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Abstract: The differential count of white blood cells (WBCs) can effectively provide disease in-
formation for patients. Existing stained microscopic WBC classification usually requires complex
sample-preparation steps, and is easily affected by external conditions such as illumination. In con-
trast, the inconspicuous nuclei of stain-free WBCs also bring great challenges to WBC classification.
As such, image enhancement, as one of the preprocessing methods of image classification, is essential
in improving the image qualities of stain-free WBCs. However, traditional or existing convolutional
neural network (CNN)-based image enhancement techniques are typically designed as standalone
modules aimed at improving the perceptual quality of humans, without considering their impact
on advanced computer vision tasks of classification. Therefore, this work proposes a novel model,
UR-Net, which consists of an image enhancement network framed by ResUNet with an attention
mechanism and a ResNet classification network. The enhancement model is integrated into the
classification model for joint training to improve the classification performance for stain-free WBCs.
The experimental results demonstrate that compared to the models without image enhancement and
previous enhancement and classification models, our proposed model achieved a best classification
performance of 83.34% on our stain-free WBC dataset.

Keywords: WBCs classification; stain-free; image enhancement; convolutional neural network;
UR-Net; attention mechanism

1. Introduction

Blood detection plays a significant role in the diagnosis and treatment of diseases. As
an important part of blood, white blood cells (WBCs) can resist bacteria and viruses in the
human body and are also referred to as immune cells [1]. According to their morphological
structure, WBCs can usually be roughly classified into three types: granulocytes, monocytes,
and lymphocytes [2]. The content of WBCs in blood is closely related to various blood
diseases, which can be used as a standard for diagnosing the category and severity of
diseases, such as leukemia [3] and cancer [4]. Therefore, research on the classification and
counting of WBCs is of great value for medical diagnosis [5].

Previous WBC classification was generally achieved by professional medical personnel
using blood smears [6], and its accuracy greatly depended on the medical personnel’s
knowledge and experience. In recent years, the widespread application of deep learning
(DL) has enabled computers to assist humans better in completing complex tasks. The
classification of WBCs through convolutional neural networks (CNNs) not only reduces the
workload of professionals but also has higher accuracy than humans [7]. Nevertheless, most
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of the current deep learning-based WBC classification is applied to stained WBCs, since
the stained cells have clearer contrast and nuclear features under the microscope [8] while
stain-free cells are not conducive to CNN for classification. However, the stained WBCs
classification has the following obvious disadvantages: (1) The preparation of reagents
required for staining takes a long time; (2) the staining process may cause irreversible
effects on cells so that their morphological features will be different from the original ones;
(3) this operation still requires professionals. Because of these shortcomings, stain-free
WBC classification has become a research hotspot in the field of bioimaging [9,10].

For the acquisition of stain-free WBC images, microscopy is still the most convenient
instrument for obtaining blood smear images. However, due to the influence of external
factors such as illumination [11], the images obtained directly by the microscope have
the issue of low quality, which seriously affects the classification performance of the
subsequent neural network. Therefore, as one of the preprocessing methods for image
classification, image enhancement is essential to improving image quality. In recent years,
image enhancement techniques have been largely investigated, especially in the field
of medical imaging. Many traditional approaches use histogram equalization [12,13],
sharpening filtering [14], super-resolution [15,16], Retinex [17], etc., to enhance the image,
while others apply homomorphic filtering [18], and wavelet transform [19,20] to process
the image in the frequency domain. Several more recent works have shown that CNN
can successfully demonstrate better performance and efficiency compared with traditional
methods in image enhancement [21,22]. The above methods have indeed achieved effective
results in improving human visual sense, but they do not necessarily perform well in
computer vision tasks such as classification or object recognition. Thus, the latest research
is to integrate CNN image enhancement techniques into the neural network, the purpose
of which is to improve the classification performance, rather than human perception [23].

