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Abstract: In recent years, the application of artificial intelligence (AI) in the automotive industry has
led to the development of intelligent systems focused on road safety, aiming to improve protection for
drivers and pedestrians worldwide to reduce the number of accidents yearly. One of the most critical
functions of these systems is pedestrian detection, as it is crucial for the safety of everyone involved in
road traffic. However, pedestrian detection goes beyond the front of the vehicle; it is also essential to
consider the vehicle’s rear since pedestrian collisions occur when the car is in reverse drive. To contribute
to the solution of this problem, this research proposes a model based on convolutional neural networks
(CNN) using a proposed one-dimensional architecture and the Inception V3 architecture to fuse the
information from the backup camera and the distance measured by the ultrasonic sensors, to detect
pedestrians when the vehicle is reversing. In addition, specific data collection was performed to build
a database for the research. The proposed model showed outstanding results with 99.85% accuracy
and 99.86% correct classification performance, demonstrating that it is possible to achieve the goal of
pedestrian detection using CNN by fusing two types of data.

Keywords: backward pedestrian detection; reverse camera; convolutional neural networks (CNN);
sensors; distances

1. Introduction

Currently, road accidents worldwide cause the loss of approximately 1.3 million lives
annually, according to World Health Organization (WHO) data [1]. In Mexico, 340,415 ac-
cidents were recorded in urban areas in 2021, of which 3849 (1.1%) resulted in the death
of at least 1 person. The total number of fatalities and injuries in traffic accidents was
86,867 people, of which 4401 (5.1%) lost their lives at the scene of the accident, and 82,466
(94.9%) suffered some injury, according to data from the Instituto Nacional de Estadística y
Geografía (INEGI) [2].

Over the years, vehicles have been equipped with technologies aimed at reducing the
number of road accidents. Advanced Driver Assistance Systems (ADAS) [3] are a category
of intelligent systems that help to improve road safety and reduce the risk of accidents.
Vehicles have many sensors and actuators that allow the development of active and passive
safety systems, reducing fatalities in road accidents [4]. Within ADAS, there is a subcategory
of intelligent systems intended for preventing collisions, such as Automatic Emergency
Braking (AEB), Lane-Keeping Assist (LKA), Adaptive Cruise Control (ACC), Forward
Collision Warning (FCW), and Cross-Traffic Assist (CTA) [5].
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FCW and AEB are two systems that can work simultaneously and use sensors, LiDAR,
and cameras to perform forward detection of vehicles or objects. In various cars, the
AEB system has been proven to be effective by using a combination of sensors, LiDAR
(Laser Imaging Detection and Ranging), cameras, and software to brake the vehicle when
detecting objects, including pedestrians. A subcategory of AEB is Autonomous Emergency
Braking Pedestrian (AEB-P), specifically focusing on frontal pedestrian detection [6,7]. This
intelligent system avoids collision with pedestrians and uses a combination of parameters,
such as collision time, speed, detection time, and AI, to improve road safety.

Pedestrian detection plays a crucial role in reducing traffic accidents due to collisions.
Despite this, current approaches to pedestrian detection using AI are based on front-end
detection (AEB-P), which involves the usage of cameras and sensors located at the front of the
vehicle. The backup camera and sensors at the car’s rear are essential to avoid collisions at
the back of the automobile. In 2018, these devices were established as mandatory by law in
the United States [8]. In Mexico, since 2020, all new vehicles manufactured domestically or
imported must include acoustic and visual warning systems for the driver when the presence
of objects or persons behind the vehicle is detected while reversing [9].

The automotive industry is being transformed by AI, which is currently used to
create intelligent systems such as autonomous driving [10], AEB-P, FCW, and parking
assistants [11,12], among others. AI tools, such as machine learning, computer vision, and
deep learning, have provided a set of algorithms that enable the design, development, and
improvement of intelligent systems in the automotive industry. In pedestrian detection,
AI plays a crucial role. In particular, using CNN [13] has made frontal collision avoidance
systems increasingly sophisticated and robust. An example of this is the research conducted
by Liu et al. [14], in which CNNs were employed for rain removal, and two modules were
proposed: one for rain removal and another for pedestrian detection once the image was
regenerated (output of the previous module). In another study [15], the authors used the
YOLOv3 CNN architecture to detect pedestrians and vehicles in different scenarios. These
scenarios included daytime and nighttime conditions, extreme weather, and even images
with a high saturation of people or objects. In addition, several types of research focused
on pedestrian detection in low illumination conditions [16–18].

Within the literature, numerous studies delve into pedestrian detection in front of vehi-
cles. However, the detection of pedestrians to the rear of cars needs to be further addressed.
This lack of attention is due to the limited research conducted in this area. Some notable
work in pedestrian forward detection is, for example, the study by Li et al. [19]. Their
research presented two innovative methodologies that leveraged the You Only Look Once
(YOLO) framework: VggPrioriBoxes-YOLO and MNPrioriBoxes-YOLO. These methodolo-
gies were designed to improve peat detection, especially in adverse weather conditions
with low visibility. The results obtained demonstrated an average accuracy (AP) of 80.5%
for VggPrioriBoxes-YOLO and 80.5% for MNPrioriBoxes-YOLO, which, when compared
to other existing methods, showed that the proposed MNPrioriBoxes model performed
better in both accuracy and processing speed, allowing efficient pedestrian detection in
foggy weather conditions. Also, Tumas et al. [20] presented an infrared imaging forward-
pedestrian detection system, which modified the YOLOv3 architecture and used CAN bus
data (driving speed, brake pedal status, and temperature) to create an ADAS system to
perform advanced predictions in pedestrian time. This approach achieved a mean Average
Precision (mAP) of up to 89.1%.

On the other hand, Yi et al. [21] proposed a real-time forward-pedestrian detection
algorithm based on Tiny–YOLOv3. They used K-means clustering on the training image set to
find the best prior features. In addition, three convolutional layers were added to the original
network to improve the model’s ability to extract pedestrian features, obtaining an AP of
73.98% with a detection speed of 4.84 ms. Similarly, Zhang et al. [22] proposed an improved
LeNet-5 CNN in their research for forward-pedestrian detection. This model met the accuracy
and real-time requirements of advanced assisted driving. First, they analyzed the structure
of the LeNet-5 network model and improved and optimized the network parameters and



Sensors 2023, 23, 7559 3 of 21

design to obtain a new LeNet model used to detect pedestrians. Finally, they obtained a failure
rate of 25% in the improved LeNet CNN and a detection speed of 0.204 frames per second.
To address these challenges, several methods have been proposed in the literature. Flores
Calero et al. [23] presented a Histogram of Oriented Gradients (HOG)-based classifier together
with Support Vector Machine (SVM) and Inference Logic (IL) algorithms to discriminate
between the person to be detected and the background. They built an alternative dataset to
make the experiment more realistic, hiding certain image parts at different percentages of
synthetic occlusion (0, 10, 20, 30, and 40 percent). The results showed Area Under the Curve
(AUC) values of 99.01%, 98.89%, 98.39%, 97.15%, and 95.41%, respectively, for the different
percentages of synthetic occlusion, with a processing speed of three images per second.

