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Abstract: The recognition of human activities (HAR) using wearable device data, such as smart-
watches, has gained significant attention in the field of computer science due to its potential to provide
insights into individuals’ daily activities. This article aims to conduct a comparative study of deep
learning techniques for recognizing activities of daily living (ADL). A mapping of HAR techniques
was performed, and three techniques were selected for evaluation, along with a dataset. Experiments
were conducted using the selected techniques to assess their performance in ADL recognition, em-
ploying standardized evaluation metrics, such as accuracy, precision, recall, and F1-score. Among the
evaluated techniques, the DeepConvLSTM architecture, consisting of recurrent convolutional layers
and a single LSTM layer, achieved the most promising results. These findings suggest that software
applications utilizing this architecture can assist smartwatch users in understanding their movement
routines more quickly and accurately.

Keywords: human activity recognition; neural networks; smartwatch; wearable sensor data

1. Introduction

Adhering to the World Health Organization’s (WHO) recommended levels of physical
activity can prevent and help combat coronary heart disease, hypertension, and diabetes,
as well as reducing the risk of developing cancer and the symptoms of depression and
anxiety [1]. However, many people are unaware of the negative consequences associated
with leading inactive lives, often failing to recognize the potential harm they inflict upon
themselves, as sedentary lifestyles have become increasingly prevalent in the past few
decades [2], significantly impacting both the physical and mental health of individuals.

To address this issue, wearable devices have emerged as powerful tools in moni-
toring and improving the overall health of individuals [3,4]. These devices, especially
smartwatches, equipped with advanced sensors, offer insights into our daily activities,
providing a deeper understanding of our routines and self-care practices. By wearing
these devices regularly, people can gain a heightened awareness of their physical exertion
levels and make informed decisions to incorporate more active behaviors into their daily
lives [3]. Smartwatches are primarily studied for monitoring or promoting physical activity
in patients with diverse health conditions. However, their utility extends to other activities,
including assessing sleep, monitoring heart rate, managing diabetes, and aiding in dietary
tracking [4,5].

Wearable devices provide readily available data that are frequently utilized to provide
feedback based on activity measurements [4], enabling users to achieve their exercise goals
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as quantified by these devices. Smartwatches play a vital role in collecting essential data,
generating information that can facilitate users in modifying their daily movement levels.
Researchers, like Cheatham et al. [3], have demonstrated the benefits of using smartwatches
for individuals engaged in physical activity with weight loss objectives. In this pursuit
of effectively assisting users in self monitoring, some studies center on the recognition of
human activities through data collected by wearable devices, such as smartwatches and
smartphones [6].

Sensor data serve multiple purposes, exemplified by their application during an
outdoor run. In this scenario, the smartwatch not only identifies the specific activity
being performed but also provides valuable insights into the distance traveled, heart rate,
and rhythm distribution throughout the run. Additionally, the device can calculate the
number of calories expended and assess the level of exercise intensity, aiding the runner in
understanding their performance and optimizing their training goals. Notably, the primary
data collected from wearable devices for activity recognition stem from accelerometers
and gyroscopes, providing time-series data indexed in temporal order. This type of data
enables the training of neural networks that can effectively capture the spatial and temporal
context of the sensor reading sequence. To achieve this, various architectures have gained
prominence, including convolutional neural networks (CNNs), long short-term memory
(LSTM), and attention mechanisms [7]. Training these networks necessitates the use of
relevant datasets that encompass diverse types of sensors and recognized activities, many
of which have already been published [8–10].

The recognition of activities using deep learning can contribute to understanding a
smartwatch user’s movement routine. This is mainly because an individual’s physical
activity is related to all their movements during the day, which may include routine activi-
ties, such as cleaning the house, and physical exercise, such as running [11]. Furthermore,
activity recognition also helps to avoid the need for manually inputting each performed
activity, which can be tedious and prone to errors. With the automation of this process,
users can focus more on their routines and obtain a more reliable and comprehensive record
of their physical activities.