In this paper, we first conducted experiments on our WBC dataset by pairing each
of the UNet, UNet++, ResUNet as the enhancement network with VGG16, MobileNetV2,
Dense-Net121 and ResNet101 as the classification network, respectively. Among them, the
combination of ResUNet and ResNet101 has the best performance. Therefore, we propose a
novel network architecture, UR-Net, which jointly employs ResUNet as the framework for
image enhancement and ResNet101 for classification. The proposed network integrates the
enhancement model with the classification model, allowing joint training to enhance both
the image quality and the classification performance for stain-free WBCs. The ResUNet
structure through downsampling and upsampling to generate new images. On this basis,
we replaced certain layers to enhance network stability during training. Then, we added a
convolutional layer in the cross-layer connection between downsampling and upsampling
to optimize the fusion of shallow and deep features. Moreover, we incorporated attention
mechanisms [24] in the upsampling process to emphasize the features of WBCs while
mitigating the impact of background noise on network classification performance. Finally,
different from previous image enhancement networks that do not require pre-training
methods due to their simple network structures, we have employed pre-training for the
enhanced ResUNet, which exhibits a more intricate structure in our joint network. Specifi-
cally, we pre-trained the modified ResUNet by setting the input and output images as the
same image to obtain a better initial weight value to expedite convergence. As a result, we
achieved an optimal accuracy of 83.34%.

The main contributions of the present study can be summarized as follows:
(1) A novel network architecture, UR-Net, was proposed for stain-free WBC image

classification, which jointly employs ResUNet as the framework for image enhancement
and ResNet101 for classification.

(2) The purpose of the proposed image enhancement technology is to improve WBC
classification performance, rather than human visual perception.

(3) The pre-training approach employed for image enhancement networks facili-
tates faster convergence and achieves higher accuracy within a limited number of train-
ing epochs.
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(4) The proposed method achieved a higher accuracy compared to previous studies in
the existing literature.

The remainder of this paper is organized as follows. Section 2 provides a brief review
of the related works. Section 3 describes our proposed enhancement architecture and
training procedure. In Section 4, the experimental results are presented and discussed
through various comparative experiments. The article is concluded in the last Section 5.

2. Related Works
2.1. Traditional Image Enhancement

Traditional image enhancement can be classified into two categories according to
different implementation methods: spatial domain enhancement and frequency domain
enhancement. The spatial information of the image can reflect the position, shape, and size
of the objects in the image. Shahzad et al. [25] utilized adaptive histogram equalization
to improve the contrast of WBC images in preprocessing, then classified WBCs via a
CNN with an ant colony algorithm. The sharpening filter can attenuate low-frequency
components in the image to enhance the edge information of the image. Pham et al. [26]
introduced a method that integrated anisotropic averaging with the Laplacian kernels for
grayscale image sharpening to determine the optimal interpolation weights in the spatial
domain. The opposite of a sharpening filter is a smoothing filtering, which can attenuate
high-frequency components in the image, so it can be applied to image denoising. Li
et al. [27] proposed a smoothing filtering with a weighted guided image filter, improving
artifacts while denoising. Super-resolution (SR), as another technology to improve image
quality, is the transformation of an image from low resolution (LR) to high resolution (HR).
Traditional SR techniques usually use interpolation [28] to improve image quality. Other
methods, such as Retinex [29], can mitigate the effect of the light source, thereby improving
the quality of the image.

The frequency domain enhancement requires transforming the image from the spa-
tial domain to the frequency domain. Homomorphic filtering can remove multiplicative
noise and increase contrast. Khan et al. [30] indicated that adaptive Homomorphic fil-
ters can work well for ultrasound images degraded with higher values of speckle noise.
A widespread approach, wavelet transform, can divide the image signal into different
frequency bands and enhance the signals in different frequency bands at the same time.
Cao et al. [31] modified the discrete wavelet transform and proposed an enhanced three-
dimensional discrete wavelet transform approach to extract the feature, alleviate the noise,
and adopt a CNN model for classification subsequently.