In addition, Chi et al. [24] proposed an effective and efficient detection network
for detecting pedestrians in crowd scenes. They introduced a mask-guided module to
leverage the primary information to improve learning in the ResNet50 CNN architecture,
which they used as a backbone. The authors showed the results as the log-average miss
rate (MR−2), obtaining values of 43.53% and 45.31% in the CityPersons and Caltech-USA
dataset, which were lower than other methods used in the literature. Finally, Yang et al. [25]
proposed a Part-Aware Multi-Scale Fully Convolutional Network (PAMS-FCN) to address
the difficulties of occlusion and small scale when detecting pedestrians. For this, they
developed a Region of Interest (ROI) clustering module to extract body parts, which allowed
a partially visible pedestrian instance to receive a high detection confidence score, meaning
it was less likely to become a false detection. In the Caltech dataset, the proposed network
obtained 4.9% in MR−2, in addition to presenting competitive detection performance,
e.g., 78.43%, 67.20%, and 61.88% concerning AP in easy, moderate, and difficult subsets,
respectively, and a detection time of 0.25 s per image.

Furthermore, in [26], Xie et al. proposed a new forward-pedestrian detection model
called PSC-Net, which used a CNN to learn the spatial co-occurrence of pedestrian body
parts. They achieved absolute gains of 4.0% and 3.4% over Graph Multi-Attention Network
(MGAN) on the CityPersons and Caltech test sets, respectively. The research mentioned
above focuses on detecting pedestrians under various conditions, such as adverse weather,
occlusion, low image quality, small-scale pedestrians, and real-time scenarios. Han et al. [27]
proposed a CNN based on Faster R-CNN for small-scale forward-pedestrian detection. The
architecture generated more effective ROIs for small-scale pedestrian detection, achieving
an AP of 90.51%, slightly outperforming architectures such as YOLOv3 and YOLOv2
with 89.77% and 71.53%, respectively. Meanwhile, Luo et al. [28] proposed RT-YOLOv3,
an improved version of YOLOv3, for real-time forward-pedestrian detection at different
scales. The proposed method achieved a precision of 93.57% mAP and 46.52 f/s , meeting
the requirements for real-time pedestrian detection. Regarding accuracy, RT-YOLOv3
outperformed Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3.

Pedestrian detection is a critical issue in road safety, and significant progress has been
made in pedestrian detection with cameras and sensors at the front of the vehicle. However,
pedestrian detection at the vehicle’s rear remains challenging, especially in urban areas with
many pedestrians and parked cars. Backward pedestrian detection is crucial to avoid collisions.
In the research by Keall et al. [29], focusing on the effectiveness of rearview cameras and rear
parking sensors in preventing pedestrian rearview injuries, the authors provided fundamental
insights into the use of these types of tools in crash prevention, as the use of rearview cameras
has reduced rear-end collision crashes by 41%. Furthermore, their study showed that the
combined use of cameras and sensors alone did not have a statistically significant effect.
Within the research oriented toward pedestrian detection in the rear of vehicles, the work by
Tadjine et al. [30] focused on the pedestrian identification process. In this context, a fisheye-
type camera, placed at the vehicle’s rear, was employed to acquire images of the surrounding
scene. The basis of its methodology lay in an algorithm aimed at detecting moving objects,
which relied on an adapted variant of the windowing technique used to generate assumptions
about the location of the things in question. Subsequently, an analysis of HOG-derived
features was implemented in conjunction with an SVM-based classifier.
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Another relevant research contribution, documented in the literature, comes from the
work of Wang et al. [31]. These authors proposed an approach focused on the safety of
heavy-duty trucks during the backing maneuver. Their method used pedestrian detection
and obstacle tracking using binocular fisheye cameras. The aforementioned system consisted
of four main stages: calibration and image matching of the cameras, distortion correction and
pedestrian identification, obstacle tracking through an improvement of the Consensus-based
Matching and Tracking (CMT) algorithm, and a procedure for truck speed regulation.

In addition to the research, as mentioned earlier, it has been shown that implementing
in-vehicle acoustic and visual alerts has proven effective in avoiding rear-end collisions.
Therefore, it is essential to research and develop solutions for in-vehicle pedestrian reversing
detection to improve road safety and reduce accidents. Using AI and computer vision
techniques, such as CNNs, could be an effective solution to address this problem. To
approach this issue, in this research, AI techniques are used, specifically CNNs, which have
proven to be very effective in detecting objects in images. By using these techniques, the
aim is to achieve a robust and accurate system that can detect pedestrians at the vehicle’s
rear and alert the driver of their presence. The results of this research are expected to
contribute significantly to road accident prevention and safety.

The paper is structured as follows. In Section 2, the materials and methods employed
to carry out backward-pedestrian detection are described, including data acquisition,
implementation of CNNs, and validation metrics used. The results obtained using the
proposed methodology are presented in Section 3. Afterward, in Section 4, the results
obtained in the previous section are looked over to highlight the contribution of this
research in comparison with the state of the art. Finally, Section 5 presents conclusions and
future work to improve the pedestrian detection system at the vehicle’s rear.

2. Materials and Methods

Figure 1 shows the proposed method for performing backward-pedestrian detection
of the vehicle. First, collection and storage needs to be carried out, using the information
from the reversing camera and ultrasonic sensors (Figure 1A). In Figure 1B, the data are
cleaned and labeled into two sets: Train and Test. Once the corresponding Train and Test
images and distances are obtained, in Figure 1C, a model is generated using the Inception
V3 architecture to analyze the images. Then, a one-dimensional (1D) CNN architecture
examines the distance data from the sensors. In Figure 1D, an evaluation of the performance
of the proposed model is implemented by using the following statistical metrics: accuracy,
precision, sensitivity, specificity, F1-score, and AUC. Finally, the predictions are carried
out, showing the output as pedestrian or non-pedestrian. The steps above are described in
detail in the following subsections.

2.1. Data Acquisition

Several vehicle models are now equipped with rearview sensors and cameras. Since
2018, a law in the United States has required all vehicles to be fitted with this technology.
This technology has proven effective in reducing accidents, although cases of collisions
with objects, people, and pets are still reported.

The information provided by reversing cameras and sensors is limited by vehicle
manufacturers, making it impossible to access and manipulate this information to develop
a system to prevent collisions with pedestrians. Therefore, due to the lack of reverse sensor
and camera datasets, a data acquisition system was developed for this research to create an
in-house database to detect pedestrians at the rear of the vehicle.

This subsection details the hardware and software used to perform this work and
acquire the datasets. The data acquisition was performed by simulating everyday driving
actions when reversing the vehicle, having parking lots, garages, and streets as scenarios.
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Figure 1. Flowchart of the proposed methodology for pedestrian detection in reversing vehicles.
(A) Data acquisition system and dataset generation. (B) Preprocessing and division of data into
two datasets (Train and Test). (C) Generation of the proposed model using the datasets. (D) Validation
of the model to assess its performance. (E) Prediction stage.

On the hardware side, the processing unit consisted of an Intel i7-8750H at 2.20 GHz
(Intel Corporation, Santa Clara, CA, USA), 16 GB of RAM, an NVIDIA GeForce GTX 1050
graphics card (Nvidia Corporation, Santa Clara, CA, USA), as well as input peripherals;
four HC-SR04 (see Figure 2) ultrasonic sensors (Cytron Technologies, Simpang Ampat,
Malaysia); Arduino 101 (Arduino, Ivrea, Italy); and a commercially available ZHAOCI
model 8L backup camera (Paolly, China), which is compatible with any car.

Figure 2. HC-SR04 ultrasonic sensor.

