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Abstract: Measurement of real-world physical activity (PA) data using accelerometry in older adults
is informative and clinically relevant, but not without challenges. This review appraises the reliability
and validity of accelerometry-based PA measures of older adults collected in real-world conditions.
Eight electronic databases were systematically searched, with 13 manuscripts included. Intraclass
correlation coefficient (ICC) for inter-rater reliability were: walking duration (0.94 to 0.95), lying
duration (0.98 to 0.99), sitting duration (0.78 to 0.99) and standing duration (0.98 to 0.99). ICCs for
relative reliability ranged from 0.24 to 0.82 for step counts and 0.48 to 0.86 for active calories. Absolute
reliability ranged from 5864 to 10,832 steps and for active calories from 289 to 597 kcal. ICCs for
responsiveness for step count were 0.02 to 0.41, and for active calories 0.07 to 0.93. Criterion validity
for step count ranged from 0.83 to 0.98. Percentage of agreement for walking ranged from 63.6%
to 94.5%; for lying 35.6% to 100%, sitting 79.2% to 100%, and standing 38.6% to 96.1%. Construct
validity between step count and criteria for moderate-to-vigorous PA was rs = 0.68 and 0.72. Inter-rater
reliability and criterion validity for walking, lying, sitting and standing duration are established.
Criterion validity of step count is also established. Clinicians and researchers may use these measures
with a limited degree of confidence. Further work is required to establish these properties and to
extend the repertoire of PA measures beyond “volume” counts to include more nuanced outcomes
such as intensity of movement and duration of postural transitions.

Keywords: real-world; validity; reliability; responsiveness; accelerometry; older adults

1. Introduction

Physical activity (PA) has been defined as “any bodily movement produced by skele-
tal muscles that requires energy expenditure” [1]. An increase in PA in older adults is
associated with improved muscular strength [2], lower risk of disability [3], and may also
protect against cognitive decline [4]. The beneficial effects of PA on functional tasks such as
walking in older adults have also been reported [5,6], which is important given that loss
of functional ability is associated with functional dependence [7,8] and can lead to social
isolation [9] and malnutrition among older adults [10].

Measurement of physical activity in older adults is therefore informative and relevant.
The use of body-worn sensors (wearables) to objectively quantify PA is a welcome ad-
vancement in the field, given the potential for inaccuracy and bias inherent in self-reported
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data from questionnaires which are most commonly used [11]. Wearables are defined as
devices that can be worn on the skin or attached to clothing to continuously and closely
monitor an individual’s activities, without interrupting or limiting the user’s motions
(adapted from [12]). Wearables typically incorporate accelerometers to enable continuous
(usually seven days), unobtrusive monitoring in real-world environments [13]. Real-world
environments generally include the home (which could be retirement villages) and other
free-living environments such as parks and cafes, etc. This confers an advantage over
data collected in controlled or simulated environments which may have observational
bias and other influences [13,14] and are not reflective of real-world conditions [15,16].
Data collected and processed in a controlled laboratory environment, which is usually
shorter than those collected in real-world settings, is not reflective of the data collected and
processed in real-world environments, especially for older adults [17].

Associated with this advance is the development of novel outcomes from accelerome-
try data. Frequency counts (e.g., number of sit-to-stand transitions in a day), intensity (e.g.,
stroll versus run), pattern (accumulation of bouts of walking), and within-person variability
give more information than simple volume measures (e.g., total amount of walking time)
and therefore provide a greater understanding of the composition of physical activity and
the association between it and functional tasks [18].

Several challenges to capturing real-world PA data have been identified. Measurement
accuracy in older adults is compromised by the use of walking aids, slower gait, lower level
of physical activity intensity, reduced cognitive ability and reduced adherence with research
instructions, thus posing technical challenges to detection and capture of movement and
analysis [13,19]. Moreover, hardware-related costs and technical competency in dealing
with interpretation of accelerometry data, could further add to these challenges [20].

Despite these constraints, there has been a marked increase in accelerometry-based PA
research including large-scale, population-based studies (e.g., [21,22]) which in turn has
led to issues related to the robustness of these metrics—how reliable, valid and responsive
are they? Few studies have examined these questions in-depth (e.g., [23,24]). A recent
review update reported that consumer-grade activity trackers tend to overestimate step
count (167.6 to 2690.3 steps per day), with slower and impaired gait reducing the level
of agreement (<10% at gait speeds of 0.4–0.9 m/s for ankle placement) with reference
methods (e.g., ActiGraph) [25]. However, that review included both laboratory and real-
world environments, which limits generalizability. Wearables need to be validated under
conditions representative of their intended use, that is, in real-world environments [15,16].

In view of the questions that arise from this rapidly expanding field, a synthesis
of current research concerning accelerometry-based PA measurement using wearables is
required. We posit three key questions: (a) Which PA movements (e.g., sitting, standing,
walking) are reliably and validly measured using accelerometers in community-dwelling
older adults in real-world conditions? (b) Is the measurement of these PA movements
able to show change? (c) How were these PA movements quantified in terms of the type,
number, and location of the accelerometers, and duration (time spent) of monitoring? We
also report on adherence, usability, and acceptability for wearables where reported.

2. Materials and Methods

This systematic review followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [26] and was registered with the National Health
Service PROSPERO database under the registration number: CRD42021228010.

2.1. Search Strategy

Systematic searches were conducted across the following eight databases: AMED,
CINAHL, Embase, IEEE, Medline, PsycINFO, Web of Science and Scopus. In addition
to the above databases, reference lists of review articles and included studies were hand
searched to identify additional relevant studies. The search criteria were limited to studies
conducted in the English language. An initial search included articles published between
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1 January 2010 and 18 January 2021. A follow-up search was conducted on 25 Novem-
ber 2022. A lower limit of 2010 was chosen given the rapid technological advancement
in the design and development of accelerometers which are not comparable to those
currently used.

The search terms were grouped into four categories and searched in the following
sequence: (a) accelerometry/wearable devices (MESH term used—“Fitness Trackers”,
“Accelerometry or Actigraphy”, “Wearable Electronic Devices”) (b) physical activity (MESH
term used—“exercise”, “running”, “swimming”, “walking”, “motor activity”, “freezing
reaction”, “cataleptic”) (c) older adults (MESH term used—“aged”, “aged, 65 and over”)
(d) clinimetric properties (MESH term used—“reproducibility of results”, “sensitivity and
specificity”). Further details of the search strategy are provided in Supplementary Table S1.

2.2. Inclusion and Exclusion Criteria

Table 1 shows the eligibility criteria that were employed in this review.

Table 1. Eligibility criteria for article selection in this review.

Factors Inclusion Criteria Exclusion Criteria

Language published in the English language published in any other than
English

Time frame 1 January 2010 to 25 November 2022 not applicable

Setting living in the community and including those in
retirement villages

studies only including participants from aged
residential care settings, including supported

living, assisted living, nursing homes, care homes

Topic
data were collected in a real-world environment;

studies that reported at least one clinimetric
property—reliability, validity, responsiveness

studies in which PA were not objectively quantified
using accelerometry; studies not concerned with

PA metrics; studies that only reported only
qualitative data; studies that only investigated
disease-specific populations, e.g., Parkinson’s

Disease, Alzheimer’s Disease, stroke; studies that
only include laboratory-based measurement

Population aged 65 years and above children;
adults < 65 years

Publication type

peer-reviewed publications; randomized controlled
studies, cross-sectional and longitudinal (retrospective

and prospective) quantitative studies, case–control
studies

conference abstracts; posters; study protocols;
reviews; meta-analyses; grey literature

2.3. Data Extraction and Abstraction

All searches were imported and screened for duplicates in EndNote X9 (Version 3.3).
The titles were initially screened by KAJ in EndNote X9, then the selected titles and their
respective abstracts were exported as a CSV file and imported into a web-based systematic
review software—Rayyan [27]. Thereafter, the remaining abstracts were screened by
two reviewers (RMA & KAJ) in a blinded process. Disagreements over inclusion were
adjudicated and resolved by a third reviewer (SL). Reasons for exclusion were recorded for
abstracts based on the inclusion/exclusion criteria. Following the abstract screening, the
remaining full texts were independently reviewed by two reviewers (RMA & KAJ).

A data extraction form was used to standardize the information extracted from each
article. KAJ extracted the data which were verified by RMA.

2.4. Clinimetric Properties

Inter-rater reliability was established as the degree of agreement between two indepen-
dent observers of duration of activities from videos and reported as intra-class correlation
(ICC, 95% CI). Relative reliability was established as the degree of agreement in terms of
ranks or position of individuals within a group and reported as intra-class correlation (ICC,
95% CI). Absolute reliability was established as the degree of agreement in terms of precision
of the individual measurements and reported as minimal detectable changes (that was
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calculated using standard error of measurement). Responsiveness was established as the
ratio between minimally clinically important change on the measure and mean squared
error of the response obtained from an analysis of variance model and reported as Guyatt’s
responsiveness (GR) coefficient [28].

Criterion validity was established either as agreement between a gold standard ref-
erence and accelerometry or as percentage of agreement between video observation and
accelerometry and was reported as ICC or as F-Score (for comparison between different
algorithms) or as sensitivity, specificity, accuracy, precision, or positive predictive values.

Bland–Altman plots [28–31] or modified Bland–Altman plots [32,33] described limits
of agreement and systemic errors. Construct validity was tested between step counts and
moderate-to-vigorous PA and was reported as correlation, rs (Spearman’s Rho).