2.2. CNN-Based Image Enhancement to Improve Human Perception

In contrast to traditional enhancement algorithms, DL techniques can successfully sim-
ulate extensive image enhancement by training on pairs of input and target output images.
The target output images are usually acquired by state-of-the-art instruments, while the
input images are acquired by some low-precision instruments. The strategy is to train the
input image via CNN to approximate the output of the corresponding target image. Huang
et al. [32] presented a novel UNet structure, the range scaling global UNet (RSGUNet),
for images from mobile devices to improve human perception. Meanwhile, they used the
digital single-lens reflex (DSLR) camera to acquire the target image corresponding to the
low-quality images. Similar to this work, Ignatov’s group [33] used a residual CNN to
improve both color rendition and image sharpness. However, there are other approaches
that are only used in specific situations. Lore et al. [34] proposed a deep network, which
is one of the first DL approaches to enhance low-light images (LLI). Its architecture was
based on a deep autoencoder to identify signal features from LLI and adaptively brighten
images. Su et al. [35] proposed a residual network via multi-scale cross-path concatenation
to suppress the noise. Chakrabarty et al. [21] presented a new method using a neural
network trained for blind motion deblurring.
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SR technology also achieves excellent performance on CNN. Existing SR methods
were often focused on network selection. Reshad et al. [36] via a generative adversarial
network (GAN) to generate a sufficient dataset, then used a CNN to learn an end-to-end
mapping from LR to HR. The purpose was to enhance the sensing images. Huang et al. [37]
propose a single-image super-resolution neural network that exploits the mixed multi-scale
features of the image, which can extract local texture features and global structural features
and achieves higher performance with fewer parameters.

2.3. CNN-Based Image Enhancement to Improve Neural Network Classification Performance

Neural networks are derived from neuroscience and cognitive science, but they have
many differences in the process of dealing with problems. Therefore, even though the
above methods can greatly improve the observer’s perceived quality of images, they may
not necessarily improve the performance of computer vision tasks. To understand how
neural networks process images, Dodge and Karam [38] analyzed how blur, noise, contrast,
and compression hinder the performance of CNN. Their experiments showed that CNN
was very sensitive to blur and noise, but resilient to compression distortions and contrast
changes. Ullman et al. [39] compared how well humans and CNNs recognize minimal
recognizable images, demonstrating that a minute change in the image can have a drastic
effect on computational recognition.

To improve the performance of CNN, Sharma et al. [23] first propose a unified CNN
architecture that uses a range of enhancement filters that can enhance image-specific details
via end-to-end dynamic filter learning. Their overall goal is to improve image classification
rather than human perception. To solve the low-light problem, Al Sobbahi et al. [40]
integrated the homomorphic filter into CNN and obtained the best filter parameters through
the learning of the network.

A major issue is that the application of this method is still based on one or more filters.
Although the parameters of the filter can be learned well via CNN to achieve the best
accuracy, the final effect is still based on the function of the filter itself. Moreover, most of
the existing methods are applied to natural images, not medical images.

3. Methods
3.1. Dataset

Our raw stain-free WBC image data were obtained from previous work [10], where the
blood samples were collected from multiple healthy donors. These blood donors reported
general health and no use of medical prescriptions in the last 2 weeks before enrollment.
We separated the blood samples into red blood cells and WBCs using a microfluidic chip
based on a spiral channel. The separated WBCs were subsequently fluorescently stained,
and both brightfield and fluorescence images were acquired using a 100× objective lens
within the same field of view. The fluorescence imaging allowed for the visualization of
details pertaining to the nuclei of WBCs, which was used to differentiate between the actual
types of each corresponding bright-field image of WBCs. Finally, the brightfield images
were segmented into 200× 200 sizes to form the training or testing dataset. A more detailed
description of the dataset collection process can be referred to in [10]. Part of the dataset
after segmentation is shown in Figure 1a.
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Figure 1. Dataset processing. (a) Part of three-type WBC images in the datasets after segmentation.
(b) Process of dataset enhancement. The first row is the raw image, horizontally and vertically
flipped image. The second row is the image rotated clockwise at different angles. (c) Datasets before
augmentation. (d) Datasets after augmentation.