For the data acquisition, the camera and the four sensors were installed on the back of
two test vehicles, a Honda HR-V (Honda Motor Company, Tokyo, Japan) and a Chevrolet
Silhouette (Chevrolet, Detroit, MI, USA), as shown in Figure 3. The camera was calibrated,
so that the image view provided was equal to a vehicle with a factory-installed backup
camera. The sensors were connected via UTP cable to the GPIO pins on the Arduino 101.
The image capture was synchronized to the distance readings of the ultrasonic sensors,
obtaining 20 FPS and 20 sensor readings.

Figure 3. Experimental setup. The blue box = reverse camera installed, yellow boxes = ultrasonic sensors.
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A Python and Arduino program was run simultaneously on a laptop while the vehicle
was moving in reverse, collecting data, as shown in Figure 4, obtaining images and distances
in centimeters from the sensors simultaneously. Figure 4a shows some examples of images
containing pedestrians, along with the corresponding distance measurements obtained
by the sensors. In contrast, Figure 4b shows images without pedestrians, highlighting the
distances when no pedestrians or objects are detected in the presence of items. In particular,
it is interesting to note that Figure 4a,b shows values of 1200 in the sensor readings. This
observation is because the sensors detect neither objects nor pedestrians.

Figure 4. Data types: (a) the presence of pedestrians with their respective detection distances, and
(b) the absence of pedestrians and the presence of objects.

This research was conducted within the facilities of the Universidad Autónoma de
Zacatecas, Campus XXI, utilizing the parking lots, internal roads of the campus, and the exit
of the Centro de Investigación Automotriz de México (CIIAM) garage for data collection.
The flow of students served as a reference point, acting as a test scenario for the data
collection process.

2.2. Preprocessing

Currently, pedestrian detection focuses on the front of vehicles using images captured
by cameras, and detection is performed using machine learning techniques, specifically,
2D CNNs [32]. However, in this study, the scope is pedestrian detection at the rear of the
vehicle by using combined 2D and 1D CNNs [33,34], which allow us to analyze two types
of data and increase the accuracy of pedestrian detection when reversing the vehicle. Since
there is no suitable public dataset for this purpose, in-house data acquisition was conducted
to train and evaluate our proposed model.

During the acquisition, 75,440 images were obtained with their corresponding distance
data, resulting in two datasets: the image dataset and the distance dataset of the ultrasonic
sensors. However, these data were stored in a random manner, so the data were divided
according to the type of image (with a pedestrian, without a pedestrian, or an object); for
this, a Python code was coded to facilitate the division of the data into two types: with
pedestrians and without pedestrians. Once the dataset of pictures divided into two classes
was obtained, the dataset of distances was divided according to the ID of the image, which
was assigned at the time of collection; this ensured the distance corresponding to each
image. Subsequently, the cleaning of the data was carried out; in other words, an inspection
of the pictures with pedestrians was made, ensuring that a distance recorded by any of
the sensors was found; otherwise, the image and the corresponding line in the dataset of
ultrasonic sensors were eliminated, since these were considered as noise in our data.

Finally, the result of the previous process derived two datasets with 6981 elements in
each class, i.e., with pedestrians and without pedestrians, having a total of 13,962 images
and 13,962 observations in the dataset of the distances. The datasets were divided into
two sets: Train (80%) and Test (20%). The above classes were coded with “1” and “0”,
respectively. Since this is a classification problem between two types, the binary cross-
entropy loss function was used. This function is appropriate when the objective is to classify
between two different classes represented in binary form.
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Loss functions play a fundamental role in evaluating the performance and behavior in
deep learning models during the training process. In this context, the binary cross-entropy
loss function focuses on quantifying the error between the actual class value (1 or 0) and the
prediction generated by the model. The result of this function oscillates between a positive
value of 0 and 1. When the result is close to 0, it is interpreted that the model presents
a low error level in the prediction of the classes, indicating a good learning process. In
the other hand, values close to 1 show a significant error, denoting poor learning by the
model [35,36].

2.3. Model Generation

For this research, we combined two types of CNNs; a 2D-CNN and 1D-CNN were used
to generate the model, as shown in Figure 5. The model consisted of using the Inception V3
architecture [37] and a proposed 1D-CNN architecture, as demonstrated in Figure 5A,B.
The architectures of Inception V3 and 1D-CNN were combined into a single block, thus
having two inputs to analyze: images and distances, taking as reference two different data
types and outputs of our model (“pedestrian” or “non-pedestrian”).

CNNs are designed to process data in three types of dimensions: vector (1D), matrices
(2D), and tensor (3D). Popularly, CNNs are used in image and video processing, Natural
Language Processing (NLP) [38], and recommendation algorithms. Four critical ideas
behind CNNs take advantage of the properties of the inputs: local connections, shared
weights, clustering, and the use of multiple layers [39]. CNNs, regardless of input data
types, are composed of different filters/cores. These constitute a set of trainable parameters
that can spatially convolve the data to detect features [40].

Figure 5. Proposed model for vehicle backward-pedestrian detection, (A) Inception V3 and
(B) 1D model.

Several pre-trained 2D-CNN architectures were established in the literature. Inception
V3 is a deep convolution network widely used for classification tasks. It has multiple sym-
metric and asymmetric building blocks. Each block has several branches of convolutions,
average pooling, max pooling, concatenated, dropouts, and fully connected layers [41].
This network has 42 total layers and 29.3 million parameters. Figure 6 shows the architec-
ture of the Inception V3 network [37,42].
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Figure 6. Inception V3 architecture.

The function of Inception V3 in this research is given in the analysis of images with
and without pedestrians, providing, as a result, the prediction probability (0.5 < P ≤ 1) of
finding a pedestrian in the analyzed image. For this, the Train (80%) dataset was used to
retrain Inception V3, adding 1000 epochs for training as well as preprocessing the image,
then performing a rescaling to 299 × 299 pixels and a normalization of the image using
Equation (1) before training:

Imgnorm =
Img − Vpxmin

Vpxmax − Vpxmin

, (1)

where the variables are as follows:

• Imgnorm: corresponds to the normalized image;
• Img: matches the original image;
• Vpxmin : the minimum image pixel value; and
• Vpxmax : the maximum image pixel value.

Notably, 1D-CNNs are commonly used to analyze one-dimensional signals (vectors,
time signals, etc.) and have been implemented in various applications, such as health,
brainwave analysis, traffic, marketing, and network analysis. In contrast to 2D-CNN ap-
plied mainly to image analysis, one of the distinguishing features of 1D-CNN is the absence
of a predetermined kernel size. However, the kernel size is a fundamental parameter that
profoundly influences the efficiency of signal analysis. Its determination depends on the
dimensions of the input data. Consequently, the absence of fixed kernel size in 1D-CNN
generates complexities since optimal kernel specification requires contextual sensitivity,
making establishing a universal fixed size impractical [43].

In this research, a 1D-CNN architecture was built for the analysis of proximity sensor
signals, as shown in Figure 7, having, as input, a 1 × 5 vector, where the first four columns
correspond to the distance of the sensors (S1, S2, S3, S4) and the last column corresponds
to the probability coming from the analysis of the image. This probability is obtained using
Inception V3 for image analysis by calculating the possibility of the presence of pedestrians
in the input image. The 1D-CNN architecture also consists of three convolution layers
with filters of 128, 64, and 32 and kernels of sizes 3, 2, and 1, which were set according to
the shape of the input vector to the model. Four dense layers of sizes 128, 64, 32, and 16,
respectively, and an output neuron with the “sigmoid” activation function were added.
This is how our 1D-CNN architecture was formed.