With this purpose, a review of the state-of-the-art literature on activity recognition
techniques is presented in this work, along with public datasets. Building upon the
research, open-source network architectures were evaluated to measure their performances
in recognition of activities related to the day-to-day of an ordinary person and thus evaluate
their movement routine. The findings from the evaluations of the network architectures
have pointed to a particular activity recognition technique that stands out as the top
performer, which positions it as the most promising method to explore further. These
results allow for evaluating activity recognizers regarding their applicability to technologies
aimed at understanding the physical movement routine of smartwatch users.

The remainder of this paper is organized as follows. Section 2 is related to the back-
ground on activity recognition methods, presenting the works found through the biblio-
graphic review, highlighting their main methodological contributions, and public datasets
to HAR. Section 3 describes the test methodology. Section 4 presents the selected techniques
and datasets, and Section 5 shows and discusses the main results. Section 6 details the
conclusions of this paper.

2. Background on Activity Recognition Methods and Datasets

The HAR domain, fueled by data from wearable devices, has experienced remarkable
growth, driven by advancements in machine learning techniques. Various deep learning
approaches have been employed to identify physical exercises and other activities in
individuals’ everyday lives [12]. For instance, activities such as running, walking, climbing
stairs, washing dishes, and driving can be accurately recognized. Several prominent
architectures have emerged, including convolutional neural networks (CNNs), long short-
term memory (LSTM), and attention mechanisms.
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CNN-based methods [13–20] have been extensively explored and recognized for various
applications. CNN-based activity recognition enables fast and efficient predictions [21,22].
Cruciani [15] pre-trains a CNN using the UCI-HAR dataset [10] and optimizes the model’s
hyperparameters. Additionally, the pre-trained CNN is utilized to extract features from
real-world datasets, such as the Extrasensory dataset [8] as shown in Figure 1.

Figure 1. HAR architecture based on CNN [15].

In the realm of time-series analysis, LSTM has gained prominence. LSTM is a type of
neural network that excels at learning from sequential data, considering temporal patterns
and events that occurred earlier in time. This architecture has found popularity in activity
recognition tasks [23–28]. One notable example is the DeepConvLSTM [24], which exhibits
state-of-the-art results in activity classification. The performance of DeepConvLSTM has
been enhanced by works that utilize a single LSTM layer instead of a two-layered LSTM [25]
as it is seen in Figure 2.

Figure 2. Improved DeepConvLSTM architecture [25].

Another approach involves a hybrid method [7,19,29–32] that predicts activities by
extracting features from the data prior to inputting them into the neural network [7]. This
technique has shown superior performance compared to various other methods evaluated
using standardized benchmarks [33], encompassing datasets such as MHealth [34], USC-
HAD [35], UTD-MHAD1 [36], UTD-MHAD2 [37], WHARF [38], and WISDM [39].

In most cases, training networks for activity recognition is carried out in a supervised
manner, requiring the accurate labeling of various activities performed by individuals
throughout the day in real time. However, there is a potential for missing annotations
due to human error or perceived irrelevance. Networks like HAR-GCCN [13], a deep
graph CNN model, propose leveraging the inherent chronology of human behavior to
learn unknown labels. For example, bathing is expected to follow physical exercise, and
this implicit chronology can be utilized with data from chronologically adjacent sensors to
learn missing labels.

Additionally, unsupervised domain adaptation (UDA) techniques adapt a model
trained on a source domain to a novel target domain using only unlabeled data. UDA
contributes to activity recognition using wearable sensors, enhancing model training for
new device users. SALIENCE [14], an unsupervised user adaptation model for multiple
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wearable sensors, is designed to improve activity recognition by adapting the trained model
to the data patterns of new users. It incorporates an attention mechanism that emphasizes
discriminating features for more accurate activity classification. Other papers utilizing
attention concepts [19,20,23,25,40] for activity recognition combine various mechanisms to
generate higher-dimensional feature representations used for classification, encompassing
spatio-temporal feature learning and important time points.

The hierarchical network architecture [39] employs a two-level hierarchy to recognize
activities initially classified as “lying down”, “sitting”, “standing in place”, “walking”,
“running” and “cycling”. Furthermore, these activities are further divided into “stationary”
and “non-stationary”.

Moreover, the HAR field encompasses specific datasets utilized for training neural
networks. Therefore, a comprehensive mapping of relevant datasets used in these studies
was conducted and is presented below.

Datasets

Public datasets used for activity recognition exhibit distinctions, including variations
in the capture methodology and the quantity and type of labels employed.

