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Abstract: The emergence of the Internet of Medical Things (IoMT) has brought together developers
from the Industrial Internet of Things (IIoT) and healthcare providers to enable remote patient diag-
nosis and treatment using mobile-device-collected data. However, the utilization of traditional AI
systems raises concerns about patient privacy. To address this issue, we present a privacy-enhanced
approach for illness diagnosis within the IoMT framework. Our proposed interoperable IoMT
implementation focuses on optimizing IoT network performance, including throughput, energy
consumption, latency, packet delivery ratio, and network longevity. We achieve these improve-
ments using techniques such as device authentication, energy-efficient clustering, environmental
monitoring using Circular-based Hidden Markov Model (C-HMM), data verification using Awad’s
Entropy-based Ten-Fold Cross Entropy Verification (TCEV), and data confidentiality using Twine-
LiteNet-based encryption. We employ the Search and Rescue Optimization algorithm (SRO) for
optimal route selection, and the encrypted data are securely stored in a cloud server. With extensive
network simulations using ns-3, our approach demonstrates substantial enhancements in the speci-
fied performance metrics compared with previous works. Specifically, we observe a 20% increase
in throughput, a 15% reduction in packet drop rate (PDR), a 35% improvement in network lifetime,
and a 10% decrease in energy consumption and delay. These findings underscore the efficacy of our
approach in enhancing IoT network interoperability and protection, fostering improved patient care
and diagnostic capabilities.

Keywords: Internet of Medical Things (IoMT); patient privacy; security; authentication; clustering;
encryption; routing

1. Introduction

Interoperability is the biggest challenge in the Internet of Things (IoT). Currently, it
is one of the main issues in the interconnected Internet of Industrial Things (IloT), since
industrial devices are enabled to provide seamless communication, among others. There-
fore, interoperability is required [1,2]. The number of connected devices was projected to
reach 20.4 billion by the year 2020, and it has been anticipated to grow to 75 billion by 2025.
These interconnected devices require interoperability, security, and seamless and controlled
data exchange among devices, and this is referred to as interoperability [3,4]. The energy
constraint is a key issue in IIoT devices. Currently, various cluster-based networks are
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considered to reduce the usage of energy [5]. Still, the energy constraint is a significant
issue in the IIoT [6]. Another issue is that most of the cluster-based works are executed
in homogeneous environments and residual energy or distance parameters are used for
cluster formation [7]. To overcome this issue, heterogeneous sensor-based clustering has
been a focus of research [8]. In addition, intelligent routing is a noteworthy phenomenon to
improve the quality of service (QoS) during interoperable data communication [9]. Manag-
ing the QoS to improve network performance and scalability as well as security solutions
was recently addressed using blockchain technology [10]. Blockchain is a decentralized
technology that addresses single-point failures [11,12]. However, resources are required to
communicate with other IIoT devices. In general, insufficient resources cause huge packet
loss or drop [13,14]. Artificial intelligence (Al) plays a vital role in recent IloT networks,
where data of large size are generated and collected from a variety of devices [15]. They are
widely used in different smart applications, such as smart cities, healthcare, industry, and
so on [16]. In this study, Al acts as an intelligent agent to learn the IloT environment and
collect data from real-world scenarios [17]. Al requires training to classify data from multi-
ple devices, but it often does not ensure reality [18]. Due to the environmental conditions,
data collected with IIoT sensors require training for accurate classification. Support Vector
Machine (SVM) is one such Al algorithm created for data classification [19].

Data mining techniques for patient health analysis have focused on the application
of artificial intelligence techniques for analyzing healthcare data during the COVID-19
pandemic [20]. The effectiveness of deep learning models in analyzing such data is proved
and potentially offers valuable insights for diagnostics and treatment [21]. The privacy-
preserving techniques used in disease prediction systems utilize deep learning, and they
explore various approaches, such as cryptographic techniques, attribute-based encryption,
homomorphic encryption, and hybrid methods [22].

e To achieve interoperability for heterogeneous IloT environments, reliable network
connectivity is essential.

e To attain the best data collection from IIoT devices, the environment must be known
with precision, and the data must be captured with suitable granularity. In this case,
fault data are identified.

o To efficiently find the adaptive threshold, the sensed data should be analyzed in
real time.

e  To improve the network scalability for incorporating a large number of nodes, energy-
efficient clusters should be formed.

