616 19 of 34 
 

 

of the classifier with 10 or 8 sub-categories are shown in Figure 7 as a confusion matrix 
and Table 6 as the various indices. 

Table 6. Recognition accuracy of each condition of classification into 8 or 10 sub-categories. 

  Environmental Sounds Accuracy Recall   Precision   F-Score 
8 Sub-Categories 10 Sub-Categories 8 10 8 10   8 10   8 10 

A8 Alarm A10 Alarm 

0.70 0.59 

0.78 0.78   0.88 0.88   0.82 0.82 
B8 Intercom B10 Intercom 0.75 0.75   0.75 0.75   0.75 0.75 

C8 Dropping 
C10 

Dropping plastic bot-
tle 0.86 0.6   0.67 0.75   0.75 0.67 

D10 Dropping purse 0.86 1   0.67 0.17   0.75 0.3 

D8 Opening/Closing 
door 

E10 Opening door 0.78 0.5   0.8 0.43   0.79 0.47 
F10 Closing door 0.78 0.29   0.8 0.55   0.79 0.38 

E8 Knocking on door G10 Knocking on door 0.67 0.67   0.91 0.91   0.77 0.77 
F8 Footsteps H10 Footsteps 0.67 0.67   0.36 0.53   0.47 0.59 
G8 Running water I10 Running water 0.5 0.5   1 1   0.67 0.67 
H8 Human voice J10 Human voice 1 1   0.73 0.73   0.84 0.84 
I8 Silence K10 Silence 0.81 0.81   0.58 0.58   0.68 0.68 

 

 
Figure 7. Confusion matrix of each condition of classification into 8 or 10 sub-categories. The labels 
A8 to J8 in (a) and A10 to K10 in (b) are defined in Table 6. The shaded parts indicate the number of 
accurate classification. 

The confusion matrix of the classification results and each index are compared be-
tween respective categorizations. First, Table 6 shows that the classification accuracy was 
higher in the condition of categorization with 8 types than that with 10 types. The number 
of misclassifications was reduced by grouping the dropping sounds and the door open-
ing/closing sound together as one category for each set. However, the confusion matrix 
showed that there were many misclassifications within transient sound categories, even 
with 8 sub-categories, so it is expected to be effective for users to compensate for this by 
visually interpreting the spectrograms. Although the condition with 8 sub-categories in-
dicated higher accuracy, not all of the F-scores of the condition indicated higher values. 
For the sounds of knocking on the door and footsteps, the F-scores were higher in the 

117A8

31B8

1112C8

41324D8

11103E8

411F8

9215211G8

8H8

21I8

I8H8G8F8E8D8C8B8A8

Tr
ue

 la
be

l

Predicted label

117A10

31B10

1126C10

4D10

141041E10

6861F10

110112G10

312H10

92151111I10

8J10

21K10

K10J10I10H10G10F10E10D10C10B10A10

Tr
ue

 la
be

l

Predicted label

(a)
(b)

Figure 7. Confusion matrix of each condition of classification into 8 or 10 sub-categories. The labels
A8 to J8 in (a) and A10 to K10 in (b) are defined in Table 6. The shaded parts indicate the number of
accurate classification.