2.5. Risk of Bias Assessment

The Appraisal tool for Cross-Sectional Studies (AXIS) checklist was used to evaluate
the risk of bias for all studies included in this review [34]. Two reviewers (RMA and
KAJ) independently assessed the quality of the studies, with a third reviewer (SL) settling
any disagreements.

3. Results
3.1. Study Selection

The initial search identified 13,872 records, of which 6206 duplicates were removed.
The remaining 7666 titles were screened, resulting in 768 records carried through to abstract
review. The updated search conducted on the 25th of November 2022 identified 3179 records,
of which 1455 duplicates were removed. The remaining 1724 titles were screened by KAJ
resulting in 144 records for the abstract stage (Figure 1). Two reviewers (RMA and KAJ)
screened the abstracts based on the inclusion and exclusion criteria and identified 79 records
for full-text review. Thirteen records passed through to the final full-text review stage. Two
further publications were retrieved from reference lists, one of which was classified as a
Research Letter. Reasons for exclusion included study setting other than “real-world” such
as a semi-structured or simulated real-world environment (n = 24); PA metrics relevant
to the review were not reported (n = 16); or the study did not report any clinimetric data
(n = 12). EndNote was used to index all records.
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3.2. Quality of Studies

Thirteen studies included in this review achieved a minimum score of 70% (i.e., 12 out
of a possible 17) based on the AXIS toolkit (Table 2). Thus, two studies were excluded from
the review due to methodological weaknesses [35,36].

Table 2. Methodological quality assessment of selected articles based on AXIS checklist [34].

Ref. Q1 Q2 Q3 Q4 Q5 Q6 Q7 1 Q8 Q9 Q10 Q11 Q12 Q13 1 Q14 1 Q15 Q16 Q17 Q18 Q19 2 Q20 Total
Score

[37] 1 1 0 0 1 0 - 1 0 1 1 1 - - 1 1 1 1 1 1 13
[36] 1 1 0 0 0 0 - 0 1 1 0 1 - - 1 1 1 1 1 1 11
[38] 1 1 0 0 0 0 - 1 1 1 1 1 - - 1 1 1 1 1 1 13
[31] 1 1 0 0 1 0 - 1 1 1 1 1 - - 1 0 1 1 1 1 13
[39] 1 1 0 0 0 0 - 1 1 1 1 1 - - 1 1 1 1 1 1 13
[32] 1 1 0 0 1 0 - 1 1 1 1 1 - - 1 1 1 1 1 1 14
[40] 1 1 0 0 0 0 - 1 1 1 0 1 - - 1 1 1 1 1 1 12
[29] 1 1 1 1 0 0 - 1 1 1 1 1 - - 1 1 1 1 1 1 15
[41] 1 1 0 1 0 0 - 1 1 1 1 1 - - 1 1 1 1 1 1 14
[28] 1 1 1 1 0 0 - 1 1 1 1 1 - - 1 1 1 1 1 1 15
[30] 1 1 0 1 1 0 - 1 1 1 1 1 - - 1 1 1 0 0 1 13
[42] 1 1 0 0 1 0 - 1 1 1 1 1 - - 1 1 1 0 1 1 13
[35] 1 1 0 1 1 0 - 0 0 0 0 0 - - 1 1 1 1 1 1 10
[33] 1 1 0 1 1 1 - 1 1 0 0 1 - - 1 1 1 1 1 1 14
[43] 1 1 0 1 1 0 - 1 1 0 0 1 - - 1 1 1 1 1 1 13

Note: “Q” refers to question. So “Q1” implies “Question 1”. Each 1’s, which are in green fonts, represents an
affirmative appraisal score for that question, while each 0’s, which are in red fonts, represents a negative appraisal
score for that question. Please see Downes et al. [34] for more details. 1 These questions related to non-responders
were not included in the tabulation of the scores. 2 A negative response to this question “Were there any funding
sources or conflicts of interest that may affect the authors’ interpretation of the results?” is taken as a score of “1” and
vice versa.

3.3. Characteristics of the Studies

All studies bar one recruited a Caucasian population [43]. The mean age of the total
sample was 74.9 ± 6.1 years, and 62.4 ± 20.2% were females. Participants over 80 years of age
who were included (n = 45), were mainly frail but ambulant [32,33,41,43]. Participants were
recruited either through ongoing studies or advertisement (letter, flyer, word-of-mouth, etc.)
or through convenience sampling from senior citizen centers. The sample sizes ranged from 5
to 50 participants. All 13 studies used wearable sensors incorporating a tri-axial accelerometer
with an average duration of 108.2 ± 128.8 h of data. Four studies investigated duration of
physical activities such as sitting, standing, walking and lying [33,37,40,41], three investigated
only walking (gait) bouts [32,38,42], and six studies focused mainly on step counts as their key
outcome measures [28–31,39,43]. Two studies used only proprietary accelerometers [32,41],
one included both proprietary and commercially available accelerometers [37], and ten stud-
ies used commercially available accelerometers. Four studies reported inter-rater reliability
(n = 63) [33,37,40,41] and one study reported relative reliability, absolute reliability and responsive-
ness (n = 50) [28]. Twelve studies reported criterion validity (n = 321) with one study reporting
construct validity (n = 30) [39]. All 13 studies (total n = 351) were cross-sectional validation
studies and were from Australia (n = 62) [30,39], Israel (n = 12) [38], Japan (n = 44) [43], The
Netherlands (n = 25) [40,41], New Zealand (n = 38) [32,33], Norway (n = 16) [37], Slovenia
(n = 50) [28], Switzerland (n = 37) [42], UK (n = 25) [29] and USA (n = 35) [31] (Tables 3 and 4).

Table 3. Sample size and basic demographic information of each population from the studies included
in the systematic review.

Study Sample Size (n) Mean Age (yrs) ± SD Female (%)

Awais et al., 2021,
Norway [37] 20 * 76.4 ± 5.6 75.0

Brand et al., 2022, Israel [38] 12 76.1 ± 7.3 75.0

Briggs et al., 2022, US [31] 35 73.7 ± 6.3 6.0
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Table 3. Cont.

Study Sample Size (n) Mean Age (yrs) ± SD Female (%)

Burton et al., 2018,
Australia [39] 30 74.20 ± 5.78 64.5

Chigateri et al., 2018, New
Zealand [32] 23 80.5, range: 75–92 74.0

Dijkstra et al., 2010,
Netherlands [40] 5 73.0 ± 6.2 80.0

Farina et al., 2018, UK [29] 25 72.5 ± 4.9 48.0

Geraedts et al., 2015,
Netherlands [41]

Frail (n = 7);
Non-frail (n = 13)

Frail (84.1 ± 2.6);
Non-frail (77.3 ± 5.5) Frail (100%); Non-frail (61.5%)

Kastelic et al., 2021,
Slovenia [28]

16 (Polar Vantage M);
17 (Garmin Vivoactive 4s);

17 (Garmin Vivosport);
74.0 ± 5.0

56.3 (Polar Vantage M);
70.6 (Garmin Vivoactive 4s);

58.8 (Garmin Vivosport);

Paul et al., 2015, Australia [30] 32 67.7 ± 5.7 63.0

Soltani et al., 2020,
Switzerland [42] 37 64.0 ± 11.0 51.3

Taylor et al., 2014,
New Zealand [33]

Independent (15);
Long-term care (7)

Independent (87.9 ± 5.1);
Long-term care (88.3 ± 5.3)

Independent (78.6%);
Long-term care (85.7%)

Yamada et al., 2018,
Japan [43]

With sporting habits (9);
Without sporting habits (19);

Frail (16)

With sporting habits (71 ± 5);
Without sporting habits
(74 ± 7); Frail (84 ± 8))

With sporting habits (33.3%);
Without sporting

habits (68.4%);
Frail (50%)

* Only 16 were analysed.



Sensors 2023, 23, 7615 7 of 30

Table 4. Design, settings and aims of studies included in the systematic review.

Study Design and Settings Aims Inclusion Criteria Exclusion Criteria Strengths of Study Limitations of Study

Awais et al. [37]

Cross-sectional—
validation study; dataset

(ADAPT) used
in the study was based

on Bourke et al. 1

All free-living activities
were performed in

participants’ homes.

To use deep learning
approach to classify

physical activity, and to
compare the performance of
the deep learning approach

with classical machine
learning approach.

Algorithms tested were
PAC-LSTM, PAC-All-Feat,
PAC-CFS, PAC-FCBF and

PAC-ReliefF.

Aged 65 years and over;
able to walk 100 m without

walking aids;
accepts oral instructions;

living independently.

ND *

Study included
a well annotated
dataset of older

people in
free-living
conditions.

Dataset was not large for
machine learning and deep

learning type of studies.

Brand et al. [38]

Cross-sectional—
validation study;

free-living measurements
were carried out in

participants’
homes and in the

community.

To detect gait from wrist
worn tri-axial accelerometer
recordings of daily living of

older adults, using an
anomaly detection

algorithm and compared its
performance to four

previously published gait
detection algorithms.

ND * ND * ND *

The current study
did not investigate
shorter gait bouts

(<6 s).

Briggs et al. [31]

Cross-sectional—
validation study;

free-living measurements
were carried out in

participants’ homes and
in the community.