Regarding the capture methodology, datasets are predominantly obtained either in real-
life scenarios or through simulations that mimic real-life conditions (e.g., [8]). Alternatively,
datasets can be captured in controlled or unspecified environments (e.g., [38,41]).

The Extrasensory dataset [8] comprises over 300,000 examples (minutes) captured
from 60 users in real-life scenarios. Users carried smartphones and smartwatches, which
provided data from various sensors. The dataset includes annotations for activities of daily
living (ADL), such as “bicycling” and “watching TV”, as well as context labels like “at
school” and “phone in hand”.

HHAR (human–human activity recognition) dataset [42] was captured in projected
environments that simulate realistic settings. It contains accelerometer and gyroscope
data from smartphones and smartwatches worn by six participants. The dataset primarily
focuses on labeling postures such as “biking”, “sitting”, “standing”, “walking”, “stair up”
and “stair down”. Another dataset published by Garcia-Gonzalez [43] involves data from
19 users, collected through the smartphone accelerometer, gyroscope, magnetometer, and
GPS. Participants were not constrained in terms of smartphone placement, simulating real-
world scenarios. The labels in this dataset are “inactive”, “active”, “walking” and “driving”.
The “inactive” label denotes activities performed without carrying the smartphone, while
“active” represents activities performed using the smartphone but without significant
movement. For instance, the “making dinner” activity falls under the “active” label.

The Opportunity dataset [44] is a large dataset comprising a substantial number of
sensors. It includes 7 inertial measurement units, 12 3D acceleration sensors, and 4 3D
localization sensors attached to the body. The capture involved four users, each performing
six executions. Five of these executions simulate natural scenarios, while the sixth execution
follows a predetermined sequence defined in a script, known as the “drill” execution.

The literature also includes datasets captured in controlled or unspecified scenarios.
The WISDM dataset [38] captured 153 min of activity from 51 participants, resulting in
15,630,426 instances. It encompasses accelerometer and gyroscope data from smartphones
and smartwatches. The dataset consists of 18 labels, including activities such as “walking”,
“typing”, “brushing teeth”, “kicking” (soccer ball), and “folding clothes”. The RealWord
(HAR) dataset [41] was created using 150 min of recorded data from 15 users and incor-
porates data from six sensor types. It features seven labels representing transitional body
postures, such as going up and down stairs, jumping, lying down, standing, sitting, run-
ning, and walking. The MHEALTH dataset [34] comprises data from 10 users captured
through wearable accelerometer, gyroscope, magnetometer, and electrocardiogram sensors
placed on the subject’s chest, right wrist, and left ankle. The dataset includes 12 workout
labels, encompassing activities such as cycling, running, and jumping forward and back-
ward. The UTD-MAD dataset [36] utilizes a fusion of wearable inertial and depth sensors to
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record data. It involves eight subjects (four women and four men) performing 27 different
actions. Each action was repeated approximately four times, resulting in a dataset with
861 examples. The UTD-MAD dataset [36] focuses on actions related to body movements,
physical activities, and postures, including “arm cross”, “boxing” and “sit to stand”.

The UCI-HAR dataset [10] contains data from 30 subjects who performed ADL while
carrying waist-mounted smartphones equipped with inertial sensors. The dataset includes
six postures and transitions, with accelerometer and gyroscope data being captured. The
sliding window technique with a 50% overlap was applied to the data.

The USC-HAD dataset [35] is specifically designed for ADL recognition, particularly
in the healthcare domain. It consists of data from 14 individuals performing 12 activities
and postures, including “walking upstairs”, “running forward” and “sleeping”.

Although other datasets [37,45,46] are also employed in activity recognition using
wearable devices, this work specifically focuses on datasets utilizing data from smart-
phones or smartwatches. Additionally, a subset of datasets with other types of sensors was
investigated, particularly those labeled for ADL.

3. Methodology

With the aim of conducting a comparative study on deep learning techniques for
recognizing daily living activities, the primary focus was placed on the rigorous testing
of three diverse techniques. Therefore, the review process encompassed the examination
of 50 articles, with a predominant emphasis on 27 articles specifically addressing deep
learning techniques. In parallel, a thorough evaluation encompassed the consideration of
23 datasets, ultimately culminating in the selection of 1 dataset for further investigation.
This section of the article delineates the review methodology, the criteria employed for
selecting the techniques and datasets, as well as the comprehensive evaluation methods
utilized to assess the performance of the chosen techniques.