1.1. Contributions

The major contributions of this study are reported below.

The proposed research contributes to the field of the Internet of Medical Things (IoMT)
by presenting a privacy-enhanced illness diagnostic process for healthcare applications,
addressing the challenges of privacy protection and inference attacks. The work also
demonstrates improved performance metrics, such as throughput, packet delivery ratio,
network longevity, energy-consumption reduction, and decreased latency, compared with
the previous approaches, making it a valuable contribution to the field.

1.2. Organization

Section 2 of this paper provides a brief overview of the relevant literature and discusses
the shortcomings of previous works. Section 3 describes the proposed interoperable Al-IloT
process flowchart, pseudocode, and mathematical expression. In Section 4, the experimental
outcomes and performance of the suggested approach are provided. It is shown that the
present approach outperforms the baseline models. The conclusion is made in Section 5.
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2. Related Works

In this section, three kinds of related works, i.e., energy-efficient network models, and
network interoperability modeling using blockchain and without blockchain technology,
respectively, are reviewed.

2.1. Energy-Efficient Network Models

Heterogeneous sensor networks organized into clusters employ a trustworthy energy-
aware routing protocol [23]. The primary objective of this article is to reduce routing
costs and increase network lifespan. The parameters of residual power, weight value for
round-trip time (RTT), and hop count are used in the proposed routing strategy. However,
reliable packet routing depends on CH election, and it requires a lot of power. To improve
the network quality of service, the authors of [24] suggested an intelligent routing scheme.
Limitations: Nearly 256 (4*) fuzzy rules are generated for the network, which requires very
large energy. CNN is used to train the network according to conditions such as bandwidth
availability, congestion status, and traffic level. Initially, K-means clustering is used to
partition the nodes into clusters. The K-value is necessary for this purpose. To perform CH
election in a heterogeneous WSN, genetic algorithm-based optimal clustering (GAOC) was
presented [25]. The choice of the CH depends on many factors, including the total amount of
energy remaining, its proximity to the sink nodes, and node density. Multiple information
sinks are placed in the network to decrease the distance of communication between the
nodes and the sink node, thereby mitigating the hot-spot issue. GA has been considered
a powerful approach to CH election, whereas it does not guarantee the attainment of an
optimum solution, just like other meta-heuristics. In [26], the matrix-filling theory was
presented for data collection in an energy-efficient way. The main goal of this paper is
to reduce latency, and the theory proposed is considered to meet this objective. It also
uses cluster formation, and time slots are assigned to each cluster for information transfer;
further, it is computed using the matrix-filling theory. However, the matrix-filling theory
requires huge energy to fulfill all the operations. The energy coverage ratio clustering
protocol (E-CRCP) was designed by the authors in [27] to exploit the regional coverage
ratio in a way that decreases the node energy consumption. The CH is selected based on
the node’s area coverage, and the optimal number of clusters is determined according to
the energy amount of each node. As a whole, this article helps the network to run more
efficiently, distribute its load more evenly, and last longer. However, if the distance from
the node is very high, high energy is needed. In such cases, interoperability fails.

2.2. Security Using Blockchain

IloT-sensed data are trained using a machine learning algorithm called Support Vector
Machine (SVM) [28]. Though SVM is typically applied in real-world applications such as
disease diagnosis, it does not directly address the security concerns. To preserve the privacy
of IIoT data, a secure SVM approach has been employed by utilizing blockchain-based
encrypted IloT data. Encrypted sensed data are securely transmitted to other nodes without
the involvement of a trusted authority. However, it should be noted that homomorphic
encryption, which can support complex sensed data, requires significant energy resources,
and it may not be suitable for this scenario.