The confusion matrix of the classification results and each index are compared be-
tween respective categorizations. First, Table 6 shows that the classification accuracy was
higher in the condition of categorization with 8 types than that with 10 types. The number
of misclassifications was reduced by grouping the dropping sounds and the door open-
ing/closing sound together as one category for each set. However, the confusion matrix
showed that there were many misclassifications within transient sound categories, even
with 8 sub-categories, so it is expected to be effective for users to compensate for this
by visually interpreting the spectrograms. Although the condition with 8 sub-categories
indicated higher accuracy, not all of the F-scores of the condition indicated higher values.
For the sounds of knocking on the door and footsteps, the F-scores were higher in the
condition with 10 types of identification than that with 8 types. For these sounds, it can
be considered that the combination of the dropping sound and the door opening/closing
sound conversely increased misclassification, and the difficulty of sound recognition within
the transient sound category is once again confirmed. However, when assuming the use
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of the system in daily life, for example, if the classification result is door opening/closing
when the user sees their cohabitant in front of them, then the user can judge that it is a mis-
recognition because there is no other person in the room. In actual daily use of the device,
appropriately incorporating the user’s judgement in such situations would be important.
The rate of misclassification was low for tonal sounds such as alarms, intercom tones, and
voices. In addition, there were few errors among these tonal sounds, and it was possible to
distinguish between alarm sounds consisting of intermittent tones of the same frequency
component and intercom tones consisting of compound tones with different frequencies
without misidentification. Second, the F-score of the sound of running water was low, as
shown in Figure 7. Here, a large number of these sounds were recognized as silence because
the washbasin and the sound receiving point were far apart and the sound pressure level of
the running water sound was attenuated by distance, which meant that the sound pressure
level in many conditions did not exceed the threshold level. However, if the threshold of
the sound pressure level for the silent state is lowered any further, then the ML system
will display an incorrect recognition result, even when the human perceives the sound as
silent, which may cause stress for the user. In such a situation, it is expected to be effective
to compensate for these situations by visually observing the real-time spectrogram. From
this discussion, it was judged that ESR with the ML-based classifier with 8 sub-categories
was more effective than that with 10 sub-categories. Therefore, the experiments described
in the next section were conducted with the support and ML-based classifiers assigning
sounds to 8 sub-categories.

5. Evaluation of the Proposed System

The results presented in the previous section show that the detection of environmen-
tal sounds by ML had a recognition accuracy of around 70% for a classifier with eight
sub-categories, and that even in this condition there were some sub-categories for which
the recognition accuracy was not still perfect. Therefore, to complement the recognition
accuracy by ML, the presentation system proposed in this paper also illustrates the visu-
alization results of the time–frequency characteristics of environmental sounds by means
of spectrograms. As mentioned above, training has been shown to improve the ability to
recognize speech with spectrograms. Greene et al. [48] showed the results of 2 months
of training, while Farani et al. [49] showed that recognition ability increased after only
10 training sessions. However, this training was limited to speech recognition. Therefore,
this study also confirmed that training improved the ability to recognize environmental
sounds. As shown below, first, the effectiveness of the training at enabling users to un-
derstand what the spectrograms showed was verified by Experiment I. Subsequently, the
effectiveness of our presentation system was verified by Experiment II. In this experiment,
normal-hearing people who simulated hearing impairment by wearing earmuffs were
employed as subjects. The experiment was designed to identify the types of household
sounds that occur intermittently in the house and to have the subjects perform required
daily tasks that are related to the environmental sounds. Details of Experiments I and II are
described below.

5.1. Experiment I

This experiment was conducted to test the effect of training on the ability of subjects
to identify the type of environmental sound after seeing the visualized spectrogram on the
smart glasses.

5.1.1. Method

The environmental sounds measured in the previous section were used as the task
sounds. Specifically, subjects were asked to identify whether the spectrogram presented
on the smart glasses was an alarm sound, intercom sound, dropping sound, sound of
door opening or closing, sound of knocking on the door, footstep sound, sound of running
water, or human voice. We used 15 subjects aged between 22 and 25 years. They were
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asked to perform three ESR tests based on the spectrogram. Between each test, training on
sound identification using a spectrogram was also carried out. The detailed procedure is
described below.

First, the procedure for creating the training content is described. Among the environ-
mental sounds measured in Section 4, three different waveforms were prepared for each
of the eight types of sounds described above, for a total of 24 sound source data sets. The
duration of all environmental sounds was 5 s.

The training and experimental procedures are described next. In the training and
experiment, the spectrogram was viewed on the same smart glasses as used in Experiment
II, as shown in Figure 8. As shown in the figure, the real-time display of the spectrogram
can be viewed up to 9 s before the current time, with the time on the vertical axis set
to 9 s. In the study, basic information about the spectrogram was first explained to the
subject. Specifically, the subject was taught that the vertical axis represents time (in seconds),
the horizontal axis represents frequency (in hertz), and the colored bars represent sound
pressure (in decibels). The subjects were shown how each of the sound events is displayed
as flowing in the vertical direction. Note that the spectrogram can be displayed in amplitude
or in decibels, but because previous studies [51] have shown that the decibel notation of
amplitude makes it is easier to interpret the sound visually, the amplitude was displayed
in decibels in this study. The experimental procedure is described below.
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Figure 8. (a) Experimental setup of Experiment I and two examples of the spectrograms:
(b-1) intercom sound and (b-2) alarm sound.