Similarly, training was performed with the Train dataset (80%) of the distance dataset,
applying 1000 epochs and the 1D-CNN. As mentioned above, we used the binary cross-
entropy loss function in this research, as shown in Equation (2) [36,44]:

L(y, ŷ) = (− 1
N
)

N

∑
i=0

(y × (log(ŷ)) + (1 − y)× (1 − ŷ)). (2)
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Figure 7. Proposed 1D-CNN architecture.

In this equation, the terms plays the following roles:

• y: Represents the classes, where, in this context, it takes the value of 1 or 0, according
to the label assigned to the image;

• ŷ: Corresponds to the probability the model has calculated for the class to which the
probability prediction is made;

• N: Indicates the total number of observations, which, in this specific work, equals 13,962.

This loss function captures the discrepancy between the model predictions and the
actual classes on a weighted basis for each epoch in the model training [36]. This approach
allows the evaluation of how the model predictions deviate from the actual values as
a function of the probability assigned to each class.

2.4. Validation

Validation consists of evaluating the model’s ability to predict based on previous
training, using different statistical metrics such as the confusion matrix and the Receiver
Operating Characteristic (ROC) curves [45,46].

A confusion matrix is a tool that allows the visualization of the performance of an AI
algorithm [47,48]. One of the advantages of confusion matrices is that they provide general
information about the model’s predictive ability. The information provided shows four
widespread terms: True Positive (TP), the favorable cases that the model correctly classifies
as positive, that is, the model predicts the class “positive” (label “1”), and the actual title is
also “positive” (brand “1”); True Negative (TN) represents the negative cases the model
correctly classifies as unfavorable, that is, the model predicts the “negative” class (label
“0”); False Positive (FP) corresponds to the negative cases incorrectly classified as positive;
and False Negative (FN) refers to the positive cases incorrectly classified as negative. These
terms are fundamental for calculating various evaluation metrics and provide information
on the model’s ability to discern between the different classes [48]. These terms are essential
in the evaluation of classification models. They are used to calculate various metrics, such
as accuracy, precision, sensitivity, specificity, and AUC, which provide information on the
model’s performance and ability to correctly classify positive and negative instances.

Accuracy corresponds to the proportion of correctly predicted classifications out of
the total number of instances [41,49], as shown in Equation (3):

Accuracy =
TP + TN

TP + TN + FP + FN
. (3)

Another evaluation metric is precision; this measure, also known as “predictive value”,
evaluates the model’s predictive power. In other words, it is how accurate the model is of
those predicted positives and how many are positive, as shown in Equation (4):

Precision =
TP

TP + FP
. (4)

Additionally, it is necessary to know how many positive cases are being correctly
classified and how many negative cases are being correctly classified. For this purpose,
two metrics are calculated to provide this information. These metrics are called sensitivity
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(recall) and specificity, and are calculated using Equation (5) and Equation (6), respectively:

Recall =
TP

TP + FN
, (5)

Specificity =
TN

TN + FN
. (6)

In addition, for this research, we used the ROC curves, from which we obtained the
AUC, which is a metric that indicates high diagnostic accuracy when values are close to
1.0, as calculated by Equation (7). Therefore, using this index is recommended as a general
measure of the differences between two classes, achieving accuracy in prediction [50].

AUC =
recall − (1 − specificity)

2
. (7)

2.5. Cross-Validation and Blind Test

Based on the above, we perform two validationsed considering two metrics: the K-fold
Cross-Validation (CV) [51–53] and the Blind Test (BT). The K-fold CV consists of randomly
dividing the Train dataset into K samples, where the training and the validation of the
generated model are performed for K iterations, taking sub-datasets, in this case, K − 1, to
train the model and K − (K − 1) to validate the model. K-fold CV is one of the validation
methods that helps to verify the model’s learning capacity and to prevent overfitting of
the model [51]. Therefore, K-fold CV provides a more rigorous evaluation of the model
by using all training data samples to train and validate. In contrast to K-fold CV, the BT
uses the data reserved for testing, which corresponds to 20% of the data set. This test
is considered “blind” because the model has had no prior contact with these data. This
provides more accurate validation by exposing the model to new data, which is essential
for evaluating its performance in real situations.

2.6. Prediction

Finally, after training and validating the proposed model, the prediction is performed,
testing the model by entering input data (image and distances) and predicting if there is
the presence of a pedestrian, resulting in a “1” if so, and a “0” otherwise.

3. Results

As mentioned above, a total of 75,440 datapoints were obtained in the data acquisition,
from which, later, with the preprocessing, a final sample of 13,962 datapoints was obtained,
which then was divided into two different datasets: images and distances. The distances
dataset consisted of 13,962 observations and four features, where the corresponding label
was added to the data: “1” in the presence of a pedestrian and “0” in the absence of
pedestrians. This was the model output, producing a dataset of 13,962 × 5.

The architectures used in this study were trained to consider the training hyperpa-
rameters corresponding to each model, as detailed in Table 1. It should be noted that the
hyperparameters for the 1D network architecture were selected through an experimental
process, and the values presented in Table 1 reflect the most optimal results obtained during
this process.

The Inception V3 architecture has the function of analyzing the image database, for
which the model was trained with 80% of the set of images corresponding to 11,168 prints,
5584 for each class (pedestrian, non-pedestrian), and validated with the remaining 20%,
which corresponds to 2794 elements. It is worth mentioning that the result of this analysis
has, as output, a probability between 0 and 1, which is concatenated to the distance database
to be analyzed with the one-dimensional network architecture. The result is shown in
Figure 8, representing the ROC curve of Inception V3. The graph shows that the AUC is
close to 1.0, demonstrating CNN’s ability to classify images with and without pedestrians.
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Table 1. Hyperparameters for training architectures.

Hyperparameter 1D-CNN Inception V3

Input 1 × 5 299 × 299
Activation functions ReLu ReLu

Epochs 1000 1000
Optimizer Adadelta [54] GradientDescent [55]

Number of convolutional layers 3 48
Batch size 64 32

Kernels 3, 2, 1 5 × 5, 3 × 3, 1 × 1
Filters 128, 32, 16 32, 64, 128
Loss binary_crossentropy cross_entropy

Output function Sigmoid Softmax
Number of classes 2 2

Dense layers 4 of 128, 64, 32, 16 neurons 1 layer of 1024 neurons
The hyperparameters of 1D-CNN were determined on an experimental basis.

Figure 8. Inception V3 ROC curve. The red line in the figure represents a reference point. The AUC
of this linear is 0.5.

The objective of this research is pedestrian detection by merging two data types. This
work aims to contribute to a new method to reduce pedestrian collisions when the vehicle
reverses. The results of the validations applied in this research are shown as a follow-up.

3.1. Result Cross-Validation

Once the model shown in Figure 5 was built, the K-fold cross-validation was per-
formed, considering a size of K = 5, using 80% of the data, i.e., the portion that made up
the training data set, and 1000 epochs to train. The results obtained are shown in Table 2.

Table 2. Training and validation results for each value of K in the cross-validation.

K Train Acc Train Prec Train Rec Train Spec Train F1 Val Acc Val Prec Val Rec Val Spec Val F1 Val AUC

1 0.9641 0.9601 0.9699 0.9568 0.9642 0.9854 0.9854 0.9717 1.0000 0.9709 0.9857
2 0.9950 0.9949 0.9951 0.9949 0.9949 0.9994 0.9994 0.9993 0.9996 0.9993 0.9994
3 0.9985 0.9988 0.9980 0.9989 0.9984 0.9994 0.9994 0.9993 0.9996 0.9993 0.9994
4 0.9998 0.9995 1.0000 0.9996 0.9998 0.9999 0.9999 0.9998 1.0000 0.9998 0.9999
5 0.9988 0.9985 0.9991 0.9984 0.9988 0.9996 0.9996 0.9991 1.0000 0.9991 0.9996

Mean 0.9912 0.9904 0.9924 0.9897 0.9912 0.9968 0.9968 0.9939 0.9998 0.9937 0.9968

Acc = Accuracy, Prec = Precision, Rec = Recall, Spec = Specificity, and F1 = F1 Score.