3.1. Literature Review

The exploration of techniques presented in academic papers was conducted following
a scientific methodology. A comprehensive search was performed across leading research
platforms, including Google Scholar, Portal Periodicos CAPES, Scientific Electronic Library
Online - SciELO, and others. The snowball sampling technique was applied to identify the
most-relevant papers.

The search for papers utilized specific strings such as “Human Activity Recognition”,
“Human Activity Detection”, “Human Activities”, “Smartwatch”, “Smartphone”, “Wear-
able Sensor Data”, “Wearable Sensing”, “Wearables”, “Benchmark”, “Datasets”, “Artificial
Intelligence”, “Machine Learning”, “Neural Networks”, “Deep Learning”, “RNN”, ”CNN”,
“LSTM”, “Transformer” and “Self-attention”.

During the search phase, the evaluation criteria for papers included whether they em-
ployed machine learning techniques, utilized wearable device sensors, identified the type
of recognized activities, provided quantitative results of activity recognition, demonstrated
method originality, and had a recent publication date.

Consequently, the selected papers for cataloging were those that employed artifi-
cial intelligence for activity recognition using data from wearable devices, particularly
smartphones and smartwatches. These papers demonstrated state-of-the-art results when
compared to similar techniques. The catalog of papers formed the foundation for the
subsequent technique selection stage, which is described in detail below.

3.2. Techniques Selection

Based on the cataloged information, specific criteria were employed to carefully
select the techniques for an in-depth study and subsequent testing. The key requirements
considered during this stage of the selection process were as follows:

• The type of sensor employed in the technique;
• The type of recognized activity;
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• The availability of the repository containing the technique.

Utilizing these criteria, the chosen methods were those that demonstrated proficiency
in recognizing activities related to the following:

• Activities of daily living (ADL);
• Utilization of data obtained from smartwatch sensors;
• Possession of a publicly accessible repository on the internet.

3.3. Dataset Selection

The selection of the dataset for conducting the technique tests was based on specific
criteria that aligned with the objectives of this study and the identified datasets. The
established criteria include the following:

• Public availability of the dataset;
• Inclusion of labels for ADL;
• Inclusion of data obtained from smartwatches;
• Adoption for evaluating state-of-the-art activity recognition techniques.

Once the dataset was chosen, it underwent a pre-processing stage following the stan-
dardized benchmark [33]. The details of this pre-processing procedure are described below.

3.4. Evaluation of Models

Pre-processing step for data standardization was performed to evaluate the models.
The overlapping sliding windows technique used is described below.

3.4.1. Sliding Window

Prior to the training or prediction process, the data undergo a sliding window tech-
nique with a 60% overlap. The fundamental concept behind the sliding window with
overlap is to introduce a fixed-size window or subarray that sequentially moves over the
larger dataset, allowing for operations to be performed on the data within the window.
This approach facilitates the analysis and processing of the data in a systematic manner.
In this particular study, the sliding window size is set to 5 s as depicted in Figure 3. A
window size of 5 s offers a suitable temporal resolution for capturing temporal variations in
activities [47]. Everyday activities often exhibit rapid changes and short transitions, making
the utilization of a smaller sliding window more conducive to a refined temporal analysis
of the data. The chosen window size facilitates the examination of activities at a more
granular level, while incorporating a sufficient degree of overlap ensures the attainment of
reliable statistical analyses [48]. Moreover, this approach enables the identification of local
patterns and the capture of broader, enduring attributes characterizing the activities.

Figure 3. Sliding window representation.
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3.4.2. Training and Evaluation

For each technique, training was conducted using the original codes available in their
respective repositories. The original hyperparameters of the techniques were preserved,
without implementing any fine-tuning procedures. The WISDM dataset was utilized for
training, with accelerometer and gyroscope data being synchronized and pre-processed as
described in the previous step.

During training, GPU and CPU usage, training time, and memory usage (both for
RAM and GPU) were monitored and recorded using the Neptune tool.