1. Each type of environmental sound was shown to the subjects while they watched the
spectrogram flowing in real time. On the spectrogram, a 5 s waveform prepared as
described above was shown flowing on the time axis from top to bottom. Subjects
could ask to see the 5 s spectrogram again.

2. The subjects took the first test comprising 24 questions. In the test, the subjects wore
smart glasses as in Figure 8a, and the spectrogram was dynamically displayed on the
smart glasses. Note that, although the spectrogram could be viewed again during the
pre-study, in all three main tests, each spectrogram could be viewed only once.

3. After the first test, the spectrogram was again displayed in real time according to the
procedure described in step 1, and the subjects were asked to identify the environ-
mental sound while being shown each spectrogram.

4. The subjects took the second test, following the same procedure as in step 2.
5. The subjects took the third instruction session using the same procedure as in step 1.
6. The subjects took the third test, following the same procedure as in step 2.

The above six steps were carried out by each subject. Note that the three main tests
were conducted on different days.
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5.1.2. Results

The results of the three tests are shown as confusion matrixes in Figure 9 and the
evaluated indices in Table 7. Table 7 shows increased accuracy approaching 1.0 in the three
trials, indicating that subjects were trained to be able to identify environmental sounds from
the spectrogram. Particularly, the accuracy for the third test was as high as 90%, indicating
that ESR during implementation in daily life is likely. Next, it can be seen that the F-scores
of all the environmental sounds increased in the second and third trials. The F-scores of the
tonal sounds, such as alarm, intercom, and human voice, exceeded 90%, indicating that
they were easy to identify from their visually distinguishable patterns. Transient sounds
such as dropping sounds, sounds of opening/closing doors, and knocking on doors had
a smaller F-score than those of the other categories. As can be seen from the example
spectrograms of Figure 4, the diagrams of the transient sounds are very similar, indicating
that they were difficult to distinguish from each other. However, the confusion matrix
shows that within the same transient sound category, for example, a dropping sound was
often misidentified as a door opening or closing sound, indicating that the system was able
to recognize that some sudden sound was occurring even if it was not correct enough to
identify the detailed sound information. For footsteps, the ML-based results often showed
them as silent and produced low F-scores, whereas the present experiment, based on
identification by spectrogram, showed relatively high values. As the transient sounds were
limited to low frequencies, the frequency characteristics were concentrated more on the
left side of the spectrogram, with a short period of about 1 s, and the characteristics of the
periodic occurrence made the identification of footstep sounds relatively easy. The same
discussion as above can be applied to the sound of running water, with a high F-value. A
benefit from supplementing the ML results with the spectrogram appearance is expected.
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Figure 9. Confusion matrix of each of the conditions for the (a) first, (b) second, and (c) third
tests. The sound labels indicate A, alarm; B, intercom; C, dropping object; D, door opening/closing;
E, knocking on the door; F, footsteps; G, running water; H, human voice; and I, not identified. The
shaded parts indicate the number of accurate identification.

Thus, even if it is not possible to precisely recognize detailed information about a
sound, it is at least possible to identify whether the sound is transient or stationary, and
whether it is electronic. This is considered useful in recognizing events occurring in situ
in everyday life. The validity of the complementarity between them is discussed in the
next section.
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Table 7. Recognition accuracy of each of the three tests.