As shown in Figure 1c, there are significant differences in the number of data belonging
to different categories, which is due to the inherently unbalanced numbers of WBCs in
human blood. To ensure the independence of the training and testing sets, we segregated
the original WBC dataset into training and testing subsets at an 8:2 ratio. After that, we
implemented rotation and flipping techniques to augment approximately 10,000 images
of the three types of cells, as shown in Figure 1b, to mitigate overfitting concerns that
may arise from small datasets and bias concerns that may arise from data imbalance. The
number of augmented datasets is shown in Figure 1d.

3.2. UR-Net

The UR-Net model proposed in this paper consists of two modules, as shown in
Figure 2a. The first module is an image enhancement network constructed by the ResUNet
framework, and the second module employs ResNet101 as the classification network. The
image enhancement network is seamlessly embedded in the ResNet classification network,
making it an end-to-end stain-free WBC classification network. ResUNet is an evolution
of UNet that incorporates residual structures from ResNet. Its architecture can be seen
in Figure 2b. This module comprises downsampling and upsampling processes. In the
downsampling process, each downsample involves a pooling layer and two convolutional
layers that extract different features of WBC images. By stacking consecutive convolu-
tional layers, the network can focus more on global information in the images. After
four downsamples, the upsampling process restores the image to its original size through
each upsampling, which includes a deconvolutional layer and two convolutional layers.
This provides sufficient learning space for the neural network to enhance its own features.
During the upsampling process, cross-layer connections are used to fuse shallow and deep
features to compensate for any loss of edge information caused by downsampling. Finally,
residual structures are applied to the upsampling and downsampling processes to enhance
feature transmission for WBCs.
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Figure 2. UR-Net. (a) Workflow of the proposed UR-Net model. (b) Architecture of modified
enhancement module.

In order to focus ResUNet more on image feature enhancement, we modified ResUNet,
as shown in Figure 2b. First, due to the convolution operation, the output feature map may
differ in size from the input. To facilitate the residual connections of the structure, as well
as inter-layer connections during the upsampling and downsampling processes, we select
a convolution kernel parameter of 3 with padding of 1 and stride of 1 to alleviate memory
consumption on the computer.

Second, the pooling layer is replaced by the convolutional layer. Although the pooling
layer can enhance the robustness of the model and prevent overfitting during training,
it also discards some features. For stain-free WBC images, which have fewer inherent
features compared with fluorescently stained WBC images, some useful features may be
discarded by the pooling layer, thereby limiting the feature extraction capabilities of the
network. Therefore, we modified the pooling layer to a convolutional layer and adjusted
its parameters to reduce the feature map to half of its input size.
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Third, LeakyReLU is employed as the activation function. The ReLU function has
performed well in many tasks, but its neurons are more likely to become inactive during
training. LeakyReLU maintains a small gradient when x < 0, avoiding the problem of
neurons not being activated.

Furthermore, in the cross-layer connections between down-sampling and up-sampling,
we introduced a 1 × 1 convolutional layer. Although simple copying of feature maps for
connection can effectively preserve shallow features, especially edge information, such
rough connections may lead to ineffective mixing with deep feature maps. Therefore, the
applied 1 × 1 convolutional layer can provide a buffering stage for this fusion process and
facilitate better learning of shallow features during backpropagation.