Subsequently, after obtaining the trained models, various performance metrics were
evaluated, including GPU usage, CPU usage, RAM usage, inference time (the time taken to
predict the output), and network size (the disk space occupied by the trained model). The
results for each inference metric were averaged over a thousand measurements.

To measure GPU usage and memory utilization, a parallel thread was employed,
utilizing pynvml, a Python binding to the NVIDIA Management Library, to capture the
percentage of processing and memory usage. For CPU usage measurement, Psutil, a cross-
platform library for retrieving information on running processes and system utilization
(CPU, memory, disks, network, and sensors) in Python, was used. RAM usage was
measured using memory_profiler. Inference time was calculated by invoking the predict
function and averaging the time using timeit. Additionally, the following metrics were also
measured for each technique: accuracy, precision, recall, and F1-score.

4. Evaluated Techniques and Dataset

Three techniques were selected based on the criteria outlined in the Section 3. In the
following subsections, we provide a detailed explanation of the evaluated techniques and
the chosen dataset.

4.1. Selected Techniques
4.1.1. Technique I

The first technique, proposed by Bock et al. [25], explores the usage of DeepConvLSTM,
a deep learning architecture that combines convolutional and LSTM recurrent layers [24].
Specifically, they employ a 1-layered LSTM configuration.

The key highlights of this work are as follows:
(I) The availability of experiments in their public GitHub repository; (II) The adoption

of a one-layered LSTM model, which reduces the network size and accelerates training and
inference times; (III) The observation that architectures with a 2-layer LSTM outperform
those using 5 popular datasets.

Bock et al. [25] conducted their experiments using datasets such as Opportunity [44],
Wetlab [45], SBHAR [46], RealWorld-HAR [49], and HHAR [42], reporting maximum
precision of 77.6%, recall of 76.3%, and F1-score of 74.4% using the RealWorld-HAR dataset.

4.1.2. Technique II

The second selected technique is presented by Singh et al. [23]. Their approach
focuses on forecasting time series data using a combination of recurrent and convolutional
networks. Notably, they incorporate an attention mechanism to identify the crucial time
points that contribute to the forecast.

Singh et al. [23] conduct experiments on six datasets, including MHealth [34], UTD-
MHAD [36], USC-HAD [35], WHARF [37], and WISDM [38]. The results demonstrate a
statistically significant advantage of their approach over other techniques, including Deep-
ConvLSTM. They achieve accuracy values above 58% and up to 94% during training with
the MHealth dataset, with recall exceeding 55% and F1-score surpassing 54% across all tests.

4.1.3. Technique III

The third technique, proposed by Abdel-Salam et al. [7], involves a comprehensive
literature review of human activity recognition based on wearable sensors. Additionally,
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they propose a hybrid neural network model that outperforms existing techniques on the
MHealth [34], USC-HAD [35], and UTD-MHAD [36] datasets. Their model incorporates an
independent feature extraction step followed by a neural network for activity classification
using the extracted features. Abdel-Salam et al. [7] also introduce a standardized evaluation
benchmark adopted in their study.

The model was initially trained on seven datasets, including MHealth, UTD-MHAD1,
UTD-MHAD2, USC-HAD, WHARF, WISDM, and Opportunity. Notably, these datasets
include the six datasets tested by Singh et al. [23]. Abdel-Salam et al. [7] report a mean
accuracy above 70.48%, reaching 99.70% using the MHealth dataset.

4.2. Dataset

The chosen dataset for the experiments is the WISDM Smartphone and Smartwatch Ac-
tivity and Biometrics Dataset [38], published by Weiss et al. It comprises 15,630,426 examples,
which have also been utilized in other studies related to human activity recognition [7,23].

The WISDM dataset contains accelerometer and gyroscope time-series sensor data
collected from smartphones (Nexus 5, Nexus 5X, and Galaxy S6) and smartwatches (LG
G watch). It encompasses data from 51 test subjects, each performing 18 activities for a
duration of 3 min.

Since the dataset consists of 51 participants, the data were split in such a way that one
subject was allocated for validation, one for testing, and the remaining subjects for training.
The splitting approach used is inspired by the leave one subject out (LOSO) method [50].
To ensure more accurate results, a total of 51 folds were created following these steps:

• The test subset starts with subject 1 and increments by 1 for each subsequent fold,
utilizing subject 2, subject 3, and so on until subject 51 is reached (the last fold).