To determine the content
validity of the Garmin

Vivosmart HR compared to
ActiGraph GT3X+ for the

domains of daily step count
and MVPA 2.

Veterans aged ≥65;
able to perform ADL;

able to follow instructions
in a group setting;

free from ischemic heart
and severe lung diseases.
Does not require walking

assists devices;
able to provide
written consent.

ND * ND *

The participants were
mainly male—this limits the

generalizability
of the findings.
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Table 4. Cont.

Study Design and Settings Aims Inclusion Criteria Exclusion Criteria Strengths of Study Limitations of Study

Burton et al. [39]

Cross-sectional—
validation study;

laboratory validation was
carried out in outside

research lab with walking
space, e.g., hallway.

Free-living measurements
were carried out in

participants’ homes and
in the community.

To test the
reliability and
validity of two

fitness trackers (Fitbit Flex
and Fitbit ChargeHR) by
step count when worn by

older community-
dwelling people.

Aged 65 years and over;
living in Perth;

owns a smart phone
or tablet;

understands English and
no medical condition which

made participation in the
study unsafe (i.e., must be

able to walk for a minimum
of 2 min unassisted).

ND *

First study investigating an
older population in both

laboratory and free-living
(over 14 days) environments

using the Fitbit Flex and
Fitbit ChargeHR.

Reference device
(GENEactiv) did not

quantify exact parameter
(step count) as devices

being validated.
Limited generalizability as

participants were
older with good mobility.

Chigateri et al. [32]

Cross-sectional—
validation study; scripted
and unscripted task were

performed in
participants’ homes.

To validate the performance
of uSense in detecting

non-sedentary activities,
differentiating

walking and non-walking
episodes for frail older

people aged 75 years and
above in

free-living
environment.

Aged ≥75;
the ability to walk

independently with or
without a walking aid for a

minimum of 20 m.

Any significant medical,
orthopaedic or

neurological conditions
that would contraindicate
normal activity, e.g., acute

inflammatory arthritis,
pneumonia, unstable or

acute heart failure,
allergy to surgical

adhesive tape.

ND *

Waist-worn sensor unable
to discriminate sitting and

standing postures.
Shuffling from walking

were not explicitly
differentiated.

Dijkstra et al. [40]
Cross-sectional—data

collected at
participants’ homes.

To determine the accuracy
of the DynaPort system for

detecting gait (walking,
shuffling) and postures

(lying, sitting, standing) in
community-dwelling older

adults during activity
sequences in a

home environment.

ND *

Impairments or diseases
(e.g., orthopaedic,

neurological) that could
affect the performance of

daily activities such as
walking, getting in and

out of a chair or bed.

ND *

Study was based on large
number of fairly short
activities. Results may

further improve during
prolonged monitoring when
older adults are expected to

have longer periods of
sedentary activity.
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Table 4. Cont.

Study Design and Settings Aims Inclusion Criteria Exclusion Criteria Strengths of Study Limitations of Study

Farina et al. [29]

Cross-sectional—
validation study;

validation was carried out
in the research lab.

Free-living measurements
were carried out in

participants’ homes and
in the community.

To validate two
commercially available

devices (Misfit Shine and
Fitbit Charge HR) against

two well-validated
research-grade, tri-axial

activity monitors
(ActiGraph GT3X+ and

New Lifestyle NL2000i) in
community-dwelling older

adults in free-living
conditions.

To determine whether the
Misfit Shine, which is

designed to be worn on the
wrist or waist, is valid to

wear on one or
both locations.

Community-dwelling
older adults;
aged 65–84

Not independently
ambulatory or use of a

walking aid
(self-reported).

ND *

The accuracy of the
consumer-level devices is
based upon the agreement

with existing reference
devices that assumes

validity in an
older population.

The population was
composed solely of healthy

older adults who were
independently ambulatory,

thus might not be
generalizable on frail

older populations.
Did not have objective

means to determine
whether participants wore
the device in accordance

with the protocol.

Geraedts et al. [41]

Cross-sectional—
validation study; all data

collected at
participants’ homes.

To assess the validity of a
sensor-based method to

detect time-on-legs
(standing) and daily life

mobility related postures in
older adults based on a

necklace-worn
motion sensor.

To evaluate user opinion
about the practical use of

the sensor.

Community-dwelling or
living in an older adult

home;
aged ≥70 years;

able to walk 10 m
without support or with a

cane or walker.

Orthopaedic impairments
that debilitate the ability
to walk unsupported for

ten metres;
total hip or knee

replacement surgery in
the previous six months;

having had a stroke
within the last six months;
Parkinson’s disease stage
4/5 or other neurologic
diseases that can impair

daily functioning or
visual problems to a
degree that make it
impossible for the

participant to accurately
read the questionnaires or

walk around safely.

Validation was carried out
in semi-structured home

environment and not in lab
settings. Both frail and

non-frail participants were
included in the study.

Free living data collection
was limited to 30 min only.
Outdoor activities, such as

cycling was not
included in study.

Participants performed
movements in a rushed

manner to complete several
tasks which has an impact

on accuracy.
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Table 4. Cont.

Study Design and Settings Aims Inclusion Criteria Exclusion Criteria Strengths of Study Limitations of Study

Kastelic et al. [28]

Cross-sectional—
validation study;

free-living measurements
were carried out in

participants’
homes and in

the community.

To explore the validity,
reliability and sensitivity to

change of movement
behaviors metrics from
three activity trackers in

free-living conditions when
worn by older adults

Aged ≥60 years;
able to walk

independently without
mobility aids;

absence of substantial
(self-reported)

neurological and
cognitive impairments

ND *

Approach included key
measurement of properties

of three commonly used
activity trackers, in both

controlled and free-living
environments.

Results cannot be
generalized to other

populations, e.g., the older
adult population with

physical impairments that
significantly affect

ambulation.
The use of research-grade

monitor ActiGraph as
a convergent measure as the
ground-truth for free-living

tasks was not ideal.
Inability to define the level

of user’s physical
activity/fitness within the

proprietary wearables could
have affect the

computed outputs.

Paul et al. [30]

Cross-sectional—
validation study; all data

collected at
participants’ homes.

To investigate the criterion
validity of Fitbit step counts
compared to (i) visual count

and (ii) ActiGraph
accelerometer

step counts.
To investigate the accuracy
of ActiGraph step counts

compared to visual count in
community-dwelling

older people.

Aged over 60 years;
lived at home;

were regular (weekly) users
of the internet via a
computer or tablet

device and
left their house regularly (at

least once per week)
without physical assistance

from another person.

Were housebound;
had a cognitive

impairment.
diagnosis of dementia or
a Memory Impairment

score < 5;
had insufficient

English language skills to
fully participate in

the programme;
had a progressive

neurological condition or
a medical condition
precluding exercise;

were currently
participating in 150 min

of moderate intensity
physical activity

per week and
had undergone a fall risk

assessment in the past
year with subsequent

adoption of
recommendations.

ND * ND *
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Table 4. Cont.

Study Design and Settings Aims Inclusion Criteria Exclusion Criteria Strengths of Study Limitations of Study

Soltani et al. [42]

Cross-sectional—
validation study;

free-living measurements
were carried out in

participants’ homes and
in the community.

To investigate the accuracy
and precision of

an algorithm
designed to detect gait

bouts in
free-living conditions

using a single
three-dimensional

accelerometer on a wrist,
and on older adults.

ND * ND * ND * ND *

Taylor et al.
[33]

Cross-sectional—data
collected at retirement

village and
participants’ homes.

To evaluate the validity of
the DynaPort MoveMonitor
system for detection of gait
and postures (sitting, lying,

standing) in people aged
>80 years, using video

observation as the
reference measure.

Aged >80 years; were living
in either independent or in

long-term care (nursing
home) facilities at the

retirement village;
able to transfer and walk

independently with or
without a walking aid.

ND * ND *

The use of scripted test
protocol could have

increased error when testing
short activity bouts. In real

life, transitions are less
common, and the duration
of activity bouts, especially

inactivity, is longer.
Therefore, the unscripted
test protocol might better
reflect the accelerometer’s

validity for everyday
activity recognition than the
short activity bouts used in
the scripted test protocol.

Yamada et al. [43]
Cross-sectional—data

collected at
participants’ homes.

To examine the validity of a
triaxial accelerometer in
estimating total energy

expenditure and physical
activity levels in older
adults with the doubly
labelled water method.

Aged >64;
weight is stable.

On medications known to
affect weight, kidney

function, or metabolism
ND *

Participants were recruited
from ongoing health and

physical function check-up
cohort and institutionalized
people. The participants of
the annual check-up tend to
have high motivation to be
active to prevent decrease in

physical function. Small
sample size for

generalisability. Selection
bias may have occurred.

* ND—not described. 1 Bourke et al. [44,45]. This was based on 20 subjects who included obese older adults. Data for the 16 involved in the free-living studies alone not provided.
2—moderate-vigorous physical activity.
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3.4. Study Protocol

Study protocols for validity testing varied with respect to the reference standard, the
outcome of interest, environment and duration of testing, as well as the location of sensors.

3.5. Reference Standard

Six studies validated consumer-grade wearables with research-grade reference ac-
celerometers [28,29,31,38,39,42]. Five of the studies used the video/visual method as their
“gold standard” for their validation reference [32,33,37,40,41]. One study used both video
as well as research-grade reference accelerometers [30]. One study used the doubly labelled
water (DLW) method as their reference for their validation [43] (Table 5). The DLW method
is an established technique for measuring energy expenditure. This method is based on the
estimation of the rate of CO2 elimination from the body [46].