2.3. Security without Blockchain

The authors in [29] proposed a compressed data stream that is generated using low-
density parity check (LDPC) code. It has an energy limit. The time it takes to transmit
information from a node to a collector is substantial. The issue arises while attempting
to process an encrypted data stream coming from a centralized node. The research [30]
proposes a method for collecting raw data from Internet of Things gadgets, and it protects
users’ anonymity. The fog nodes are trusted, and the message transmitted from the
participants is found. However, data privacy is not fully given, since the attackers can easily
compromise the fog nodes to obtain the participants’ data. In the study [31], three smart
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algorithms that can self-learn, adapt to their surroundings, and learn in small increments
over time are explored in an Internet of Things setting. Ultimately, an unsupervised
method based on a dynamic self-organizing map meets all the criteria. Effective lightweight
integrated blockchain (ELIB) was proposed in the paper [32] to accommodate the needs of
IIoT gadgets and their users. Security is employed to save sensitive information during
transmission [33]. For this purpose, a secure group communication scenario in which the
logical trees are constructed for each group was designed. Limitations: The most powerful
node must be elected to act as the CH because it plays the main role in the group. Hence,
high energy consumption is avoided. The one-way hash function is less strong than the
other hashing algorithms. The authors in [34] proposed interoperable and flexible IIoT
applications (e.g., smart home). This link utilizes a cloud-based infrastructure and a web
of objects to function. To accomplish appliance-to-appliance communication, a Raspberry
Pi-based gateway is used.

3. The Methodology

In this research, the problems that exist in the current works are overcome to achieve
interoperability. To mitigate the above-mentioned challenges, the proposed model has a
three-layered architecture consisting of Perception Layer, Edge Layer, and Cloud Layer,
and it comprises [oMT devices (CH and CM) and Guard Nodes (GNs). Figure 1 describes
the overall flow chart of the proposed work model.

SC-based authentication

v

Secret key is generated

v

Sensed information is clustered using zSlices Triune

Fuzzy Sets algorithm
v
CH is selected from cluster using HMM

v
A GN is deployed for each cluster region to hold the

value of translmitted packets

If
(data=incorrect)

Removed using Awad's Entropy-based Ten-Fold

Cross Entropy Verification

v

Correct sensed data packets are encrypted using
Twine-LiteNet

Optimum route is selected among CHs using Search

and Rescue Optimization algorithm

Figure 1. Overall flow chart.
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3.1. Conceptual Model

The architecture of the proposed interoperable AI-IoMT model is presented in Figure 2.
The model comprises three layers that explain the overall working of IoMT applications.
Figure 1 shows that authentication in the IoT environment is based on Secretkey, and
the clustering of sensed data is performed using the zSlices Triune Fuzzy Sets algorithm.
Additionally, CH selection is performed using Hidden Markov Model (HMM), and the
incorrect data are removed using Awad’s Entropy-based Ten-Fold Cross Entropy Verifica-
tion, whereas the correctly sensed data packets are encrypted using Twine-LiteNet. Finally,
an optimal route is selected among the CHs using the Search and Rescue Optimization
algorithm for enabling secure and efficient data transmission in the IoT network.
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Figure 2. System model.

The proposed method incorporates various security mechanisms to protect patient
data and maintain privacy; these are Twine-LiteNet-based encryption and Awad’s Entropy-
based Ten-Fold Cross Entropy Verification (TCEV) and may be employed to validate data
integrity and reduce the risk of data tampering.

3.2. Secure Credentials (SCs)-Based Authentication

Initially, each IoMT device is authenticated with its ID, Password, and PUF (physically
unclonable function). PUF is a unique identity (digital fingerprint) for each IC. During
authentication, these three factors are verified. If they are valid, then the gateway generates
a secret key for the device. The secret key is generated using Twine-LiteNet (Lightweight
Neural Network). This authentication process is shown in Figure 3. For each authentication
operation, these three factors are used as known facts and verified with a secret key for
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authentication. The proposed TWINE algorithm is executed in the convolutional layer of
the Lightweight Neural Network is represented as Algorithm 1.

Algorithm 1: TWINE

INPUT: ID, password, PUF
OUTPUT: Secret key Sk

1
Yieny < Tp
Ryl - - - IRk < Rizax3e)

for i - 1to 35 do
Yow HY11(4) H +[Viaw Vs < Yien

Ricoa HRklm) H -+ [IRk1) < Ricza)
for j < 0t0o7 do '
Ypji1 ¢ SO OR DBV,
for k< 0to 15

1 .
Yo < Yk
Yi+1 « Yf)ﬂ Y§+1
for j<-0to7 do
Vi « SOGJORDYSE,
Sk + Y36

vt st

F1

F2 Fuzzy 1

Fuzzy 2

F5 Fuzzy 3 Outputs

Nodes (1...n) Triple Fuzzy

F6

Figure 3. zSlices Fuzzy Sets algorithm.