Finally, we added a channel attention mechanism [41] before each deconvolutional
layer. The channel attention mechanism is used to control and adjust the importance
of feature representations for each channel, adaptively highlighting important features
in different channels through learning dynamic weights, in order to better capture key
information in WBC images or feature maps. The lighting conditions of microscopy greatly
affect the background of the acquired WBC dataset images, posing significant challenges
to the effective learning of the network. This attention mechanism enables the model to
enhance useful features and suppress useless ones, thereby directing the focus of the model
on the cells themselves rather than the background.

As shown at the top of Figure 2b, the channel attention mechanism consists of two
operations: squeeze and excitation. The squeeze operation encodes the entire spatial
feature of a channel on the input feature map as a global feature. We set the input feature
vector as X, X = [x1, x2, . . . , xc], X ∈ RH×W×C, and the output of squeeze operation S,
S = [s1, s2, . . . , sc], S ∈ RC. The formula is shown in (1),

sc = fsqueeze(xc) =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j), (1)

where H and W represent the height and width of the feature map, respectively. Then,
excitation operations are applied to the feature vectors obtained in the previous step through
two fully connected layers, L1 and L2, to learn weights that amplify or attenuate each
channel, thereby extracting salient features from the channels. In the attention mechanism
of Figure 2b, grays of different depths correspond to different weights after amplification
or attenuation. The excitation formula is shown in (2),

E = fexcitation(Z, L) = σ(L2δ(L1Z)), (2)

where E = [e1, e2, . . . , ec], E ∈ RC is the output of the excitation operation. L represents
two full connection layers, σ and δ represent the sigmoid and ReLU activation functions
respectively. In the end, the output of channel attention mechanism Y is obtained by
multiplying E and X.

For classification networks, ResNet101 has achieved high ratings on many classifi-
cation tasks, due to its residual architecture. So, in this work, we transferred ResNet101
whose parameters were learned well on the ImageNet dataset [42]. Then, we fine-tuned
the network to make it more suitable for our stain-free WBC dataset.

3.3. Training Process

Figure 2a shows the training process of the proposed network. Before standard
training, we pre-trained the image enhancement network to obtain a better initial set of
weight values. This is because optimized initial parameters can accelerate the convergence
speed of gradient descent and are more likely to acquire models with low model error or
low generalization error. The pre-training process is as follows: We expect the output image
of the enhancement network to be approximately the same as the input image. Therefore,
we set the input image and the corresponding label image as the same image. Then,
during pre-training, fluctuations in the loss function value were observed, and training
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was stopped at the time when this value reached its minimum. The parameters trained at
this point were saved as the initialization parameters.

After pre-training, we connected the output of the pre-trained enhancement network
with the input of the transferred ResNet101 to achieve an end-to-end architecture. By
fine-tuning our training dataset, the optimal weights of UR-Net were learned.

Moreover, to validate the effectiveness of our modified UR-Net model and pre-training,
we trained three other models on the platform. The first model comprises solely a classifica-
tion network, ResNet101. The second model is a combination of ResUNet and ResNet101,
where ResUnet has not been modified. The third model is our proposed modified network,
UR-Net. We, respectively, name them Net1, Net2, and Net3, and also name the pre-trained
UR-Net Net4. These four models were trained on our WBC dataset, and the loss function
of these four models are as follows:

L = − 1
|X|

|X|

∑
i=0

log(P(yi
∣∣∣Xi )), (3)

where X represents the training samples, |X| represents the number of training samples,
i represents the i-th sample, and y represents the ground truth. Other hyperparameter
settings are shown in Table 1.

Table 1. Hyperparameter settings during pre-training and training process.

Optimizer Learning
Rate Momentum Batch Size Number

of Epochs
Activation
Function

Pre-train SGD-M 10−4 0.9 32 100 LeakyReLU
Train SGD-M 10−4 0.9 32 200 ReLU

These four models were trained for 200 epochs and tested on the test dataset for each
epoch, respectively and saved the weight parameters with the highest accuracy. These
models were realized on a 64-bit Linux operating system with an NVIDIA RTX 3090 GPU
based on the PyTorch framework and Python 3.9 version. To maximize the utilization of
our hardware system, we set the batch size to 32 and the learning rate to 10−4.