3.6. Outcomes

Step count was reported as the main outcome in six studies [28–31,39,43]. Three
studies focused on gait bouts [32,38,42], whilst the duration of walking, sitting, standing
and lying was reported in the remaining four studies [33,37,40,41] (Table 5).

3.7. Environment

Nine studies collected and validated real-world accelerometry data exclusively within
the participants’ home/retirement village environment [29–32,37,38,41–43]. One study
investigated criterion validity in a controlled setting within a retirement village as well as in
participants’ home environment [33]. Dijkstra and colleagues investigated criterion validity
in the laboratory environment with 20 participants and also carried out further validation
in a real-world home environment with five participants [40]. Burton and colleagues
investigated intra-rater reliability using the two-minute-walk test (2MWT) in a laboratory
environment, but construct validity in the home [39]. Kastelic and colleagues conducted
a test battery that included common real-life tasks, within the laboratory environment as
well as an uncontrolled free-living study [28]. For the purposes of this review, we have
included only the home or free-living environment data in our analysis.

3.8. Duration of Wear

Duration of wear was mixed among the studies and ranged from 14 days duration to
under 10 min: <10 min (n = 45) [32,33]; 30 min (n = 25) [40,41]; 100 min (n = 16) [37]; 12 h
(n = 37) [42]; two days (n = 35) [31]; four days (n = 50) [28]; seven days (n = 57) [29,30];
ten days (n = 12) [31] and 14 days (n = 74) [39,43]. None of the studies exceed the 14-day
duration. Duration of wear was influenced by the choice of criterion in the sense that
studies relying on research-grade accelerometers [28–31,39,42] and DLW method [43] as
their reference standard captured un-instructed daily activities (excluding water activities)
during waking hours and exceeded a 12 h period. By contrast, studies that employed
video or direct observation as reference [32,33,37,40,41] limited their duration of real-world
observation to a maximum of 100 min, with two studies capturing less than 10 min of
activities [32,33] (Supplementary Table S2).
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Table 5. Clinimetric properties and methods of studies included in the systematic review.

Study Brand of PA Instrument Testing Protocol PA Metrics Definitions of PA Metrics Reliability Validity Responsiveness

Awais et al. [37]

uSense (on chest, L5
and thigh);

Shimmer3 (on
non-dominant wrist)

To use deep learning
approach to classify

physical activity; and to
compare

the performance of the
deep learning approach
with classical machine

learning approach.
Algorithms tested were

PAC-LSTM, PAC-All-Feat,
PAC-CFS, PAC-FCBF and

PAC-ReliefF 1.

Participants performed
unsupervised activities of

daily living but were
advised to include a set of

defined activities 2 (see
Bourke et al. for more

details). All activities were
performed in their

own homes.

Sitting: When the person’s
buttock is on the seat of the
chair and their trunk is in a

continuous relatively
upright posture.

Lying: The person’s body,
including trunk and thigh

are in a relatively
horizontal posture

supported along the length
of the body.

Standing: The person is in
an upright posture with
both feet supporting the

person’s body weight, with
no feet movement.

Walking: Locomotion
towards a destination with

1 stride or more,
(minimum: 1 step with

both feet, finishing where
1 foot is placed beside the

other foot). 2

Inter-rater reliability 2 was
calculated from five raters
annotating one randomly
selected video. Cohen’s

Kappa was 90.05%.

F-scores (in %) were computed
for sitting, lying, standing and

walking activities. Overall F-score
(mean of all classes) was used to

compare between algorithms.
PAC-LSTM: walking: 94.48%;

sitting: 99.90%; standing: 96.09%;
lying: 98.46%; Overall: 97.23%

PAC-All-Feat: walking: 92.65%;
sitting: 99.81%; standing: 95.48%;

lying: 89.39%; Overall: 94.33%
PAC-CFS: walking: 93.32%;

sitting: 99.68%; standing: 95.29%;
lying: 84.72%; Overall: 93.25%
PAC-FCBF: walking: 86.91%;

sitting: 99.69%; standing: 91.58%;
lying: 86.49%; Overall: 91.17%
PAC-ReliefF: walking: 93.48%;

sitting: 99.95%; standing: 95.41%;
lying: 98.46%; Overall: 96.83%

ND *

Brand et al. [38]

Garmin (Garmin
International, Olathe,

KS, US),
AX3 (Axivity, UK)

(as reference)

Participants wore
Garmin on their

nondominant wrist
and AX3 on L5, for

up to 10 days.

Gait bouts based on
6 s windows;

Amount of daily walking.
ND * ND *

The new algorithm had 76.2%
accuracy, 29.9% precision, 67.6%

sensitivity and 78.1% specificity in
detecting gait bouts.

The Pearson’s correlation
coefficient for amount of daily

walking was 0.84.

ND *

Briggs et al. [31]

Garmin Vivosmart HR
(Garmin International,

Olathe, KS, US),
ActiGraph GT3X+

(Actigraph, Pensacola,
FL, US) (as reference)

Participants wore Garmin
and ActiGraph on their
nondominant wrist. An

additional ActiGraph was
worn on the hip.
Participants were

instructed to wear all
activity devices

continuously, including
sleep, except for water

activities, for a
minimum of

48 consecutive hours while
not participating in any

structured Gerofit exercise.

Daily average step counts
and duration (in minutes)

of MVPA.
ND * ND *

Intraclass correlation (95% CI)
between Garmin and ActiGraph

(hip) was:
(a) for daily step count:

0.94 (0.88, 0.97)
(b) for MVPA (>2020 counts/min):

0.16 (−0.40, 0.55)
(c) for MVPA (>1013 counts/min):

0.35 (−0.32, 0.70)
(d) for MVPA (>1924 counts/min):

0.38 (−0.31, 0.71)
BA plots revealed that Garmin

overestimated MVPA compared
with the hip worn ActiGraph.
However, the difference was

small using the lower, age specific,
MVPA cut-off (see above)

ND *
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Table 5. Cont.

Study Brand of PA Instrument Testing Protocol PA Metrics Definitions of PA Metrics Reliability Validity Responsiveness

Burton et al. [39]

Flex (FitBit, San Francisco,
CA, US), ChargeHR (FitBit,

San Francisco, CA, US),
GENEactiv(ActivInsights
Ltd., UK) (as reference for

free-living)

Participants wore a
randomly allocated Flex or
ChargeHR fitness tracker
and an accelerometer to

wear for 14 days
(including sleeping). The

only exception was to
remove when in water

(e.g., shower or
swimming).

Number of steps (for lab
and free-living); distance

walked (for lab only), sleep
(for free-living) from Flex

and ChargeHR.
Total PA (in mins) (for
free-living), MPVA (for

free-living) and sleep (for
free-living) from

GENEactiv.

ND * ND *

Construct validity—14-day
free-living: strength of agreement

(Spearman Rho’s) for steps
(fitness tracker) and

MPVA(GENEactiv) was 0.70
(−0.10, 0.96) (Flex—0.68,

ChargeHR—0.72), steps (fitness
tracker) and Total PA (GENEactiv)

was 0.54 (−0.12, 0.90).

ND *

Chigateri et al. [32] uSense

Scripted tasks—Two sets
of TUG 3 (at usual gait
speed), sit-to-stand and

stand-to-sit transfers using
a chair with arms and

without arms.
Unscripted

tasks—activities that
reflected what the

participants normally do
during the day. Both

scripted and unscripted
tasks were videoed and

coded as sit to stand, stand
to sit, sit to lie, lie to sit;
lying; standing or active

standing; shuffling;
and walking.

Duration of tasks
identified in “Testing

Protocol” categorised as
“walking” and
“non-walking”.

Shuffling was defined as
“where there was forward

ambulation but
not clear strides”

Shuffling and walking
were grouped
as “walking”.

Sit to stand, stand to sit, sit
to lie, lie to sit; lying;

standing or active
standing—“non-walking”.

ND *

95% limits of agreement between
the mean video time and the
algorithm time categorization

during scripted activity was 1.47 s
(−4.69 to 7.63) for walking and for

−1.47 s (−7.63 to 4.69)
non-walking.

95% limits of agreement between
the mean video time and the
algorithm time categorization

during scripted activity was 26.5 s
(18.8 to 71.6) for walking and
−26.5 s (−71.6 to −18.8) for

non-walking.
Algorithm identified walking
episodes for unscripted and

scripted activities with 92.8% and
95.1%, respectively. For scripted

activity, 97.2% and 91.4%
agreement were achieved
between the video and the

algorithm for non-walking and
walking activity, respectively. For

unscripted activity, 92.2% and
88.7% agreement were achieved

between the video and the
algorithm for non-walking and
walking activity, respectively.

ND *
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Table 5. Cont.

Study Brand of PA Instrument Testing Protocol PA Metrics Definitions of PA Metrics Reliability Validity Responsiveness

Dijkstra et al. [40] MiniMod (DynaPort)

Participants performed a
fixed activity sequence

including walking
trajectories (1.4 m, 2.3 m,
4.5 m, taking a three-step

stair) and postures (sitting,
standing, lying), five times.