Likewise, the ROC curve was calculated, as shown in Figure 9, from which the AUC
shown in Table 2 was calculated.
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Figure 9. ROC curve of the cross-validation of the proposed model with K.

The above results show robust and consistent performance across all partitions of the
Train dataset, having a mean of the metrics close to a unit value. These results indicate that
the model can generalize well to unseen data and has a low risk of overfitting.

3.2. Blind Test Results

To evaluate the performance of 1D-CNN against completely unknown data, a blind test
was performed using the remaining 20% of the data. The results of the blind test provide
a more reliable assessment of the actual model performance, as they are not affected by
the model’s fit to the data used during training. For training in this test, 80% of the data
reserved for this task were used, generating two plots showing the learning progress
over epochs. The initial graph, presented in Figure 10, illustrates the result derived from
the application of Equation (2), which leads to the representation of the loss throughout
the training process. It is observed that the acquired values are near the threshold of 0,
indicating a satisfactory level of learning by our model.

Figure 10. Graph of model training loss.
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Complementary to Figure 10, the following graph was obtained, which can be seen in
Figure 11, representing the accuracy vs. epochs during training.

Figure 11. Accuracy graph in model training.

These two graphs show that as the loss decreases, the accuracy increases, demon-
strating that the model is learning properly and proving that these two metrics can be
inversely related.

Subsequently, when validating the model with the Test data set, the ROC curve was
calculated and the AUC was measured to assess its performance. Figure 12 shows the ROC
curve, which had an AUC of 0.9986. The model also achieved an accuracy of 0.9985, a true
negative rate of 99.85%, and a true positive rate of 99.93%.

Figure 12. ROC curve of the proposed model.
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The confusion matrix shown in Figure 13, from the final model, tested on the blind
data set, the model achieved a precision of 0.9978.

Figure 13. Confusion matrix performance in the test dataset, top zone: green = true negative,
red = false negative, and bottom zone: green = true positive, red = false positive.

Based on the results obtained in the confusion matrix (Figure 13), it could be identified
that the images shown in Figure 14 corresponded to 0.04% and 0.11% wrong predictions.
These values reflect the proportion of incorrect classifications the model made about the
total predictions.

Figure 14. Images from the test data set, the model misclassified: (a) Images with pedestrian presence
misclassified and (b–e) images with object presence at different distances in which the model classified
as a person.
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Table 3 provides a detailed overview of the data where the model made incorrect
predictions. In this Table 3, the actual labels of the images presented in Figure 14, as well
as the probabilities assigned by the model to the pictures, are presented, along with their
corresponding outputs. This arrangement allows us to conduct a comparative analysis
between the actual values and the values predicted by the model, understanding the results
of the confusion matrix to identify where the model was wrong.

The results of the prediction of the four images with their respective distances are
shown to follow up.

Table 3. Input data to 1D-CNN and the corresponding model prediction.

ID Distances Probability True Value Prediction

(a) [436, 1200, 1193, 1196] 0.99699056 1 0
(b) [86, 104, 447, 1204] 0.01227760 0 1
(c) [392, 1206, 1200, 1147] 0.00966980 0 1
(d) [1201, 1078, 107, 1084] 0.02257097 0 1
(e) [316, 1002, 112, 675] 0.01505166 0 1

The actual value “1” indicates the presence of pedestrians in the image, and “0” indicates the opposite: the
missing pedestrians.

3.3. Prediction Test with New Data

Additional data were acquired and examined to evaluate the model’s performance
and accuracy further. Figure 15 shows a selection of the images subjected to analysis. At
the same time, Table 4 presents additional information, where the distances captured by
each sensor about the corresponding images and the results obtained from analyzing the
pictures with their respective distances are found.

Figure 15. Input images: (a) Image with partial presence of a pedestrian, (b) presence of a pedestrian
very close to the camera, (c) presence of a chair with its respective distance, and (d) presence of
a vehicle.

Table 4. Table of input distances corresponding to the images (ID) shown previously.

ID Sensor 1 Sensor 2 Sensor 3 Sensor 4 True Value Probability Prediction

(a) 89 103 1200 1200 “1” 0.6581990 1
(b) 23 12 35 1200 “1” 0.9653548 1
(c) 1200 120 135 1200 “0” 0.6395127 1
(d) 190 200 193 199 “0” 0.0151797 0

Following the evaluation of the data collected, Table 4 also shows the predictions
generated by the model, accompanied by the probabilities derived from the analysis of the
content of the input images.

4. Discussion

The present study performed raw data acquisition, consisting of distance measure-
ments in centimeters using ultrasonic sensors and reverse camera image captures. The
acquired image dataset comprised a wide range of scenarios, including fully visible pedes-
trians, pedestrians subject to partial occlusion, and pedestrians with no pedestrians. This
variety of settings generates a dataset, effectively capturing a broad spectrum of real-world
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situations. Compared to publicly available datasets such as INRIA and Citypersons [56],
the dataset obtained in this research only includes reverse camera images in real driving
situations. The research results show the effectiveness of the proposed model for pedestrian
detection in vehicle reversing, even in cases with occlusion in the images. It is important
to note that, in some previous studies, the authors have used datasets with scenarios
dissimilar to everyday driving.

Furthermore, an essential observation in some related works is that pedestrian de-
tection had been performed using only cameras. However, it has been shown that the
fusion of sensor information with cameras improves accuracy and decreases detection time.
An example is Melotti’s research [57], where LiDAR and camera information were fused
using 2D- and 3D-CNN for pedestrian detection. Some recent studies have implemented
pedestrian detection using CNN. Table 5 shows the results obtained by other researchers
who have used CNN proposals, information fusion, and datasets created or modified by
them for pedestrian detection. Also included in Table 5 are the results of real-time detection
and implementation of pedestrian detection systems.

Table 5. Results obtained from proposed work from past research also using CNN and fusion of
sensor and camera information.