4. Experimental Results and Discussion

Table 2 presents the results of different combinations of image enhancement network
models and classification network models. For the image enhancement network models,
we selected UNet and its enhanced versions, UNet++ and ResUNet. As for the image clas-
sification network models, we chose four commonly used models: VGG16, MobileNetV2,
DenseNet121, and ResNet101. From the results, it can be observed that the combination of
ResUNet and ResNet101 achieves the highest accuracy (81.78%). Although DenseNet121
(81.77%) performs comparably to ResNet101 in terms of accuracy, its deep convolutional
layers result in long training times. Moreover, due to the relatively simple features of
stain-free WBCs, excessively deep networks may fail to extract effective features. Therefore,
we have selected ResUNet as the framework for our image enhancement network, and
ResNet101 as the classification network to construct our model.

Then, the four models mentioned above, namely Net1, Net2, Net3, and Net4, were
trained for 200 epochs, and the optimal weight parameters were saved for each model.
These weight parameters were employed to perform image enhancement on the test dataset,
as shown in Figure 3a where the first row is the raw images of three types of WBCs, and
the following three rows were the corresponding enhanced images generated by the model
with enhanced networks, namely Net2, 3, and 4. Compared with the images before and
after enhancement, the raw cell images appear blurry with insufficient details, whereas the
contrast of the enhanced cell images is significantly improved, with more prominent light
and dark areas and sharper edge details.
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Table 2. Accuracy of different combinations of enhancement networks and classification networks.

Model Accuracy Model Accuracy Model Accuracy

UNet
VGG16 78.01% UNet++

VGG16 79.42% ResUNet
VGG16 79.46%

UNet
MobileNetV2 78.14% UNet++

MobileNetV2 79.32% ResUNet
MobileNetV2 79.28%

UNet
DenseNet121 79.96% UNet++

DenseNet121 81.62% ResUNet
DenseNet121 81.77%

UNetResNet101 80.60% UNet++
ResNet101 81.43% ResUNet

ResNet101 81.78%

Figure 3. Experimental results. (a) Comparison of images before and after enhancement. (b) Compar-
ison of thermal maps with and without attention mechanism. The color gradient ranging from blue
to red represents gradually increasing weights.

To gain a more intuitive understanding of the impact of channel attention mechanisms
in network models, we utilized Grad CAM [43] to obtain thermal maps based on the weight
of test dataset samples. As shown in Figure 3b, the color gradient ranging from blue to red
represents gradually increasing weights, with higher weights indicating more salient cell
features that the model should pay greater attention to. In this image, the first row features
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CAM images without attention mechanisms, where it is clear that the image background
significantly interferes with the performance of the network model. In contrast, the second
row with attention mechanisms shows that the classification network focuses more on the
WBCs themselves rather than the background, which demonstrates the effectiveness of the
channel attention mechanism.

The confusion matrix is a standard format for expressing accuracy evaluation, which
can provide a more objective demonstration of the effectiveness and feasibility of our
proposed model. Therefore, we employed the confusion matrix to evaluate our model.
Figure 4a presents the confusion matrix for the four models at the highest test accuracy.
From the confusion matrix, we calculated the recall, precision, accuracy, and F1 score to
evaluate the performance of the three-class network models for stain-free WBCs as follows:

Recall =
TP

TP + FN
, (4)

Precision =
TP

TP + FP
, (5)

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

F1 score =
2× Precision× Recall

Rrecision + Recall
, (7)

where TP and TN mean true positive and true negative, respectively, indicating that the
prediction results are correct. FP and FN mean false positive and false negative, respectively,
which represent errors in prediction results.