Thereafter, they were
allowed to move freely for

3 min with the only
instruction that taking the

stairs, sitting and lying had
to be completed at least

once. They also performed
usual domestic activities
(such as doing the dishes,
watering plants, hanging

up laundry or mowing the
lawn). During all

activities, participants
were video recorded. Start

and end of each activity
was scored by an observer

from the video analysis.
Inter-rater reliability was
determined for the fixed

sequence task by two
raters for 10 participants.

Mean activity
duration of

walking,
sitting, standing and lying,

Walking was determined,
starting from the heel-off
for the initial step until
ending with full floor

contact of the foot making
the last step 4, and the

number of steps taken 2 or
more. Persons were

considered to be sitting
when their upper body

was upright and at a 90◦
angle to the legs. Standing
was determined when the

participant was in an
upright position with no or
a small displacement, but
no distinctive steps, of the
feet. Lying was defined as

the person being in a
horizontal position and

either the side or the back
of the body contacting

the bed.

Inter-rater reliability
was calculated from two

independent raters.
Intraclass correlation

coefficient (ICC) for the
duration of walking,

sitting, standing and lying
were 0.95, 0.78, 0.99 and

0.98, respectively.

Agreement per participant ranged
between 68.3 and 85.9%

(mean = 79.8%; SD = 6.9).
Sensitivity for duration of

walking, sitting, standing and
lying were 93.5%, 83.2%, 80.1%

and 98.7%, respectively.
Specificity for duration of

walking, sitting, standing and
lying were 71.8%, 78.7%, 77.7%

and 77.6%, respectively.
Positive predictive value for
duration of walking, sitting,

standing and lying were 80.7%,
76.8%, 80.2% and

64.6%, respectively.

ND *

Farina et al. [29]

Fitbit Charge HR (FitBit,
San Francisco, CA, US),

Misfit Shine (Misfit
Wearables), ActiGraph

GT3X+ (Actigraph,
Pensacola, FL, US) (as

reference), NL2000i
(New-Lifestyles Inc, Lee’s

Summit, MO, US)
(as reference).

Participants wore all
5 devices: on dominant

wrist—Fitbit Charge
HR and Misfit Shine, waist

(dominant side)—Misfit
Shine, ActiGraph GT3X+

and NL2000i
(not described further).

step count, steps/day ND * ND *

Fitbit Charge HR
(wrist)—ICC:0.86 (0.68 to 0.94)

with ActiGraph GT3X+; 0.85 (0.65
to 0.94) with NL2000i.

Misfit Shine (wrist) ICC:0.86 (0.67
to 0.94) with ActiGraph GT3X+;
0.83 (0.59 to 0.93) with NL2000i.

Misfit Shine (waist) ICC:0.96 (0.91
to 0.99) with ActiGraph GT3X+;
0.91 (0.79 to 0.97) with NL2000i.
Bland–Altman plots—compared
with and both references “near

perfect” agreement for Misfit
(Waist), “moderately wide”

agreement for Misfit (Waist), “very
wide” agreement for Fitbit (Wrist).

ND *
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Table 5. Cont.

Study Brand of PA Instrument Testing Protocol PA Metrics Definitions of PA Metrics Reliability Validity Responsiveness

Geraedts et al. [41] Philips (Philips Research,
Eindhoven, Netherlands)

Standardized movement
protocol: Participants
performed TUG (slow,

normal, fast), Five Times
Chair Rise, standing still,
walking, lying and sitting

with rest in between,
if required.

Free movement protocol:
30 min of self-chosen

activities (e.g., vacuuming,
reading, preparing tea or

coffee, cleaning dishes and
watering plants). All

activities, in both protocols,
were videoed, annotated
and scored, namely for

sitting, standing, walking
and lying by three

(two/three for watch
video) independent raters.

Participants wore the
sensor over 1 week and
provided feedback on

comfort, weight, size and
usability via questionnaire.

Total duration
(in seconds) of Time-on-leg

(ToL), sitting, standing,
walking and lying.

ToL: the time spent actively
on the legs, i.e., standing,

shuffling around,
walking 5 and transitions

in between.
Lying was defined when

the person’s trunk was in a
horizontal position with
the back, stomach or side

touching a horizontal
underground without

signs of further movement.
Sitting was defined when

the person’s trunk was in a
vertical seated position

without movement
in the trunk.

Standing was defined
when the person was in an

upright vertical position
with no or only a small
displacement, but no

distinctive steps,
of the feet.

Percentage of agreement
was calculated for

assessment of inter-rater
reliability on the video

annotation. ICC for
free-living protocol

was 0.91.

Overall agreement for non-frail
participants:

Standardized movement protocol:
TOL—79.2%, sitting—72.9%,

standing—75.9%,
walking—93.3%, lying—96.9%.

Free movement protocol:
TOL—85.0%, sitting—84.6%,

standing—70.7%,
walking—86.2%, lying—99.5%.

Overall agreement for frail
participants:

Standardized movement protocol:
TOL—86.0%, sitting—78.8%,

standing—83.0%,
walking—92.6%, lying—97.5%.

Free movement protocol:
TOL—91.6%, sitting—85.1%,

standing—77.4%,
walking—90.9%, lying—99.9%.

ND *
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Table 5. Cont.

Study Brand of PA Instrument Testing Protocol PA Metrics Definitions of PA Metrics Reliability Validity Responsiveness

Kastelic et al. [28]

Polar Vantage M (Polar
Electro OY, Kempele,

Finland); Garmin
Vivoactive 4s (Garmin,

Olathe, KS, US);
Garmin Vivosport

(Garmin, Olathe, KS, US);
ActiGraph wGT3X-BT
(Actigraph, Pensacola,
FL, US) (as reference).

Participants wore a
randomly assigned activity

tracker on their
non-dominant wrist,
whilst wearing the

ActiGraph on their waist
over their dominant leg,

for either six days (baseline
protocol group) or 4 days

(extended protocol
group). 6

Daily step
count, intensity

minutes 7 (calculated),
active calories burned 7

(calculated).

Sedentary behaviour
cut-off was 0–99 cpm 8;

Light activity was
100–2019 cpm; moderate
activity was 2020–5998

cpm; vigorous activity was
5999 cpm and above.

Intraclass correlation
coefficients (ICC2,1) for

single-day daily step
counts: Polar Vantage
M—0.68 [0.43, 0.85];
Garmin Vivoactive
4s—0.70 [0.44, 0.88];

Garmin Vivosport—0.65
[0.39, 0.84].

Intraclass correlation
coefficients (ICC2,1) for
three-day average step
counts: Polar Vantage
M—0.82 [0.48, 0.94];
Garmin Vivoactive

4s—0.24 [−0.56, 0.81];
Garmin Vivosport—0.66

[0.13, 0.89].
Intraclass correlation

coefficients (ICC2,1) for
single-day daily active

kcal: Polar Vantage
M—0.80 [0.61, 0.91];
Garmin Vivoactive
4s—0.66 [0.38, 0.85];

Garmin Vivosport—0.48
[0.18, 0.74].

Agreement (ICC2,1) between
Polar Vantage M and ActiGraph

for steps: 0.37 (p = 0.001)
Agreement (ICC2,1) between

Garmin Vivosport and ActiGraph
for steps: 0.98 (p = 0.000)

Agreement (ICC2,1) between
Garmin Vivoactive 4s and
ActiGraph for steps: 0.95

(p = 0.000)
Agreement (ICC2,1) between

Polar Vantage M and ActiGraph
for active kcal: 0.15 (p = 0.056)
Agreement (ICC2,1) between

Garmin Vivosport and ActiGraph
for active kcal: 0.58 (p = 0.001)
Agreement (ICC2,1) between

Garmin Vivoactive 4s and
ActiGraph for active kcal: 0.55

(p = 0.011)

Between subjects’
responsiveness over a
single day activity for
steps count (Guyatt’s

responsiveness
coefficient (GR)): Polar

Vantage M—0.126;
Garmin

Vivosport—0.411;
Garmin Vivoactive

4s—0.022
Between subjects’

responsiveness over
3-day activity for steps:

Polar Vantage M—0.060;
Garmin

Vivosport—0.041;
Garmin Vivoactive

4s—0.288
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Table 5. Cont.

Study Brand of PA Instrument Testing Protocol PA Metrics Definitions of PA Metrics Reliability Validity Responsiveness

Kastelic et al. [28]

Intraclass correlation
coefficients (ICC2,1) for
three-day average active

kcal: Polar Vantage
M—0.86 [0.59, 0.96];
Garmin Vivoactive

4s—0.54 [−0.26, 0.90];
Garmin Vivosport—0.66

[0.13, 0.90]

Bland–Altman plots revealed that
all devices overestimated step

counts: Polar Vantage M
(6719 ± 4168 steps), Garmin

Vivosport (740 ± 1262 steps) and
Vivoactive 4s (639 ± 796 steps)

Minimal detectable change in step
counts over a single day (steps):

Polar Vantage M: 10,832
Garmin Vivosport: 9592

Garmin Vivoactive 4s: 7714
Minimal detectable change in step
counts averaged over three valid

days (steps):
Polar Vantage M: 6178

Garmin Vivosport: 6987
Garmin Vivoactive 4s: 5864

Minimal detectable change of
active calories over
a single day (kcal):

Polar Vantage M: 597
Garmin Vivosport: 572

Garmin Vivoactive 4s: 446
Minimal detectable change of
active calories averaged over

three valid days:
Polar Vantage M: 368

Garmin Vivosport: 380
Garmin Vivoactive 4s: 289

Between subjects’
responsiveness over a
single day active kcal:

Polar Vantage M—0.232;
Garmin

Vivosport—0.261;
Garmin Vivoactive

4s—0.073
Between subjects’

responsiveness over
3-day active kcal: Polar

Vantage M—0.248;
Garmin

Vivosport—0.933;
Garmin

Vivoactive 4s—0.536
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Table 5. Cont.