Title Technique Features Validation Metrics Results Front or
Back Detection

Vehicle pedestrian detection method based on
spatial pyramid pooling

and attention mechanism [15] (2020)
YOLOv3-promote Images mean Average Precision (mAP)

F1 score
91.4% mAP

83.2% F1 score Front

Pedestrian detection under partial
occlusion by

using logic inference, HOG, and SVM [23] (2019)

Histogram of Oriented Gradients
Support Vector Machine

Logic Inference
Images AUC

Error Rate vs. FPPI

Occlusion AUC
20% 98.39%
30% 97.15%
40% 95.41%

Error Rate = 64% in 10−1

Front

A part-aware multi-scale fully convolutional
network for pedestrian detection [25] (2021)

Part-Aware Multi-Scale
Fully Convolutional Multi-Scale Network

(PAMS-FCN)
Images

AP
log-average miss rate (MR−2)

67.2% AP
47.2% MR−2 Front

Deep learning approaches on pedestrian
detection in hazy weather [19] (2020)

Simple-YOLO,
VggPrioriBoxes-YOLO
MNPrioriBoxes-YOLO

Images
AP

Precision (P)
Recall (R)

AP 62.7%, 80.8% and 86.6%
P 76.8%, 85.1% and 84.1%
R 70.2%, 84.1% and 89.3%

Front

Multimodal deep-learning for
object recognition

combining camera and LiDAR data [57] (2020)

3D deep-neural network (PointNet)
2D InceptionV3

Image RGB,
Depth maps, and

Point clouds

Average F-score 97.22% Front

Object detection and classification
using a rear in-vehicle fisheye camera [30] (2012)

Sliding windows
Histogram of Oriented Gradients

Support Vector Machine
Images Sensitivity 90% Back

Pedestrian detection during vehicle backing
maneuvers using ultrasonic parking sensors [58] (2020) Does not use ML algorithms Distances Areas and distances

The maximum detection distance ratio:
child (32–84%)

the adult woman (78–102%)
adult man (97–102%)

Back

Novel obstacle detection and
tracking system using fisheye vision [31] (2020)

Consensus-based Matching
and Tracking (CMT) Images Processing time 2.415 ms Back

Our Research InceptionV3
1D-CNN

Images
Distances

Precision
Accuracy
F1-score

Sensitivity
Specificity

AUC

99.78%
99.85%
99.85%
99.93%
99.85%
99.86%

Back

Although all current techniques effectively detect pedestrians in a frontal position,
only some address the challenge of pedestrian detection in reversing situations using
a rearview camera. Among the few investigations found in the literature, as seen in Table 5,
the work by Tadjine et al. in 2012 stood out. This study proposed the implementation of
a fisheye camera in the rear of a vehicle to detect objects and pedestrians. This task used
sliding window techniques, HOG, and SVM as a classifier algorithm. This implementation
achieved a sensitivity of 90%, reflecting the system’s ability to detect positive cases, in this
case, pedestrians. On the other hand, Matsui et al. [58] investigated pedestrians at the
rear of the vehicle using only the vehicle’s ultrasonic sensors. Comparing four sensors
(two central and one in each corner)—although they did not use artificial intelligence
algorithms—they reported distances and detection percentages. They suggested the detec-
tion of children, women, and adult males. They concluded that ultrasonic parking systems
can effectively prevent backup accidents involving pedestrians and that combining them
with other technologies, such as cameras, could improve safety. The research proposal by
Wang et al. [31] did not provide information on the system’s efficiency; however, they gave
a detection time of 2.415 ms.
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Two significant observations stand out from the results of these studies regarding
backward detection. First, the system proposed in this research combines cameras and
ultrasonic sensors, unlike previous research that individually addresses camera-based
or sensor-based solutions. Second, this study combines information to develop a more
robust system, taking advantage of the potential of both one- and two-dimensional CNNs
and obtaining an AUC of 99.86% in pedestrian detection. The results obtained in this
research also provide detailed information on the performance of the proposed model. The
results presented in related research on pedestrian detection in reverse are inferior and
need more information on the effectiveness of their systems, which further strengthens the
contributions of this research work.

Furthermore, a comparative analysis of the model when evaluating images inde-
pendently, as opposed to the integration of pictures and information from sensors, was
conducted. We calculated the confusion matrix for this analysis and used its results to
determine evaluation metrics. The performance outcomes of the model are presented in
Figure 16. In Figure 16a, the performance when analyzing only the images is showcased.
In contrast, in comparison with Figure 16b, a lower commission is observed, accompanied
by an increase in the error percentage. Specifically, a false positive rate of 0.32% and a false
negative rate of 0.11% are recorded in this scenario.

The results from the fusion of information from the camera and sensors (Figure 16b)
display a reduction in the error rate percentages. Therefore, it can be said that using sensors
in conjunction with the reverse camera enhances the precision of pedestrian detection.

Figure 16. Comparative confusion matrices: (a) Images-only vs. (b) Images and backward ultrasonic
sensor fusion.

Figure 17 shows some of the images misclassified by the model when using the image-
based analysis alone. However, when distance data from the sensors were integrated, these
images were correctly classified.

Figure 17. Images that were misclassified.
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On the other hand, considering the prediction results of our model shown in Table 4,
the presence of additional objects, such as chairs, introduces difficulties to the model in
terms of its predictive capability. These difficulties arise due to the limited availability of
images in the database containing such objects. Similarly, the images illustrated in Figure 14
are derived from evaluating the model using the test data set but present inaccurate
predictions. By examining these images, standard features are identified; specifically, four
of the pictures share the same object. From this, it can be inferred that the model failed to
learn the distinguishing features of that particular object correctly.

Nevertheless, it is possible to solve these prediction errors by extending the database
and subsequently retraining the proposed model, improving its learning capability. Further-
more, given the one-dimensional nature of the data analyzed, using a 1D-CNN architecture
is the ideal choice. This selection is further justified by the tendency of the 1D-CNN archi-
tecture to incorporate fewer parameters compared to its 2D-CNN counterpart, simplifying
the training process and mitigating the risk of overfitting. In addition, the processing time
associated with the data type in question is reduced during training and model evaluation.

5. Conclusions

In conclusion, pedestrian detection ensures road safety in urban and rural environ-
ments. This research explored reversing cameras and ultrasonic sensors to detect pedes-
trians by fusing two data types, proposing a methodology for 2D and 1D CNNs. The
results obtained with our method show that information fusion can achieve high accuracy
in pedestrian detection in everyday driving environments. The proposed model achieved
an accuracy of 99.85% and an AUC of 99.86% by using two data types. This strategy signifi-
cantly improved pedestrian detection at the vehicle’s rear, demonstrating the need for more
than just images for this task. Furthermore, this research outperformed methodologies in
the literature for detecting pedestrians at the car’s rear.

Existing methods are based on specific scenarios using pre-existing datasets. However,
this study aims to contribute to developing a new dataset, which can be used as a reference
for creating or applying other techniques to solve the problem of pedestrian detection
at the rear of the vehicle, thereby reducing the number of reverse driving accidents that
may occur.

It is a fact that technology and security systems are becoming increasingly advanced;
hence, there is a need to implement these types of systems, while considering the sensors
that the vehicle already has. In future work, we plan to expand our database by adding
more scenarios, including extreme weather scenarios, as well as more instances in the
“non-pedestrian” images, so that the model does not generate false negatives, to make the
proposed model more robust, and to develop a pedestrian detection system that takes into
consideration all variables that may affect or limit detection capability. These variables will
cover a broad range to ensure the effectiveness and reliability of the system.

Author Contributions: Conceptualization, L.C.R.-G.; methodology, L.C.R.-G. and J.M.C.-P.; data
curation, L.C.R.-G. and K.O.V.-C.; formal analysis, L.C.R.-G. and H.L.-G.; investigation, L.C.R.-
G.; resources, H.G.-R., R.S.-R., J.G.A.-O., J.I.G.-T., K.O.V.-C., C.B.-H., D.R. and C.E.G.-T.; funding
acquisition, K.O.V.-C. and C.B.-H.; project administration, H.L.-G. and H.G.-R.; supervision, H.L.-
G., J.M.C.-P. and K.O.V.-C.; validation, L.C.R.-G., J.I.G.-T., and J.M.C.-P.; visualization, C.B.-H. and
L.C.R.-G.; writing—original draft, L.C.R.-G. and J.M.C.-P.; writing—review and editing, H.L.-G. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2023, 23, 7559 19 of 21

References
1. World Health Organization. Trauma Caused by Traffic. 2022. Available online: https://www.who.int/es/news-room/fact-

sheets/detail/road-traffic-injuries (accessed on 5 April 2023).
2. Instituto Nacional de Estadística y Geografía (INEGI) . Statistics on the Occasion of the World Day of Remembrance for Road Crash

Victims. 2022. Available online: https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2022/EAP_VICACCT22.pdf
(accessed on 5 April 2023).