Environmental
Sounds

Accuracy Recall Precision F-Score

Exp-
1st

Exp-
2nd

Exp-
3rd

Exp-
1st

Exp-
2nd

Exp-
3rd

Exp-
1st

Exp-
2nd

Exp-
3rd

Exp-
1st

Exp-
2nd

Exp-
3rd

Alarm

0.70 0.89 0.91

0.82 0.89 0.91 0.80 1.00 0.95 0.81 0.94 0.93

Intercom 0.82 1.00 0.98 0.93 0.98 0.96 0.87 0.99 0.97

Dropping 0.44 0.78 0.76 0.37 0.71 0.72 0.40 0.75 0.74

Opening/closing
door 0.47 0.80 0.87 0.47 0.78 0.80 0.47 0.79 0.83

Knocking on
door 0.53 0.80 0.80 0.62 0.90 0.92 0.57 0.85 0.86

Footsteps 0.80 0.93 0.98 0.82 0.91 1.00 0.81 0.92 0.99

Running water 0.91 0.98 0.98 0.93 0.90 0.94 0.92 0.94 0.96

Human voice 0.82 0.93 0.98 0.80 0.96 0.98 0.81 0.94 0.98

5.2. Experiment II

In this experiment, the effectiveness of the proposed system in daily life was evaluated
by asking subjects to rate the subjective impressions they perceived when using the system.
The ML-based classification results and real-time display of the spectrogram described in
the previous sections were presented on smart glasses to study the possibility of performing
tasks prompted by changes in the surrounding environment.

5.2.1. Method of Experiment

The aim of this experiment was to verify whether normal-hearing people can perform
tasks of daily life in a condition that simulates hearing impairment, become aware of envi-
ronmental sounds, and perform the tasks associated with these sounds. This experiment
was conducted in room C, as described in Section 3 and Table 3.

The experiment was conducted with 15 subjects aged 22–25 years, all of whom had
studied the spectrograms in the previous section. The following two types of experiments
under different conditions were conducted:

1. Exp-II-Ic: Only the ML-based icons were presented on the smart glasses.
2. Exp-II-IcSp: A real-time display of the spectrograms and the ML-based icons were

presented on the smart glasses.

We compared the results of the above two conditions. Subjects wore the following
devices to intentionally create a situation where they would be unlikely to hear nearby
sounds. First, dynamic insert earphones (Etymotic Research, MK5, Elk Grove Village,
IL, USA) were worn, from which white noise was reproduced to mask ambient sounds.
With the earphones inserted into the ear, earmuffs (3M, Peltor H6B/V, Saint Paul, MN,
USA) were worn over the earphones to block the propagation of ambient sound into the
ear. The sound insulation performance of the earmuffs was 21 dB. Finally, smart glasses
were worn to present visual information. Note that the subjects were asked to carry a
backpack containing a laptop PC for processing the information to be displayed on the
smart glasses, an omnidirectional microphone (Rion, NL-62, Tokyo, Japan) for real-time
sound measurement, and an audio interface (Steinberg, UR22mkII) for analog/digital
conversion. A subject with all of the above devices attached performing the standby task of
reading during the experiment is shown in Figure 10. Here, the ML-based icons and the
spectrograms are visible on the smart glasses as shown in Figure 2. The icon is updated
every 3 s. In the real-time display of the spectrogram, the time on the vertical axis is set to
9 s, as in the training conducted in the previous section, and the history from the present to
9 s ago can be checked by the user. Note that Exp-II-Ic and Exp-II-IcSp were conducted
on different days, with Exp-II-IcSp conducted earlier than Exp-II-Ic. As the two tests were
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conducted on different days, the experience of the first experiment was considered to have
a minor influence on the results of the second experiment, but just in case there was a
possibility of habituation of the system and a learning effect on the usage of this system,
Exp-II-IcSp, which was expected to produce relatively high ESR scores by the subjects due
to the relatively large amount of information provided by combining spectrograms and
icons, was conducted first. In addition, to ensure that the learning effect of the spectrogram
did not decrease, the experimental dates were set so that Experiment I and Exp-II-IcSp
were conducted within 1 week of each other.
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5.2.2. Experimental Daily Tasks

This experiment investigated how the accuracy of ESR changes when only ML is used
as a criterion and when both ML and spectrograms are used as criteria, and how the ease
of performing the household tasks was affected by these changes.

First, to verify the accuracy of ESR, during the experiment, subjects were asked to
verbally say the identification result of a sound that was generated at the time, based on
the information presented by the smart glasses. Furthermore, if there is a task associated
with the identified sound, then the subject was also asked to say the task out loud as
well. Note that when this experiment was conducted, only two persons were present
inside room C (the subject and the person in charge of the experiment) to control the
experimental conditions. The person in charge of the experiment deliberately generated
various environmental sounds around each subject. The subjects were instructed to assume
that this person in charge of the experiment was his or her roommate. When the person in
charge generated the environmental sounds, he took care to ensure that the sounds were
generated at a position out of sight of the subject so that the subject could not recognize the
generation of the sounds by sight. Then, the person in charge judged the correctness of the
identification results and created a confusion matrix. The duration of the experiment was
set at around 20 min per session to avoid subject fatigue.