Study Brand of PA Instrument Testing Protocol PA Metrics Definitions of PA Metrics Reliability Validity Responsiveness

Paul et al. [30]

One (FitBit, San Francisco,
CA, US); Zip (Fitbit, San

Francisco, CA, US);
ActiGraph GT3X+

(Actigraph, Pensacola,
FL, US)

Participants performed a
2 MWT 9 in the space

available in their homes.
Number of steps was
visually counted by

research physiotherapist
using a hand-held
stationery counter.
Participants were

instructed to stand still for
10 s prior to and after the
2 MWT, and the start and

finish times of the
2 MWT were recorded.

Participants also wore the
Fitbit simultaneously with

the ActiGraph during
waking hours (except for

water sports or bathing) for
a 7-day period. Completed
a physical activity log for
weeklong period which

data was checked against
for inconsistencies and

erroneous data.

steps/day

Fitbit—step counts per day
estimated based on

proprietary algorithm;
ActiGraph—step counts in
60 s epochs and Freesdon
Adult (1998) 10 equation.

ND *

2 MWT—Fitbit versus Observer
(ICC2,1 = 0.88, 95% CI 0.76 to

0.94), Fitbit and ActiGraph
(ICC2,1 = 0.66, 95% CI 0.41 to

0.82), ActiGraph versus Observer
(ICC2,1 = 0.60, 95% CI 0.33 to 0.79).
Average steps/day—Fitbit versus
ActiGraph (ICC2,1 = 0.94, 95% CI
0.88 to 0.97) but Fitbit had 716.7
more steps/day (95% CI 318.2

to 1115.1).
Bland–Altman plots revealed a

bias by the ActiGraph for people
who took fewer steps during the

2 MWT. Bland–Altman plot
revealed no systematic bias in

averaged daily step counts
between the Fitbit tracker and

ActiGraph accelerometer.
There was less percentage

agreement between the Fitbit and
ActiGraph for average daily steps

with 34–66% of participants
having Fitbit scores within 5–15%

of ActiGraph scores.

ND *

Soltani et al. [42]

GENEactiv Original
(ActivInsights Ltd., UK),

ActiGraph GT9X
(ActiGraph, Pensacola,
FL, US) (as reference)

Participants wore
GENEactiv Original on the
wrist, whilst wearing the
ActiGraph GT9X on the
shank, for a continuous

12 h in real-world
situations.

Total duration of
gait bouts.

A walking period is
defined as an interval with
at least 3 successive steps.

11

ND *

Leave-one subject-out cross
validation for total duration of

gait bouts resulted in
the following:

sensitivity was 87.1% [72.6, 91.8],
specificity was 96.7% [95.5, 97.6],
accuracy was 95.2% [94.1, 96.7],

precision was 71.8%
[56.4, 76.3] and F1-score was

74.9% [63.6, 83.6].

ND *
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Table 5. Cont.

Study Brand of PA Instrument Testing Protocol PA Metrics Definitions of PA Metrics Reliability Validity Responsiveness

Taylor et al. [33] MoveMonitor (DynaPort)

Scripted 12: (in retirement
village) performed a TUG

at their usual walking pace;
a 4.5 m walk and lie down
on a bed for 30 s; rise from

lying and stand for 30 s;
and walk back to the chair

and sit down. The
sequence was performed
twice, taking 4 to 6 min in

total to complete.

Total duration (in seconds)
and mean duration (in

seconds) of sitting,
standing, locomotion

and lying.

Based on
Dijkstra et al. [40]

Inter-rater reliability was
calculated from two

independent raters. The
ICC (average measures) for

sitting, standing,
locomotion, and lying

were 0.99, 0.98, 0.94, and
0.99, respectively.

Median percentage of error:
sitting, −22.3% (IQR, −62.8% to

10.7%); standing, 24.7% (IQR,
−7.3% to 39.6%); locomotion, 0.2%
(IQR, −4.3% to 14.0%); and lying,

0.3% (IQR, −4.2% to 21.4%). 13

Sensitivity (Unscripted):
sitting—94.5 (91.1–97.0);

standing—38.6 (10.7–86.2);
locomotion—92.2 (84.2–97.3);

lying—100 (97.9–100)
Specificity (Unscripted):
sitting—81.4 (78.1–98.8);

standing—96.8 (91.9–98.4);
locomotion—97.1 (96.3–99.1);

lying—99.2 (99.0–100)

ND *

Taylor et al. [33]

Unscripted (at home):
move about freely;

walking, sitting, standing,
and lying down in a
random sequence for
between 5 and 9 min

within their own home
environment. Instruction
was limited to ensure that
activities were performed

in their normal manner.
Both scripted and

unscripted tasks were
recorded using a handheld

digital video
camera that was

synchronized with the
accelerometer.

ND *

Overall agreement (Unscripted):
sitting—85.2 (78.7–91.5);

standing—56.1 (34.8–81.2);
locomotion—89.9 (80.8–94.7);

lying—98.0 (73.8–100).
When misclassified activities were

analysed further, standing was
found to be incorrectly classified

as sitting for 28.1% of the scripted
and 45.6% of the unscripted total

standing time. Sitting was
misclassified as standing for

14.9% and 5.3% of the total sitting
time for the scripted and

unscripted tasks, respectively.

ND *
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Table 5. Cont.

Study Brand of PA Instrument Testing Protocol PA Metrics Definitions of PA Metrics Reliability Validity Responsiveness

Yamada et al. [43]

Actimarker (Panasonic,
Osaka, Japan)

Lifecorder (Kenz,
Suzuken, Japan)

Basal metabolic rate (BMR)
obtained in the laboratory

over 12 wakeful hours.
Total energy expenditure

(TEE) was measured using
doubly labelled water
(DLW) method over
14 days (iii) Physical

activity levels (via
Actimarker) and step

counts (via Lifecorder)
were obtained based on
“usual daily activities”

over 14 days.

TEE measured via DLW
method over 14 days based

on step count and
steps/day.

Based on
IAEA 14 ND *

The 24 h average MET of ACCTRI
was significantly correlated with

PAL of DLW but significantly
underestimated it (p < 0.001). TEE

of the ACCTRI systematically
underestimated actual TEE

(−14.2 ± 11.6%). Correlation
between 24 h average MET of

ACCTRI and PAL of DLW was
R2 = 0.475, p < 0.001. Correlation
between daily step counts and

PAL of DLW was R2 = 0.248,
p < 0.001.

ND *

* ND—not described. 1 Refer to Awais et al. [37] for more details on these algorithms. 2 From Bourke et al. [45]. See Bourke et al. [44] for a complete list of activities recommended
included sitting, lying, preparing food or drink while standing and setting up the table. See also Awais et al. [47]. 3 TUG—Timed Up and Go assessment. 4 A step was defined as a
forward displacement of the foot together with a forward displacement of the trunk. 5 Walking was defined when the person was moving the feet forward in a walking pattern with the
trunk in a forward displacement, from when the heel of the foot cleared the ground for the initial step until the foot of the closing step made complete contact with the floor, with a
minimum of 2 steps. 6 Only data from the extended protocol group is discussed. 7 Only step counts and active calories burned are reported here as common metrics between the three
accelerometers and the reference, 8 count per minute (cpm). 9 2 MWT—2 m walk test 10 [48]. 11 Based on Najafi et al. [49]. 12 Only results of unscripted data is further discussed in this
paper. 13 These are based on combined durations of scripted and unscripted activities. Separate data on scripted and unscripted activities were not provided 14 [50].
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3.9. Sensor Location

The most common location of wear was the wrist (n = 205) [28,29,31,37,39,42] followed
by the back (lower back or back of the waist) (n = 104) [32,33,40,43]. One study also
extended the validation for the Misfit Shine accelerometer to the waist as an additional
location of wear because this device was designed to be worn in both places [29]. One
study used the wearable on the right hip (n = 32) [30] and another used the wearable as a
necklace (n = 20) [41]. Awais and colleagues investigated data from participants who wore
four accelerometers concurrently—on the wrist, chest, lower back and thigh (n = 16) [37]
(Supplementary Table S2).

The location of sensors appeared to influence accuracy. Studies that use a single
sensor close to the participant’s center of gravity such as the waist [29], hip [30] or lower
back [32,33,40] reported higher sensitivities than those placed on the wrist or around the
neck, supporting the findings of a recent review [25].

3.10. Reliability

Inter-rater reliability conducted within real-world conditions was reported in four
studies (n = 63) [33,37,40,41]. Dijkstra et al. [40] reported inter-rater reliability of activity
durations of ten participants by two independent observers (via video analysis)—walking
(0.95), sitting (0.78), standing (0.99) and lying (0.98). Taylor et al. [33] also reported excellent
inter-rater reliability between two independent observers on ten randomly selected video
footage—walking (0.94), sitting (0.99), standing (0.98) and lying (0.99). Geraedts et al. [41]
reported ICC for inter-rater agreement of the video observation was 0.91 in the free move-
ment protocol. Awais et al. [37] reported that the overall level of agreement of out-of-lab
activities was above 0.90 for one randomly selected video that was chosen to be rated by
five independent raters.