Table 3 shows the results of four metrics for four models, respectively. Overall, our
proposed UR-Net model achieved the highest values in terms of F1 score (83.19%) and
test accuracy (83.34%). In the comparison of test accuracy, it can be found that the models
Net2, Net3, and Net4, which all have image enhancement networks, outperformed the
single classification network Net1. Besides, our proposed modified model UR-Net indeed
enhances the test accuracy by effectively extracting features and focusing more on WBCs
themselves rather than other noise through the attention mechanism, thereby achieving
higher results. However, from the perspective of recall metrics, the recall of monocytes
among the four models is not high, and according to the confusion matrix, they are always
classified as lymphocytes. The fundamental reason is that the number of monocytes in
human blood during sampling is relatively small, resulting in an imbalanced initial dataset.
Although dataset augmentation alleviates the imbalance to some extent, the true features
of monocytes are still less represented compared to the other two types. Nevertheless, after
pre-training, our model achieved nearly a 9% increase in recall for monocytes. Clearly, in
the processed monocyte images by ResUNet, both shallow and deep features are more
prominent, exhibiting higher performance in distinguishing them from lymphocytes.

Figure 4b,c show the training process of four models. Figure 4b displays the training
loss values and test loss values of each model. From the figure of training loss, it can
be observed that Net3 and Net4 converge faster than Net1 and Net2 which confirms
that our modified model UR-Net can find the best direction for optimization during
backpropagation. Figure 4c shows the training accuracy and testing accuracy of each
model. The testing accuracy indicates that compared to Net1 without an enhanced network,
the overall accuracy of the other three models is higher than Net1. In comparison to
Net2 and Net3, Net2 exhibits significant fluctuation at the beginning of training, and Net3
achieves a higher overall accuracy. When comparing Net3 and Net4, it is observed that
the pre-trained model has already achieved a high level of accuracy at the beginning, and
converges more quickly. This is due to pre-training providing the CNN with an excellent
initial value, enabling the network to converge towards the gradient descent direction
more rapidly, thereby achieving higher accuracy in fewer training epochs. Compared with
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the training accuracy and testing accuracy, the training accuracy of the four models is
around 98%. Although there is a certain gap between the training accuracy and the testing
accuracy, as the training loss value decreases during the training process, the testing loss
value continues to decrease and reaches convergence, and there is no decrease in testing
accuracy. Therefore, these four models have not shown an overfitting phenomenon.

Figure 4. Experimental results. (a) Confusion matrix of four models. (b) Train loss and test loss of
four models during training. (c) Train accuracy and test accuracy of four models during training.
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Table 3. Recall, precision, F1 score and test accuracy of four models with three types of WBCs.