• The validation subset always consists of the subject preceding the test subject. In the
case where the test subject is the first subject, the subject preceding it is considered to
be the last subject (subject 51).

• The training subset consists of all subjects that are not part of the test or validation subset.

It is worth noting that the WISDM dataset has an older version [51] than the one used in
these experiments. It is composed of data from six activities, collected from 29 individuals
using phone-based accelerometers.

5. Results and Discussion

In this section, we discuss the results related to computational resources and the
model’s accuracy in the conducted tests for everyday activity recognition using smartwatch
sensors. Analyzing metrics such as CPU usage, GPU usage, RAM memory utilization,
training and inference time, and model size is crucial when developing an application for
a smartwatch.

The analysis related to model performance aims to determine the performance of
these techniques in classifying ADL using accelerometer and gyroscope data directly.
Additionally, the evaluation of computational resources is crucial to assess the practical
feasibility of using these networks on smartwatches.

Firstly, smartwatches typically have limited computational resources, including CPU
and GPU capabilities, as well as limited RAM. Monitoring these metrics is essential to
ensure that the application operates efficiently within the constrained resources of the smart-
watch [52]. It helps avoid excessive resource utilization, which could lead to performance
issues, battery drain, or even crashes.

Secondly, the training and inference time play a vital role in real-time applications.
Smartwatches often have lower processing power compared to traditional devices, making
it essential to optimize the model’s performance to achieve timely results. Monitoring these
metrics allows developers to identify any bottlenecks or areas for optimization, ensuring
that the application can provide quick and responsive outputs.

Thirdly, the size of the model is crucial for smartwatches due to their limited storage
capacity. Large models can consume a significant amount of storage space, potentially lim-
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iting the number of applications or features that can be installed on the device. Analyzing
the model’s size helps developers select or design models that strike a balance between ac-
curacy and compactness, optimizing the utilization of the smartwatch’s storage resources.

Computers used for training and inference were laptops with Intel Core i7-11800H
Octa-Core processor, NVIDIA Geforce GTX 3060 Mobile graphics, 16GB DDR4 RAM, with
operational system Windows 11. The experiment tracking tool used was Neptune.

The data available from Table 1 show the training metrics of each of the three tech-
niques tested in the standardized WISDM. All inference statistics can be seen at Table 2.
And Table 3 summarizes the metrics for evaluating the networks in the test suite. The
accuracy, precision, recall and F-score of the test set were calculated.

Table 1. Training metrics.

Technique

RAM
Memory

Usage
(Mean)

GPU
Memory

Usage
(Mean)

Training
Time

CPU Usage
(Mean)

GPU Usage
(Mean)

Bock et al.
[25] 14.43 GB 2.56 GB 4 h 38 m 50.86% 62.84%

Singh et al.
[23] 11.64 GB 5.71 GB 66 h 18 m 18.47% 37.83%

Abdel-Salam
et al. [7] 13.90 GB 4.48 GB 9 h 2 m 30.2% 36%

Table 2. Inference metrics.

Technique

RAM
Memory

Usage
(Mean)

GPU
Memory

Usage
(Mean)

Inference
Time

CPU
Usage

(Mean)

GPU
Usage

(Mean)

Network
Size (In
Disk)

Bock et al.
[25] 3974.6 MB 1.88 GB 1673.30 ms 6.24% 40% 1.25 MB

Singh et al.
[23] 3846.4 MB 5.2 GB 3280.47 ms 7.125% 43% 398 KB

Abdel-
Salam et al.

[7]
1945.0 MB 4.36 GB 6006.21 ms 7.975% 47% 148 KB

Table 3. Neural network evaluation metrics.