Intra-rater reliability conducted within real-world conditions was reported as relative
and absolute reliability. Relative reliability of step counts from commercial accelerometers
ranged from poor to good for both single-day averages as well as three-day averages.
The results were similar for average active calories (which was based on the differences
between total calories computed by the accelerometers and estimated basal metabolic rate
based on Harris and Benedict [51]). Absolute reliability was generally better (i.e., lower) for
averaged measures—step count and active calories—of three days compared to single-day
measures [28].

3.11. Validity of Accelerometers

The overall sample size for testing criterion validity was n = 321 including diverse pop-
ulations and incorporating a range of study protocols. Criterion validity between research-
grade wearables and consumer-grade wearables was excellent for step counts measured at
the right hip: ICC = 0.94 (95%CI [0.88, 0.97]) (FitBit One/Zip versus ActiGraph GT3X+) [30]
and the waist: ICC = 0.96 (95%CI [0.91, 0.99]) (Misfit Shine versus ActiGraph GT3X+) [29]
and ICC = 0.91 (95%CI [0.79, 0.97]) (NL2000i) [29], but lower on the wrist: ICC ranged
from ICC = 0.83 (95%CI [0.59, 0.93]) (Misfit Shine versus NL2000i) to ICC = 0.86 (95%CI
[0.67, 0.94]) (Misfit Shine versus ActiGraph GT3X+) [29]. The average daily step count
between consumer-grade wearables and reference devices was overestimated in two stud-
ies [28,30]. Results were mixed in another, which employed two different locations of wear
(wrist and waist) as well as two different research-grade reference devices (ActiGraph and
NL2000i) [29]. Garmin Vivosport and Garmin Vivoactive 4s performed much better than
Polar Vantage M for step counts—0.98 versus 0.37 and 0.95 versus 0.37, respectively [28].
Briggs et al. [31] found no significant difference (p = 0.22) between the daily step count from
wrist-worn Garmin Vivosmart HR and the reference, hip-worn ActiGraph GTX3X+: ICC =
0.94 (95%CI [0.88, 0.97]). This study also reported that the differences due to step counts
derived MVPA were reduced using age-specific cut-offs [31]. Kastelic et al. [28] reported
that computed measures such as activity calories, which were derived from accelerometry
and heart rate data, did not perform as well as step counts from the accelerometry. The
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agreement between activity calories for all three devices was lower than the agreement
between steps counts: Garmin Vivosport—0.58, Garmin Vivoactive 4s—0.55 and Polar
Vantage M—0.15. Two studies validated algorithms developed to detect the duration
of gait bouts estimated from a single wrist worn consumer-grade wearable. Brand et al.
collected ten days of data from 12 older adults, and reported that the new algorithm had
76.2% accuracy, 29.9% precision, 67.6% sensitivity and 78.1% specificity for detecting gait
bouts. Soltani et al. collected 12 h of data from 37 older adults, and reported even better
scores—accuracy was 95.2%, precision was 71.8%, sensitivity was 87.1% and specificity
was 96.7% for detecting gait bouts. They also compared their method with previously
published algorithms. Their algorithm’s F1-score was 74.9%, which was better or close to
earlier studies which utilized multiple accelerometers. [42,47].

Studies that used the observer/visual/video method to validate their data with
accelerometer-based algorithms mainly reported their results using sensitivity, specificity
and positive predictive values. Chigateri et al. [32] reported agreement between uSense
algorithm classification compared to video labelling (frame-by-frame analysis) for walking
and non-walking during unscripted activities (real-world) as 88.7% (74.9–96.4) and 92.2%
(89.5–95.7), respectively; however, the algorithm systematically overestimated walking
behaviour. The mean difference between the algorithm and video categorization was 26.5 s.
Dijkstra et al. [40] reported sensitivity for walking—93.5%, lying—98.7%, sitting—83.2%
and standing—80.1%, between the output of DynaPort MoveMonitor and video analysis
values (durations). Similarly, Taylor et al. [33] reported sensitivity of walking (locomotion)—
92.2%, lying—100%, sitting—94.5% and standing—38.6% when comparing the output
from DynaPort MoveMonitor and the video analysis values (durations). Median absolute
percentage error was reported as: walking, 0.2% (inter quartile range (IQR), −4.3% to
14.0%); lying, 0.3% (IQR, −4.2% to 21.4%); sitting, −22.3% (IQR, −62.8% to 10.7%); and
standing, 24.7% (IQR, −7.3% to 39.6%). The authors noted that 45.6% of the unscripted
standing time was misclassified as sitting and 5.3% of the unscripted sitting time as stand-
ing [33]. Geraedts et al. [41], who used the accelerometer as a necklace instead of attaching
it to the lower back [32,33,40], reported lower sensitivities: walking—63.6%, lying—35.6%,
sitting—79.2% and standing—61.3%. One study compared the classical machine learning-
based physical activity classification algorithms and deep-learning based physical activity
classification algorithms with previous studies in detecting various activities [37]. The
F-Score for: walking—94.5%, lying—98.5%, sitting—99.9% and standing—96.1%. The
F-score computed based on various sensor configurations (lower back; wrist; thigh; chest;
lower back and thigh; lower back, chest, and thigh; lower back, wrist, chest, and thigh)
for sitting [range: 99.7% to 100.0%], lying [84.7% to 98.5%], standing [91.6% to 96.1%] and
walking [86.9% to 94.5%] activities. Combining more sensors produced better scores.

Construct validity of step counts and moderate-to-vigorous physical activity (MPVA)
between GENEactiv accelerometer and consumer-grade wearables—Fitbit Flex and Fitbit
ChargeHR—was reported as a moderate level of agreement between the devices (ICCFlex:
0.68; ICCChargeHR: 0.72) [39].

In summary, these results suggest that step counts and duration of walking, lying,
sitting and standing can be measured robustly to a certain degree using a single accelerom-
eter. However, further work is required to understand better how the location of wear and
type of reference standard affect accuracy.

One study [43] investigated the validity of a triaxial accelerometer against the doubly
labelled water method (DLW) for total energy expenditure reported that the 24 h average
metabolic equivalent (MET) of Actimarker was significantly correlated with the PA level as-
sessed by DLW but significantly underestimated it (p < 0.001). Furthermore, the correlation
between daily step counts and PA level of DLW was moderate: R2 = 0.248 (p < 0.001).

3.12. Responsiveness of Accelerometers

Only one study reported on the responsiveness of accelerometry (i.e., the capacity of
an accelerometer to identify possible changes in PA outcomes associated with a clinical
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condition over time) [28]. Single day measure of step counts performed better than average
three-day measures for Garmin Vivoactive 4s (GR—0.411 vs. 0.041) and Polar Vantage M
(0.126 vs. 0.060), but not for Garmin Vivosport (0.022 vs. 0.288). However, all three devices
showed relatively weak to moderate responsiveness for active calories (GR > 0.232) for both
single-day as well as averaged-day measurements, except for Garmin Vivosport (Single
day GR = 0.073) [28] (Table 5).

3.13. Acceptability and Adherence of Accelerometers

Only one study planned and purposefully measured adherence. Geraedts et al. [41]
reported 100% adherence during daytime and 80% during sleep from a necklace sensor
worn for seven days. The authors also collected information on the level of comfort, weight,
size and usability of the sensor when worn during the daytime using a user-evaluation
questionnaire on a scale of 1 to 5. They reported a high mean score of 4.4 ± 0.6 and
concluded that user acceptance was high. Three studies reported adherence based on
missing data [28,29,39]. Farina et al. [29] required participants to wear five devices (two
on the wrist and three on the waist) over seven consecutive days and reported excluding
three participants (12%) from their analysis due to receiving less than four days of data
from the reference device, which indicated that adherence was low for longer durations of
data capture. Burton et al. [39] reported that close to 50% of participants had some missing
data from their wrist-based wearables over 14 days, also suggesting declining levels in
adherence with increasing duration of data capture. Kastelic and colleagues reported the
adherence of wearing three different accelerometers on the non-dominant wrist (together
with a reference accelerometer on the waist) over 12 days, each device for four days, based
on wear time. The wear time compliance with the Polar Vantage M, Garmin Vivoactive 4s
and Garmin Vivosport was as high as 24.0 ± 0.1 h/day, 23.9 ± 0.5 h/day and 23.9 ± 0.5
h/day, respectively. None of the four studies reported age- or gender-related differences
(Supplementary Table S2).

3.14. Summary of Results

Table 6. summarizes the clinimetric properties of accelerometry-based PA measures of
older adults collected in real-world conditions.

Table 6. Summary of clinimetric properties of PA measures in real-world conditions.