The tasks to be carried out after the recognition of the environmental sounds are
described below. Subjects were instructed in advance to perform the following tasks using
a task list kept at hand so that they could immediately reconfirm the tasks.

1. Set an alarm for the washing machine.

The subject loaded towels into a washing machine and set an alarm for 15 min. The
alarm was attached to the washing machine, and the subject was expected to recognize the
finishing time by the alarm sound.

2. Set an alarm to boil eggs.

Eggs were placed in a pan of water that was then placed on a heated stove until the
water started to boil. After the water started boiling, an alarm was set and the eggs were
boiled for 9 min over medium heat. The 9 min were measured by a different alarm from
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the one used in the washing machine task. When the sound of the alarm was detected, the
subject turned off the heat and peeled the shells off the eggs.

3. Interact with delivery staff.

During the experiment, an intercom was activated by the person in charge. Subjects
recognized the sound and picked up the intercom receiver to identify the visitor.

4. Identify a dropped object.

An object was dropped by the person in charge. Subjects recognized the sound of
something dropping and looked for the dropped object.

5. Open the door in response to a housemate’s knock.

The person in charge knocked on the door. Subjects recognized the knocking sound
and opened the door.

6. Detect the end of the experiment.

The person in charge activated an alarm at the end of the experiment. The subject
recognized the sound and deactivated the alarm.

In addition, subjects were asked to read a book as a standby task while they had
nothing to do (e.g., while waiting for events and activities such as washing and cooking).
As described in the questionnaire below, subjects were also asked to evaluate whether they
could perceive whether the person in charge was in the room based on the information
about the opening and closing of doors, walking in the room, and vocalizations.

After the experiment, the subjects were asked to complete a questionnaire for subjec-
tive evaluation. The 41 items included in the questionnaire are shown in Figure 11.
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Q. 1-9 How easy was it to determine the sound?
Each of the scores for alarm (Q. 1), intercom (Q. 2), falling sound of something (Q. 3), opening/closing sound of door (Q. 4), 
door-knock sound (Q. 5), footsteps (Q. 6), running sound of water (Q. 7), human voice (Q. 8), silent (Q. 9)

EasyDifficult

Q. 40 Did you feel stressed from misleading information?

1 5 10

YesNo

1 5 10

Q. 41 Were you able to comfortably carry out the pre-directed tasks?

YesNo

1 5 10

Q. 37 Which task did you complete? Please choose all that apply.

Cleaning / Boiling egg / Dealing with delivery / Responding to door-knock / Specifying falling thing / Responding to final alarm

Q. 38 Which task were you unable to complete? Please choose all that apply.

Q. 39 Were you able to roughly specify where the cohabitant was?

YesNo

1 5 10

Q. 10-18 Which information did you rely on to specify the environmental sound?
Each of the scores for alarm (Q. 10), intercom (Q. 11), falling sound of something (Q. 12), opening/closing sound of door (Q. 13),
door-knock sound (Q. 14), footsteps (Q. 15), running sound of water (Q. 16), human voice (Q. 17), silent (Q. 18)

ML iconsSpectrogram

1 5 10

Q. 19-27 Which information did you firstly refer to in order to specify the environmental sound? 
If only one of the two items below was referred to when identifying environmental sounds, select that item below. 
Each of the scores for alarm (Q. 19), intercom (Q. 20), falling sound of something (Q. 21), opening/closing sound of door (Q. 22),
door-knock sound (Q. 23), footsteps (Q. 24), running sound of water (Q. 25), human voice (Q. 26), silent (Q. 27)