Technique Accuracy Precision Recall F1-Score

Bock et al. [25] 0.744 ± 0.204 0.755 ± 0.197 0.744 ± 0.204 0.721 ± 0.209
Singh et al. [23] 0.623 ± 0.185 0.634 ± 0.180 0.623 ± 0.185 0.606 ± 0.187

Abdel-Salam
et al. [7] 0.580 ± 0.244 0.580 ± 0.262 0.582 ± 0.243 0.560 ± 0.256

5.1. Computational Resource Usage and Model Size

Comparing the results of Bock et al. [25] with the other two evaluated techniques,
this method exhibited higher usage of RAM memory, CPU, and GPU compared to the
other approaches. However, it demonstrated the lowest GPU memory usage, measuring
2.56 GB. Additionally, Bock et al.’s technique achieved the fastest training time, roughly
half of Abdel-Salam et al.’s [7] time and approximately 7% of Singh et al.’s [23] time. The
superior hardware usage could have contributed to the decreased training time, suggesting
a faster network. During inference, it also showed the lowest time, approximately half that
of the closest competitor. Moreover, it required less GPU memory, CPU, and GPU usage.
However, the RAM memory usage was slightly higher than that of Singh et al. [23] and



Sensors 2023, 23, 7493 10 of 14

double that of Abdel-Salam et al. [7]. Additionally, the network’s storage size was larger
than the other techniques. The difference in network size on disk may be influenced by the
used library, as Bock et al. [25] uses PyTorch and the others use TensorFlow, each with a
different method for saving the network. Despite these challenges, Bock et al.’s technique
consistently outperformed the other two in almost all metrics during training and inference.
It also achieved the best statistics for all metrics, including accuracy, precision, recall, and
F1-score.

Evaluating the second technique, that of Singh et al. [23], it demonstrated lower
values of RAM memory and CPU usage during training. However, the training time for
this network was significantly longer, approximately 66 h and 18 min, which is about
14 times longer than Bock et al.’s [25] and seven times longer than Abdel-Salam et al.’s [7]
training times. One possible explanation for the longer training time is that the original
code was written for TensorFlow version 1 and minor modifications were made to run
it on version 2, enabling a flag to disable TensorFlow eager execution, which may have
impacted the speed. The GPU memory usage during training was also significantly higher
for this technique. During inference, Singh et al. [23] also continued to use higher GPU
memory, approximately 5.2 GB, but had similar RAM usage compared to Bock et al. [25].
Considering that the RAM memory available on a Galaxy Watch4 is 1.5 GB, all techniques
had RAM usage compatible with this smartwatch.

Table 2 shows that Singh et al. [23] consistently outperformed Abdel-Salam et al. [7]
in all calculated metrics, with at least 8.41% better performance during inference, based
solely on quantitative evaluation of the networks.

Further memory usage tests should be performed using activity recognition applica-
tions on a smartwatch device or just the CPU, which is the processor used in smartwatches.
This will enable a more accurate assessment of the feasibility of using the networks for
real-time inference.

The third technique, that of Abdel-Salam et al. [7], demonstrated lower RAM, GPU,
and CPU usage during training compared to that of Bock et al. [25]. However, it only
showed relatively lower RAM usage during inference. In terms of other training and
evaluation metrics, it did not present significant differences compared to Bock et al. [25].
Nevertheless, during network evaluation, it exhibited the worst results in all metrics.

The results so far indicate that Bock et al.’s [25] technique consistently outperforms
the other two techniques in real-world applications, especially in terms of inference time
and memory usage.

Regarding the size of the networks on disk, Bock et al.’s network [25] had the most
compact size at 1.25 MB, which is suitable for smartwatch applications. However, a
detailed feasibility analysis of applying activity recognition technology using the evaluated
networks on a smartwatch requires further investigation. This topic will be a focus of
future work.

5.2. Model Performance and Evaluation Metrics

The neural networks were evaluated using accelerometer and gyroscope data as
features to classify 18 activities of daily living. The distribution of data among the activities
is shown in Table 4, which was obtained after processing the raw sensor data with an
ARFF header [53]. The results in Table 4 demonstrate that the class distribution across
activities closely approximates the expected value of 5.55%, which was calculated by
dividing 100 samples by 18 activities [53]. This balanced distribution of samples for each
class contributes to a robust evaluation of the model’s performance across various activities.

The experimental results approached the maximum values found by Bock et al. [25],
exhibiting an accuracy of 74.40 ± 20.40%, precision of 75.5 ± 19.70%, recall of 74.4 ± 20.40%,
and F1-Score of 72.1 ± 20.90%, as shown in Table 3. These findings demonstrate the model’s
robust performance in accurately classifying the activities, showcasing remarkable align-
ment with state-of-the-art outcomes documented in the existing literature. It emphasizes
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the advantageous utilization of the first technique for activity recognition in comparison to
the second and third techniques.