3. Brookhuis, K.A.; De Waard, D.; Janssen, W.H. Behavioural impacts of advanced driver assistance systems—An overview. Eur. J.
Transp. Infrastruct. Res. 2001, 1. [CrossRef]

4. Parera, A.M. Sistemas de Seguridad y Confort en Vehículos Automóviles; Marcombo: Barcelona, Spain , 2000.
5. Dorado Pineda, M.; Mendoza Díaz, A.; Abarca Pérez, E. Visión Cero en Seguridad Vial: Algunas Oportunidades de Implementación en

México; Publicacion Tecnica; Instituto Mexicano del Transporte: Pedro Escobedo, Mexico, 2016.
6. Yang, W.; Zhang, X.; Lei, Q.; Cheng, X. Research on longitudinal active collision avoidance of autonomous emergency braking

pedestrian system (AEB-P). Sensors 2019, 19, 4671. [CrossRef]
7. Zhang, R.; Li, K.; He, Z.; Wang, H.; You, F. Advanced emergency braking control based on a nonlinear model predictive algorithm

for intelligent vehicles. Appl. Sci. 2017, 7, 504. [CrossRef]
8. National Highway Traffic Safety Administration (NHTSA). Docket No. NHTSA-2016-0031. 2022. Available online:

https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-03/Final.Rule_.Part_.595_03092022.pdf (accessed on 5 April 2023).
9. Secretaria de Gobernación. NORMA Oficial Mexicana NOM-194-SE-2021, Dispositivos de Seguridad para Vehículos Ligeros

Nuevos—Requisitos y Especificaciones. 2022. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5666804&
fecha=03/10/2022#gsc.tab=0) (accessed on 5 April 2023).

10. Li, Y.; Díaz, M.; Morantes, S.; Dorati, Y. Vehículos autónomos: Innovación en la logística urbana. Rev. Iniciac. Cient. 2018, 4, 34–39.
[CrossRef]

11. Song, Y.; Liao, C. Analysis and review of state-of-the-art automatic parking assist system. In Proceedings of the 2016 IEEE
International Conference on Vehicular Electronics and Safety (ICVES), Beijing, China, 10–12 July 2016; pp. 1–6.

12. Lin, C.C.; Wang, M.S. A vision based top-view transformation model for a vehicle parking assistant. Sensors 2012, 12, 4431–4446.
[CrossRef]

13. Chua, L.O.; Roska, T. The CNN paradigm. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1993, 40, 147–156. [CrossRef]
14. Liu, Y.; Ma, J.; Wang, Y.; Zong, C. A novel algorithm for detecting pedestrians on rainy image. Sensors 2020, 21, 112. [CrossRef]
15. Guo, M.; Xue, D.; Li, P.; Xu, H. Vehicle pedestrian detection method based on spatial pyramid pooling and attention mechanism.

Information 2020, 11, 583. [CrossRef]
16. Xu, F.; Liu, X.; Fujimura, K. Pedestrian detection and tracking with night vision. IEEE Trans. Intell. Transp. Syst. 2005, 6, 63–71.

[CrossRef]
17. Baek, J.; Hong, S.; Kim, J.; Kim, E. Efficient pedestrian detection at nighttime using a thermal camera. Sensors 2017, 17, 1850.

[CrossRef]
18. Heo, D.; Lee, E.; Chul Ko, B. Pedestrian detection at night using deep neural networks and saliency maps. J. Imaging Sci. Technol.

2017, 61, 60403-1–60403-9. [CrossRef]
19. Li, G.; Yang, Y.; Qu, X. Deep Learning Approaches on Pedestrian Detection in Hazy Weather. IEEE Trans. Ind. Electron. 2020,

67, 8889–8899. [CrossRef]
20. Tumas, P.; Nowosielski, A.; Serackis, A. Pedestrian Detection in Severe Weather Conditions. IEEE Access 2020, 8, 62775–62784.

[CrossRef]
21. Yi, Z.; Yongliang, S.; Jun, Z. An improved tiny-yolov3 pedestrian detection algorithm. Optik 2019, 183, 17–23. [CrossRef]
22. Zhang, C.W.; Yang, M.Y.; Zeng, H.J.; Wen, J.P. Pedestrian detection based on improved LeNet-5 convolutional neural network.

J. Algorithms Comput. Technol. 2019, 13, 1748302619873601. [CrossRef]
23. Flores Calero, M.J.; Aldás, M.; Lázaro, J.; Gardel, A.; Onofa, N.; Quinga, B. Pedestrian Detection Under Partial Occlusion by using

Logic Inference, HOG and SVM. IEEE Lat. Am. Trans. 2019, 17, 1552–1559. [CrossRef]
24. Chi, C.; Zhang, S.; Xing, J.; Lei, Z.; Li, S.Z.; Zou, X. Pedhunter: Occlusion robust pedestrian detector in crowded scenes. Proc.

AAAI Conf. Artif. Intell. 2020, 34, 10639–10646. [CrossRef]
25. Yang, P.; Zhang, G.; Wang, L.; Xu, L.; Deng, Q.; Yang, M.H. A Part-Aware Multi-Scale Fully Convolutional Network for Pedestrian

Detection. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1125–1137. [CrossRef]
26. Xie, J.; Pang, Y.; Cholakkal, H.; Anwer, R.; Khan, F.; Shao, L. PSC-Net: Learning part spatial co-occurrence for occluded pedestrian

detection. Sci. China Inf. Sci. 2021, 64, 120103. [CrossRef]
27. Han, B.; Wang, Y.; Yang, Z.; Gao, X. Small-scale pedestrian detection based on deep neural network. IEEE Trans. Intell. Transp.

Syst. 2019, 21, 3046–3055. [CrossRef]
28. Luo, J.; Wang, Y.; Wang, Y. Real-time pedestrian detection method based on improved YOLOv3. J. Phys. Conf. Ser. 2020,

1453, 012149. [CrossRef]

https://www.who.int/es/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/es/news-room/fact-sheets/detail/road-traffic-injuries
https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2022/EAP_VICACCT22.pdf
http://doi.org/10.18757/ejtir.2001.1.3.3667
http://dx.doi.org/10.3390/s19214671
http://dx.doi.org/10.3390/app7050504
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-03/Final.Rule_.Part_.595_03092022.pdf
https://www.dof.gob.mx/nota_detalle.php?codigo=5666804&fecha=03/10/2022#gsc.tab=0)
https://www.dof.gob.mx/nota_detalle.php?codigo=5666804&fecha=03/10/2022#gsc.tab=0)
http://dx.doi.org/10.33412/rev-ric.v4.1.1864
http://dx.doi.org/10.3390/s120404431
http://dx.doi.org/10.1109/81.222795
http://dx.doi.org/10.3390/s21010112
http://dx.doi.org/10.3390/info11120583
http://dx.doi.org/10.1109/TITS.2004.838222
http://dx.doi.org/10.3390/s17081850
http://dx.doi.org/10.2352/J.ImagingSci.Technol.2017.61.6.060403
http://dx.doi.org/10.1109/TIE.2019.2945295
http://dx.doi.org/10.1109/ACCESS.2020.2982539
http://dx.doi.org/10.1016/j.ijleo.2019.02.038
http://dx.doi.org/10.1177/1748302619873601
http://dx.doi.org/10.1109/TLA.2019.8931190
http://dx.doi.org/10.1609/aaai.v34i07.6690
http://dx.doi.org/10.1109/TITS.2019.2963700
http://dx.doi.org/10.1007/s11432-020-2969-8
http://dx.doi.org/10.1109/TITS.2019.2923752
http://dx.doi.org/10.1088/1742-6596/1453/1/012149