Clinimetric Property Measures Range

Inter-rater reliability (ICC 1) walking duration 0.94–0.95
lying duration 0.98–0.99

sitting duration 0.78–0.99
standing duration 0.98–0.99

Relative reliability (ICC) step counts 0.24–0.82
active calories 0.48–0.86

Absolute reliability
(minimal detectable change) step counts 2 5864–10,832

active calories 3 289–597
Responsiveness (Guyatt’s

responsiveness coefficient) step counts 0.02–0.41

active calories 0.07–0.93
Criterion validity step counts (ICC) 0.83–0.98

walking duration (%) 63.6–94.5
lying duration (%) 35.6–100.0

sitting duration (%) 79.2–100.0
standing duration (%) 38.6–96.1

Construct validity (Spearman’s Rho) step counts and MVPA 0.68–0.72
1 intraclass correlation coefficient; 2 in counts; 3 in kilocalories.
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4. Discussion

This review is the first to our knowledge to examine the reliability and validity of
accelerometry-based PA measures of older adults collected in real-world conditions. Mod-
erate to strong ICCs for inter-rater reliability and criterion validity tentatively establish step
count, duration of walking, sitting, standing and lying as robust outcomes. Variations in
the methods such as location of sensors and duration of wear highlight differences in the
strength of the validity and reliability of the outcome measures. This also points to a need
for standardization of protocols of wearing accelerometers in future studies. However, this
review identified limitations in the current literature, specifically that most of the outcomes
are limited to volume metrics.

4.1. Reliability of PA Measures

Good to excellent inter-rater reliability was observed for the durations of sitting,
standing, walking and lying activities. Inter-rater reliability of step counts in real-world
environment was not reported. Intra-rater reliability differed by the brand and the type
of measures. The Garmin Vivosport and Garmin Vivoactive 4s had better relative and
absolute reliability than the Polar Vantage M for both step counts as well as active calories.
Derived metrics from step counts, such as activity intensities (e.g., MVPA), were not as
reliable as steps counts. None of the studies investigating duration of PA activities reported
intra-rater reliability. The reasons for omitting reliability testing were not discussed by the
authors. This omission limits our understanding as to whether accelerometry-based PA
measures such the durations of sitting, standing, walking and lying activities are affected
by the individual observers, when captured in real-world conditions.

4.2. Validity of PA Measures

The most common “gold-standard” reference for criterion validity was using research-
grade accelerometers, followed by the use of video or direct observation. In all but one
reported study, a single tri-axial accelerometer was sufficient to distinguish PA validly.
However, there was a lack of homogeneity for real-world assessments with respect to
sensor location and duration, the brand of accelerometer employed, and the instructions
given to participants when carrying out uninstructed daily activities.

As noted above, the duration of wear varied amongst studies which is partially
attributable to the level of intrusiveness of the reference devices used. There seems to be no
consensus on the minimum length of duration for accelerometry-related validation studies,
but a minimum of 30 min of semi-structured activities has been previously recommended
for real-world settings [52]. Capturing, processing and annotating videos that are several
days in length might be challenging, and the alternative seems to be to aim to capture
as many commonly performed activities within a shorter timeframe [52]. Additionally,
merging and synchronizing of data is challenging, although the use of platforms seems to
offer some promise [53]. Intrinsic factors (motivation, personal preferences) and extrinsic
factors (weather, environment) may affect habitual physical activity performance [15,54].
Although this seems to be a reasonable compromise between duration and practicality, it is
questionable as to whether the variations in intrinsic and extrinsic factors within daily PA
could be captured within such a timeframe.

Chigateri et al. [32] and Dijkstra et al. [40] provided limited instructions for unstruc-
tured real-world activities, e.g., “what they normally do during the day”, whereas others
were more explicit. Taylor et al. [33] informed their participants to include common ac-
tivities such as walking, lying, sitting, and standing, while Geraedts et al. [41] included
common household chores such as vacuuming and clearing dishes. It is noteworthy that
among these commonly reported four PA—walking, lying, sitting and, standing—the sensi-
tivity for sitting and standing were relatively lower than the former two. The use of a single
sensor on the lower back was not able to sufficiently distinguish sitting from standing,
which could have misclassified these two activities in two studies [33,40]. However, Chiga-
teri et al. [32] reported that walking duration was overestimated with the uSense wearable



Sensors 2023, 23, 7615 26 of 30

device and postulated that there was a higher likelihood for algorithms to overestimate
walking duration since inactive durations such as ‘pauses during walking’ between walks
could have been misclassified as walking time [32]. Awais et al. [37] dataset consisted of
15 common free-livings activities (see [44,45]) that were performed in an order that suited
the participants’ preferences, but with no other instructions. This study compared the use
of machine learning and deep-learning techniques to classify data from four accelerometers,
concurrently worn on four different locations on the body, as walking, lying, sitting, and
standing activities. Although the use of additional accelerometers to classify activities
produced much better results than studies that used a single sensor, it was not conclusive
as to which technique—machine learning versus deep-learning technique—was superior,
since the results of both methods plateaued [37].

Steps counts were generally overestimated by commercial-grade wearables, but the
evidence was not conclusive since different brands of accelerometers elicited different
results [28]. Although step count derived metrics generally did not perform as well as
direct step counts, and the choice of age-specific cut-offs could improve the accuracy [31].

4.3. Study Protocol

Validity and accuracy of the metrics varied with the duration of data collection.
Soltani et al. [42] achieved very high accuracy in identifying gait bouts from 12 h of
data. Brand et al. [38], who also used the wrist but collected data up to ten days, reported
worse results. However, both studies used different accelerometers, and the choice and
location of wear of their references was also different—one used the Axivity AX3 on the
lower back, while the other used the ActiGraph GT9X Link on the shank. Furthermore, the
algorithms implemented by these two studies were also different [31,42].

These discrepancies highlight the need for standardization of the methodology used
in validation studies to allow comparison between their results and findings. Future
validation studies should aim to adopt recommended methods and protocols relevant for
community-dwelling older adults [45,52].

Interestingly, only one study investigated whether wearables could detect change over
time, but the findings were mixed, inconclusive and device-specific [28]. The responsiveness
of single-day measures of step counts was generally better than the three-day average, but
this needs to be cautiously interpreted. The lack of evidence on responsiveness from more
studies may reflect the recruitment of generally healthier older adults. There is greater
impetus to establish responsiveness for people with neuro-musculoskeletal conditions, for
example those with age-related degenerative conditions such as osteoarthritis [55].

4.4. Adherence to Study Protocol

The duration and location of wear of the sensor affected the level of adherence. Wrist-
worn sensors yielded a high level of adherence, but increasing the duration of data capture
could reduce the level of adherence and compliance [28,29,39]. Although wearing sensors
on the wrist may be more natural than other locations such as the lower back and the ankle,
there was a possibility that older adults might forget to put them back on after they had
removed them, perhaps during sleep. There was a high level of adherence in wearing
the sensors as a necklace, but at the expense of sensitivity, perhaps because there was no
need to remove them during sleep and studies constituted a high proportion of females
who may already be in the habit of wearing necklaces. Only one study investigated the
level of acceptance of the wearables they tested, possibly because the investigators were
developing a new wearable prototype [41].

Real-world validation studies of older adults for different intensities of PA, such as
different speed or intensity of walking, are missing in the literature. We know that the
accuracy of step counts was lower in participants who walked with a slower gait speed [25]
or walked with lower intensity [56]. Also lacking are validation studies that test more
nuanced metrics such as the duration of postural transition, including sit-to-stand and
stand-to-sit, which are important indicators of functional mobility and lower limb strength.
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Real-world postural transitions, similar to other PA, are ecologically more valid when
performed at home as they are executed in a familiar environment [52].

Despite this, there is a growing body of inference-based evidence from studies that
use accelerometry to investigate associations between mortality, health and functioning in
large populations. These studies indirectly examine aspects of validation such as construct
validity [57] and predictive validity [58], thereby providing some assurances.

4.5. Strengths and Limitations of the Review

This systematic review used a comprehensive search strategy of eight databases,
included clear inclusion and exclusion criteria, utilized the AXIS checklist to access risk of
bias, and followed the PRISMA guidelines. It also adopted the blinded adjudication process
for the abstract and full-text review. The process followed in the review was designed to
minimize bias and increase the transparency of the reporting.

Limitations included a focus on studies in the English language and exclusion of grey
literature. Secondly, the sample size for most of the studies was small and predominantly
female. Finally, not all the studies reported on the reliability of the wearables, and of
those that did, all failed to report test–retest reliability. Both these latter limitations could
have weakened the overall strength of the studies reported. In addition, larger-scale and
longer-duration studies could better inform us on the level of adherence in wearing the
accelerometers among older adults.

5. Conclusions and Implications for Future Research

Step counts, duration of walking, sitting, standing and lying are reliably and validly
measured using accelerometers in community-dwelling older adults in real-world condi-
tions. However, only step counts have been reported to show change over time.

Robust outcomes from accelerometry monitoring of PA are limited to ‘volume’ counts
such as number of steps and duration of sitting, standing, walking and lying, which
points to the need for further research on nuanced PA outcomes to provide more in-
depth understanding on how PA affects functional tasks. Wrist-worn and neck-worn
accelerometers are not as metrically robust as those worn at the waist, hip and lower back.
Adherence and usability are negatively associated with duration of wear.

To extend the field of research, more real-world studies are needed, in particular, more
studies that focus on generally healthy older adults, investigating more nuanced aspects of
PA such as intensity of movement (e.g., slow walk versus running) and duration of postural
transitions. Data from non-Caucasian populations are also needed. More longitudinal
studies are needed to investigate the responsiveness of the metrics, for example, whether
step counts are sensitive to detect fall risk in healthy community-dwelling older adults.
Finally, future studies should also investigate wearability and acceptance of their wearables
in larger sample cohorts. This will inform researchers on whether such wearables could be
used in longer-term data collection processes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23177615/s1, Table S1: Search strategy, Table S2: Acceptability and
adherence of tools/instruments of studies included in the systematic review.
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