Table 4. Data distribution through activities [53].

Activity
Phone Watch

Total Class %
Accel Gyro Accel Gyro

Walking 1271 936 1011 915 4133 5.5%
Jogging 1314 966 993 902 4175 5.6%
Stairs 1180 946 997 865 3988 5.3%
Sitting 1263 984 1028 939 4214 5.6%
Standing 1283 969 1046 934 4232 5.6%
Typing 1180 938 988 900 4006 5.3%
Brush Teeth 1282 954 1006 918 4160 5.5%
Eat Soup 1252 974 1012 899 4137 5.5%
Eat Chips 1236 947 1011 922 4116 5.5%
Eat Pasta 1179 959 978 911 4027 5.4%
Drinking 1310 976 1044 954 4284 5.7%
Eat Sandwich 1242 949 980 915 4086 5.4%
Kicking 1466 971 1009 919 4365 5.8%
Catch 1431 944 1015 903 4293 5.7%
Dribbling 1413 972 1027 939 4351 5.8%
Writing 1241 948 1038 948 4175 5.6%
Clapping 1270 978 1009 917 4174 5.6%
Fold Clothes 1261 970 1019 933 4183 5.6%
Total 23,074 17,281 18,211 16,533 75,099 100.0%

Given these results, we can prioritize the study of the technique proposed by Bock et al. [25]
for monitoring an individual’s physical movement through smartwatch data. This is of
great importance to promote awareness of daily activities and encourage healthy habits.
By collecting detailed information on movement patterns, the smartwatch can provide
valuable insights into the amount of physical activity performed. These data can assist
users in adjusting their behaviors and routines, improving their quality of life and overall
well-being. Furthermore, continuous monitoring of physical movement is crucial to identify
potential health issues and even detect sleep and stress patterns.

6. Conclusions and Future Work

In this study, we aimed to investigate the significance of activity monitoring through
wearable devices in promoting individuals’ awareness of their physical activity habits.
Efficient activity recognition can contribute to a more user-friendly and seamless experience,
encouraging consistent usage of wearable devices for prolonged health monitoring. It also
enhances the reliability of data, promoting a deeper understanding of users’ physical
routines and health trends.

The study made use of wearable sensors to evaluate and compare three of the most
relevant techniques for HAR. Based on the survey and evaluation of activity recognition
techniques using wearable sensor data, the results highlight the effectiveness of deep
learning architectures, such as convolutional neural networks (CNNs) and long short-term
memory (LSTM), in accurately recognizing human activities [12]. These architectures have
shown promising performance in distinguishing between different activities.

The use of WISDM, a dataset with a diverse array of activity labels, afforded the
activity recognition algorithms a broad spectrum of patterns to discern, leading to excellent
generalization capabilities for previously unseen data. Consequently, this opens avenues
for prospective investigations concerning the expansion of novel activity types and the
application of activity recognition in diverse contexts.
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The findings of this study hold practical implications for the field of activity recog-
nition and its applications in technology, such as enhancing technology development, in
which the identification of the top-performing activity recognition technique, as shown in
Sections 5.1 and 5.2, provides valuable guidance for researchers and developers working
on health-monitoring technologies with wearable devices.

Moreover, with a deeper understanding of users’ activity patterns, health professionals
and caregivers can design personalized health interventions to address specific activity-
related challenges. The study’s insights can be leveraged to provide real-time suggestions
and motivational prompts based on recognized activities, as wearable devices can positively
influence users’ exercise routines and foster long-term adherence to healthy habits.

It is crucial to consider the broader context of a person’s physical movement routine
rather than solely focusing on specific activities. Recognizing activities beyond structured
movements can provide a valuable understanding of an individual’s physical activity levels
and help address sedentary behavior. This holistic understanding is essential for promoting
long-term health and well-being.

Ultimately, future works and experiments in the field can explore the following:

• The optimization study of network parameters;
• Assessment of activity recognition using accelerometer-only data;
• Processing of techniques in CPU and integration with smartwatches, for evaluation of

memory usage;
• Improvement in inference time.
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