Sensors 2023, 23, 7559 20 of 21

29. Keall, M.; Fildes, B.; Newstead, S. Real-world evaluation of the effectiveness of reversing camera and parking sensor technologies
in preventing backover pedestrian injuries. Accid. Anal. Prev. 2017, 99, 39–43. [CrossRef] [PubMed]

30. Tadjine, H.; Hess, M.; Karsten, S. Object Detection and Classification Using a Rear In-Vehicle Fisheye Camera. In Proceedings of
the FISITA 2012 World Automotive Congress, Beijing, China, 27–30 Novemeber 2012; Springer: Berlin/Heidelberg, Germany,
2013; pp. 519–528.

31. Wang, F.; Yu, K.; Yang, J.; Liu, Z.; Su, K.; Xie, L. A Novel Obstacle Detection and Tracking System Using Fisheye Vision. In
Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian,
China, 27–29 June 2020; pp. 674–680. [CrossRef]

32. Cui, Y.; Chen, R.; Chu, W.; Chen, L.; Tian, D.; Li, Y.; Cao, D. Deep learning for image and point cloud fusion in autonomous
driving: A review. IEEE Trans. Intell. Transp. Syst. 2021, 23, 722–739. [CrossRef]

33. Zhang, Z.; Tian, J.; Huang, W.; Yin, L.; Zheng, W.; Liu, S. A haze prediction method based on one-dimensional convolutional
neural network. Atmosphere 2021, 12, 1327. [CrossRef]

34. Qazi, E.U.H.; Almorjan, A.; Zia, T. A One-Dimensional Convolutional Neural Network (1D-CNN) Based Deep Learning System
for Network Intrusion Detection. Appl. Sci. 2022, 12, 7986. [CrossRef]

35. Ruby, U.; Yendapalli, V. Binary cross entropy with deep learning technique for image classification. Int. J. Adv. Trends Comput. Sci.
Eng. 2020, 9, 5393–5397.

36. Wang, Q.; Ma, Y.; Zhao, K.; Tian, Y. A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 2020, 9, 187–212.
[CrossRef]

37. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 2818–2826. [CrossRef]

38. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning.
In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 160–167.

39. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
40. Villanueva, M.G.; Muñoz, L.R. Diseño de una Arquitectura de Red Neuronal Convolucional para la clasificación de objetos.

Cienc. Nicolaita 2020, 81, 46–61.
41. Maeda-Gutiérrez, V.; Galvan-Tejada, C.E.; Zanella-Calzada, L.A.; Celaya-Padilla, J.M.; Galván-Tejada, J.I.; Gamboa-Rosales, H.;

Luna-Garcia, H.; Magallanes-Quintanar, R.; Guerrero Mendez, C.A.; Olvera-Olvera, C.A. Comparison of convolutional neural
network architectures for classification of tomato plant diseases. Appl. Sci. 2020, 10, 1245. [CrossRef]

42. Zorgui, S.; Chaabene, S.; Batatia, H.; Chaâri, L. Lentigo detection using a deep learning approach. In Proceedings of the
International Conference on Smart Living and Public Health (ICOST 2020), Hammamet, Tunisia, 24–26 June 2020; pp. 1–5.

43. Tang, W.; Long, G.; Liu, L.; Zhou, T.; Jiang, J.; Blumenstein, M. Rethinking 1D-CNN for time series classification: A stronger
baseline. arXiv 2020, arXiv:2002.10061.

44. Brahmbhatt, P.; Rajan, S.N. Skin lesion segmentation using SegNet with binary CrossEntropy. In Proceedings of the International
Conference on Artificial Intelligence and Speech Technology (AIST2019), Delhi, India, 14–15 November 2019; pp. 14–15.

45. Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982,
143, 29–36. [CrossRef] [PubMed]

46. Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310.
[CrossRef]

47. Caelen, O. A Bayesian interpretation of the confusion matrix. Ann. Math. Artif. Intell. 2017, 81, 429–450. [CrossRef]
48. Salmon, B.P.; Kleynhans, W.; Schwegmann, C.P.; Olivier, J.C. Proper comparison among methods using a confusion matrix. In

Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015;
pp. 3057–3060. [CrossRef]

49. Borja-Robalino, R.; Monleón-Getino, A.; Rodellar, J. Estandarización de métricas de rendimiento para clasificadores Machine y
Deep Learning. Rev. Ibér. Sist. Tecnol. Inf. 2020, E30, 184–196.

50. Faraggi, D.; Reiser, B. Estimation of the area under the ROC curve. Stat. Med. 2002, 21, 3093–3106. [CrossRef]
51. Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam,

The Netherlands, 2019.
52. Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit.

2015, 48, 2839–2846. [CrossRef]
53. Wong, T.T.; Yang, N.Y. Dependency Analysis of Accuracy Estimates in k-Fold Cross Validation. IEEE Trans. Knowl. Data Eng.

2017, 29, 2417–2427. [CrossRef]
54. Zaheer, R.; Shaziya, H. A study of the optimization algorithms in deep learning. In Proceedings of the 2019 Third International

Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 10–11 January 2019; pp. 536–539.
55. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
56. Zhang, S.; Benenson, R.; Schiele, B. Citypersons: A diverse dataset for pedestrian detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3213–3221.

http://dx.doi.org/10.1016/j.aap.2016.11.007
http://www.ncbi.nlm.nih.gov/pubmed/27865139
http://dx.doi.org/10.1109/ICAICA50127.2020.9182497
http://dx.doi.org/10.1109/TITS.2020.3023541
http://dx.doi.org/10.3390/atmos12101327
http://dx.doi.org/10.3390/app12167986
http://dx.doi.org/10.1007/s40745-020-00253-5
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3390/app10041245
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
http://dx.doi.org/10.1109/TKDE.2005.50
http://dx.doi.org/10.1007/s10472-017-9564-8
http://dx.doi.org/10.1109/IGARSS.2015.7326461
http://dx.doi.org/10.1002/sim.1228
http://dx.doi.org/10.1016/j.patcog.2015.03.009
http://dx.doi.org/10.1109/TKDE.2017.2740926


Sensors 2023, 23, 7559 21 of 21

57. Melotti, G.; Premebida, C.; Gonçalves, N. Multimodal Deep-Learning for Object Recognition Combining Camera and LIDAR
Data. In Proceedings of the 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC),
Ponta Delgada, Portugal, 15–17 April 2020; pp. 177–182. [CrossRef]

58. Matsui, Y.; Hosokawa, N.; Oikawa, S. Pedestrian Detection during Vehicle Backing Maneuvers Using Ultrasonic Parking Sensors;
Technical Report, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICARSC49921.2020.9096138

	Introduction
	Materials and Methods
	Data Acquisition
	Preprocessing
	Model Generation
	Validation
	Cross-Validation and Blind Test
	Prediction

	Results
	Result Cross-Validation
	Blind Test Results
	Prediction Test with New Data

	Discussion
	Conclusions
	References