Index Types of WBC Net1 Net2 Net3 Net4

Recall

Granulocyte 91.27% 91.87% 90.97% 91.52%

Monocyte 57.09% 61.13% 65.01% 65.90%

Lymphocyte 92.63% 92.38% 92.23% 92.63%

Average 80.33% 81.79% 82.74% 83.35%

Precision

Granulocyte 91.32% 91.37% 91.75% 92.40%

Monocyte 92.65% 92.75% 92.30% 92.39%

Lymphocyte 66.91% 69.17% 70.71% 71.46%

Average 83.63% 84.43% 84.92% 85.42%

F1 score

Granulocyte 91.29% 91.62% 91.36% 91.96%

Monocyte 70.65% 73.69% 76.29% 76.93%

Lymphocyte 77.70% 79.10% 80.05% 80.68%

Average 79.88% 81.47% 82.57% 83.19%

Accuracy Test accuracy 80.32% 81.78% 82.73% 83.34%

In the end, we conducted a comparative analysis of our work with that of others.
Jeon et al. [44] was our previous work, which did not use image enhancement methods.
Shahzad et al. [25] used traditional image enhancement techniques while Huang et al. [32]
used CNN for image enhancement. However, their image enhancement and classification
were two independent modules. Sharma et al. [23] integrated a series of enhancement
filters into the classification network. We reproduced the network models from these works
and made slight modifications to adapt them to our WBC dataset, training them on our
platform. Figure 5a presents the enhancement effect of each work, showing that the CNN-
based method outperformed the traditional method in processing image details. Figure 5b
presents the highest accuracy achieved during the training process, where we observed
that traditional image enhancement techniques may not necessarily benefit subsequent
image classification tasks. Conversely, integrating the enhancement technique into the
classification network improved its classification performance. Notably, our proposed
model exhibited better feature extraction capabilities, achieving the highest accuracy. At
the same time, we calculated the recall, precision, F1 score, and accuracy of these models,
as shown in Table 4. From the table, it can be concluded that the recall of monocytes has
always been at a low level, indicating that the lack of initial dataset has a significant impact
on the performance of network feature extraction.

Table 4. Recall, precision, F1 score and test accuracy of each work.

Index Types of WBC Jeon et al. [44] Shahzad et al. [25] Huang et al. [32] Sharma et al. [23] Ours

Recall

Granulocyte 92.77% 93.57% 93.77% 91.72% 91.52%

Monocyte 59.48% 56.10% 63.07% 64.56% 65.90%

Lymphocyte 92.08% 93.28% 88.60% 90.54% 92.63%

Average 81.44% 80.98% 81.81% 82.27% 83.35%

Precision

Granulocyte 91.99% 91.92% 91.44% 91.13% 92.40%

Monocyte 90.05% 91.03% 88.54% 88.90% 92.39%

Lymphocyte 69.17% 68.28% 70.18% 71.43% 71.46%

Average 83.74% 83.74% 83.39% 83.82% 85.42%
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Table 4. Cont.

Index Types of WBC Jeon et al. [44] Shahzad et al. [25] Huang et al. [32] Sharma et al. [23] Ours

F1 score

Granulocyte 92.38% 92.73% 92.59% 91.42% 91.96%

Monocyte 71.64% 69.42% 73.66% 74.80% 76.93%

Lymphocyte 79.00% 78.85% 78.32% 79.86% 80.68%

Average 81.01% 80.33% 81.52% 82.03% 83.19%

Accuracy Test accuracy 81.44% 80.96% 81.79% 82.27% 83.34%

Figure 5. Experimental results. (a) Enhancement image of each work in our stain-free WBC
dataset [23,25,32]. (b) Comparison of testing accuracy for each work [23,25,32,44].

The experimental results demonstrate that by integrating the ResUNet enhancement
network with the ResNet101 classification network, the feature enhancement direction
of the enhancement network is directed towards improving classification performance.
Consequently, this integration enhances both the feature enhancement effectiveness and
the classification accuracy simultaneously.
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5. Conclusions

In this work, we proposed a unified architecture, UR-Net, for stain-free WBC classi-
fication. The architecture comprises an image enhancement network and a classification
network, where the former is integrated into the latter to form an end-to-end model. The im-
age enhancement network based on ResUNet utilizes upsampling, concatenation, residual
structures, and attention mechanisms to enhance image features, and ResNet101 can fully
extract and utilize features for accurate classification. Experimental results demonstrate
that the proposed network model enhances images in a direction favorable for classifica-
tion. Furthermore, an excellent initial value is learned by pre-training, which enables the
model to converge at a faster speed and achieve higher accuracy with a limited number
of training epochs. In comparison to the previous enhancement algorithms, the proposed
model focuses on the identification performance, rather than observers’ perception. The
results demonstrate that our proposed model achieves an optimal accuracy of 83.34%.
However, there are limitations to this research. The proposed model has not been tested on
WBC images collected in other adverse environments; therefore, the stability of the model
remains to be investigated. In future work, we will continue to refine our experiments
and optimize the network model to enhance the classification accuracy of stain-free WBCs.
At the same time, the proposed method can also be applied to other high-level computer
vision tasks like object detection.
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