Spectrogram / ML icon

Q. 28-36 Which information did you finally refer to in order to specify the environmental sound?
If only one of the following two items was referred to when identifying environmental sounds, leave the following blank.
Each of the scores for alarm (Q. 28), intercom (Q. 29), falling sound of something (Q. 30), opening/closing sound of door (Q. 31),
door-knock sound (Q. 32), footsteps (Q. 33), running sound of water (Q. 34), human voice (Q. 35), silent (Q. 36)

Spectrogram / ML icon

Cleaning / Boiling egg / Dealing with delivery / Responding to door-knock / Specifying falling thing / Responding to final alarm

Figure 11. Questionnaire including 41 items used in the subjective evaluation.
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5.2.3. Results and Discussion

The values for the confusion matrix and the evaluation index for each experiment are
shown in Figure 12 and Table 8, respectively. First, the identification results of Exp-II-Ic
are discussed. As shown in Table 8, the tonal sounds, such as alarm, intercom, and human
voice, showed a high recognition accuracy, similar to the ML results in the previous section.
Their F-scores were also high. However, there were a few situations in which the alarm
and intercom sounds were recognized as human voice, and the accuracy was expected to
improve in Exp-II-IcSp. Similarly high F-scores were observed for the sound of running
water. This may have been due to the fact that stationary sounds were less likely to occur
in the dwellings, resulting in less misrecognition. The environmental sounds that were
difficult to recognize in Exp-II-Ic were transient sounds such as footsteps and knocking on
doors. As described in the previous section, the spectrograms of the transient sounds had
characteristics similar to each other, causing much misrecognition of the transient sounds.
In addition, the subject’s own footsteps were sometimes misrecognized, but there is a
possibility [70] that these can be distinguished and removed based on the characteristics of
the footstep sounds of individuals.
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Figure 12. Confusion matrixes for the recognized results of environmental sounds in experiments
(a-1,a-2) Exp-II-Ic and (b-1,b-2) Exp-II-IcSp. Panels (a-2,b-2) indicate the recall indices of Exp-II-Ic
and Exp-II-IcSp, respectively. The labels indicate the following sounds: A, alarm; B, intercom; C,
dropping object; D, opening/closing door; E, knocking on door; F, footsteps; G, running water; and
H, human voice. The shaded parts indicate the number of accurate recognition.

Table 8. Recognition accuracy of each of experiments Exp-II-Ic and Exp-II-IcSp.

Environmental
Sounds

Accuracy Recall Precision F-Score

Exp-II-
Ic

Exp-II-
IcSp

Exp-II-
Ic

Exp-II-
IcSp

Exp-II-
Ic

Exp-II-
IcSp

Exp-II-
Ic

Exp-II-
IcSp

Alarm

0.71 0.88

0.85 1.00 1.00 1.00 0.92 1.00

Intercom 0.74 1.00 0.90 1.00 0.81 1.00

Dropping 0.79 0.88 0.50 0.72 0.61 0.79

Opening/closing door 0.55 0.65 0.42 0.77 0.48 0.70

Knocking on door 0.45 0.82 0.88 0.96 0.59 0.89

Footsteps 0.29 0.50 0.78 0.50 0.42 0.50

Running water 0.84 0.90 0.84 0.95 0.84 0.93

Human voice 0.93 1.00 0.72 0.93 0.82 0.96
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Next, the results of the identification of environmental sounds in Exp-II-IcSp are
discussed. It can be seen from Figure 12 that misrecognition decreased compared to the
results of Exp-II-Ic. As can be seen from Table 8, each index for all environmental sounds
also improved over Exp-II-Ic, and the real-time display of the spectrogram played a role
in assisting recognition. In particular, the F-score of the alarm and intercom sounds was
1, suggesting that they can be recognized without any problems in everyday life. In
contrast, the lowest F-scores for Exp-II-IcSp were obtained for footsteps, as in Exp-II-Ic.
The subject’s own footsteps were sometimes mixed with other environmental sounds,
resulting in misrecognition. In addition, the values of each index were higher for transient
sounds compared to those in Exp-II-Ic, but the index values were still lower compared to
other environmental sounds under the same conditions, indicating that misrecognition
of transient sounds was frequent. Overall, however, Exp-II-IcSp showed higher values
for each of the indicators, showing that the recognition accuracy was higher when the
real-time display of the spectrogram was added than when only the ML recognition results
were presented.

Next, the results of questions 1 to 9 of the questionnaire are shown in Figure 13 to
compare Exp-II-Ic and Exp-II-IcSp for each item. Student’s t-test was used to compare the
two conditions, and a p-value under 0.05 is marked with an asterisk to indicate a significant
difference between them. When Exp-II-Ic and Exp-II-IcSp were compared, the ease of
identification was predominantly improved for the alarm sound, while the other categories
did not indicate any significant difference in the ease of identification. Although the results
of improved accuracy were obtained in Exp-II-IcSp, the subjective evaluation experiment
used difficulty rather than accuracy as the axis of evaluation, so the increased difficulty of
the spectrogram-reading task was evident, and resultantly, the difficulty level remained
the same. In contrast, the environmental sound that significantly increased the difficulty
of identification was footsteps. It can be seen from Table 8 that the precision decreased
from Exp-II-Ic to Exp-II-IcSp, suggesting that other environmental sounds were recognized
as footsteps, which increased the difficulty of recognition. This is a disadvantage of the
increased information in the spectrogram.
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Figure 13. Results of subjective evaluation from questions 1 to 9, which represent the easiness of
identifying each sound category. Larger (smaller) scores indicate that the subjects reported that it was
easier (more difficult) to identify the sound. Outliers more than 1.5 interquartile ranges above the
upper quartile (75%) or below the lower quartile (25%) are indicated as small circles.

Next, the results of questions 10 to 18 are shown in Figure 14. This figure shows
whether each environmental sound category was recognized by the ML-based icon or
the spectrogram. The results indicate that for the alarm, intercom, door knocking, and
running water sounds, the spectrogram was the main basis for identification. For the other
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environmental sounds, they did not rely on either one or the other but were considered to
be referring to both of them.
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The results of questions 19 to 36 are shown in Figure 15. This figure shows whether
ML-based icons and the spectrograms were used first or last when recognizing each
environmental sound. These results indicate that many subjects referred only to the
spectrogram or in the order of the spectrogram first and the ML-based icon last for the alarm,
intercom, and running water sounds, which can be easily identified by the spectrogram. It
is thought that many subjects identified the sound of door knocking from the spectrogram,
because the door was knocked on three times. Thus, for sounds with clear frequency
characteristics and periodicity, the spectrogram is considered able to easily identify their
characteristics. In contrast, many subjects formed judgements only by the ML-based
icons with regard to speech, which is thought to be due to the high accuracy of the ML
classification. Moreover, many subjects referred only to the ML-based icons for dropping
sounds, door opening/closing sounds, and footsteps, because recognition of these transient
sounds by spectrogram is difficult. The results in the previous section also showed that the
recognition of these transient sounds was difficult, which is attributed to misrecognition
by ML.
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Figure 15. Results of subjective evaluation for questions 19 to 36. The distribution indicates whether
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The results of questions 37 and 38 are shown in Figure 16. First, it can be seen
that more subjects were able to complete Exp-II-IcSp than Exp-II-Ic, with the exception of
identifying dropped objects. In particular, all subjects were able to complete the tasks related
to environmental sounds that were identified more accurately, such as washing clothes
(alarm), responding to deliveries (intercom), and clearing the alarm at the end of the task.
In terms of response to the sound of door knocking, more subjects were able to complete
the task because they were able to recognize the sound. However, many subjects were
still unable to complete tasks related to transient sounds, such as the identification of door
knocking and dropped objects, and this was attributed to the fact that their identification
accuracy was lower than that of other environmental sounds.
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Figure 16. Results of subjective evaluation of questions 37 and 38. The distribution indicates the
number of subjects who were able to complete (Q. 37) or not able to complete (Q. 38) the household
task related to each of the recognized sounds.

The results of questions 39 to 41 are shown in Figure 17. First, the results of question
39 (Figure 17a) show that in both the Exp-II-Ic and Exp-II-IcSp experiments, the under-
standing of the location of the person in charge was high and did not differ from each
other. The results of question 40 in Figure 17b show that both Exp-II-Ic and Exp-II-IcSp
had a large variation, and although the stress felt when the environmental sound was
wrong appeared to vary from individual to individual, there was no statistically significant
difference between Exp-II-Ic and Exp-II-IcSp. Finally, with regard to the comfort felt by
the subjects, the results of question 41 (Figure 17c) show a significant difference (p < 0.05)
between Exp-II-Ic and Exp-II-IcSp, indicating that the improvement in recognition accuracy
improved comfort.



Sensors 2023, 23, 7616 30 of 33

Sensors 2023, 23, 7616 30 of 34 
 

 

understanding of the location of the person in charge was high and did not differ from 
each other. The results of question 40 in Figure 17b show that both Exp-II-Ic and Exp-II-
IcSp had a large variation, and although the stress felt when the environmental sound was 
wrong appeared to vary from individual to individual, there was no statistically signifi-
cant difference between Exp-II-Ic and Exp-II-IcSp. Finally, with regard to the comfort felt 
by the subjects, the results of question 41 (Figure 17c) show a significant difference (p < 
0.05) between Exp-II-Ic and Exp-II-IcSp, indicating that the improvement in recognition 
accuracy improved comfort. 
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was able to identify the location of the cohabitant (Q. 39), (b) whether the subject felt stressed from 
misleading information (Q. 40), and (c) whether the subject was able to comfortably carry out the 
pre-defined tasks (Q. 41).  

The results of the last three questions showed no statistical differences between Exp-
II-Ic and Exp-II-IcSp with regard to the identification of the cohabitant location and the 
stress felt by the subjects, but the final comfort level was found to have improved. This 
may be due to the fact that, in particular, the combination of both the ML-based icon and 
the spectrogram increased the information available to the test subjects on which to base 
their decision about the identity of the environmental sounds, and thus also gave them 
more degrees of freedom in their judgments. In this study, the advantages and disad-
vantages of both the ML-based icons and the spectrogram could be distinguished, and the 
improvement in comfort when they are used together was confirmed. The findings ob-
tained in this study are expected to contribute to the development of environmental sound 
displays for DHH people in the future. As mentioned in the limitations of this paper (Sec-
tion 3.3), the future development of hardware will contribute significantly to the improve-
ment of technology to support people with hearing impairments. 

6. Conclusions 
With the aim of supporting DHH people in terms of environmental sound detection 

in their dwellings, evaluation experiments on ESR using a visualization device were con-
ducted. The results showed that the proposed AR visual presentation system, which com-
bines an ML-based icon that classifies the environmental sounds and a real-time dynamic 
display of spectrograms, improved the comfort of daily life in household spaces by com-
bining not only the ML classification results but also the real-time display of spectrograms, 
some of which can be interpreted by non-experts after training. 
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Figure 17. Results of subjective evaluation of questions 39 to 41 (* p < 0.05): (a) whether the subject
was able to identify the location of the cohabitant (Q. 39), (b) whether the subject felt stressed from
misleading information (Q. 40), and (c) whether the subject was able to comfortably carry out the
pre-defined tasks (Q. 41).

The results of the last three questions showed no statistical differences between Exp-
II-Ic and Exp-II-IcSp with regard to the identification of the cohabitant location and the
stress felt by the subjects, but the final comfort level was found to have improved. This may
be due to the fact that, in particular, the combination of both the ML-based icon and the
spectrogram increased the information available to the test subjects on which to base their
decision about the identity of the environmental sounds, and thus also gave them more
degrees of freedom in their judgments. In this study, the advantages and disadvantages of
both the ML-based icons and the spectrogram could be distinguished, and the improvement
in comfort when they are used together was confirmed. The findings obtained in this study
are expected to contribute to the development of environmental sound displays for DHH
people in the future. As mentioned in the limitations of this paper (Section 3.3), the future
development of hardware will contribute significantly to the improvement of technology
to support people with hearing impairments.

6. Conclusions

With the aim of supporting DHH people in terms of environmental sound detec-
tion in their dwellings, evaluation experiments on ESR using a visualization device were
conducted. The results showed that the proposed AR visual presentation system, which
combines an ML-based icon that classifies the environmental sounds and a real-time dy-
namic display of spectrograms, improved the comfort of daily life in household spaces by
combining not only the ML classification results but also the real-time display of spectro-
grams, some of which can be interpreted by non-experts after training.
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