The TWINE algorithm is a lightweight 64-bit block cipher algorithm. It generates an
80-to-128-bit key that improves hardware efficiency. This algorithm has 16 4-bit sub-blocks.
The secure credentials are encrypted using this algorithm, and a secret key Sk of 64 bit
in length is provided, after collecting plaintext (Tp). This algorithm of 64 bit in length
provides ciphertext (Ct) of 64 bit in length. It also has a round key (Ry) value of 80 to
128 bit in length that is derived from Sy. The TWINE algorithm includes a non-linear
layer using a 4-bit diffusion layer and S-Boxes, and it permutes the 16 blocks. The round
function is executed 36 times for providing Sy. The permutation of the block indexes is
p:{0,1,...15} — {0,1....15}, where the sub-block is mapped with the p[j]th subblock.
We form the clusters by the information sensed from the Environment. In CH election,
we consider the six factors: link quality (RSS value) F1, residual energy F2, no. of rounds
reached (expected count) F3, fairness score according to geographical area (0-1) F4, coverage
ratio F5 and node degree F6.
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The pseudocode outlines the TWINE encryption algorithm, which takes inputs such
as ID, password, and physically unclonable function (PUF) to generate a secret key (5_K).
The algorithm performs a series of operations, including XOR operations, substitution (S),
and permutation (p), to derive the key from the inputs and the intermediate variables.

In Figure 3, the Fuzzy Set algorithm includes the x-axis and y-axis for generating fuzzy
rules. In the present study, the third-dimension z-axis is taken for fuzzy-set generation; it is
known as zSlices and provides the interval set in the third dimension. The representation

of zSlices is defined as follows:
i i .
z=[ [ .2 0
YeY Juiey, Y, 0i

The membership function of the zSlices Triune Fuzzy Sets algorithm is defined as
follows:

i Max(Z;) .
M, (y) = / Maxt4i) 0,1 2
W)=, o el @)
where 0 < i < I, which represents fuzzy set 1. The other two fuzzy-set values are
also represented like this. The join operation is performed slice by slice along the x-axis.
Convex zSlices-based general fuzzy sets P; and Q; are considered with membership grades
Mip(y) and Mgo(y), and the zSlices-induced fuzzy sets are represented as follows:

Z:l‘I:O ZPIE [Ipl"Spi] Zl

Msp(y) = op; ®3)
Yivo Logeq,, 02
Myo(y) = N 4)

The join operation between two zSlices-based fuzzy sets is used to reduce the join
operation computation between both sets. The other two fuzzy sets are also calculated like
this. It is an advanced version of type-2 fuzzy sets. In this approach, triple fuzzy sets are
used in parallel mode. Figure 4 shows the diagram for zSlices Triune Fuzzy Sets. Table 1
illustrates the number of fuzzy rules for CH selection. Table 1 also shows the representation
of fuzzy rules for cluster head (CH) selection in the proposed research. It outlines the
combinations of input variables (F1 to F6) and their corresponding CH selection outcomes
(Yes or No), indicating the decision-making process for CH assignment based on the given
fuzzy rules.

Agent I
= =
= =
w2 =
EE ENVIRONMENT
| State ‘
| Residual energy ‘ 07

(@)
Figure 4. Cont.



Sensors 2023, 23, 7474 8 of 21

Time _—
D1 D2 D3 Dn
Sy @T,; =0 Sy @T,=1 So@Ty=1 | ,,..| Se@T,=1
e
k!
»n
l S, @T, =1 S, @T,=1 S;,@T;=0 | **** | s, @T,=1
S, @T, =1 S, @T,=0 S, @T;=1 | eeee| S, @T,=0

()

Figure 4. (a) HMM, (b) time-series state prediction, and (c) data readings for sensor nodes.

Table 1. The Fuzzy Rules.

F1 F2 F3 F4 F5 Fo CH
Low Low Low Low Low Low No
Low Low Medium Medium High Medium Yes
Low Medium High High Medium High Yes
Low High Medium High Low High Yes
Low Low Low Low Medium Low No
Low Medium Low High High High Yes

Medium Medium Low Low Medium High Yes
Medium Low Medium High High High Yes
Medium Low Low Low Low Low No
Medium High Medium Low Low Low No
Medium High High Medium High Medium Yes
Medium Low Medium Low Low Medium No
High High High High High High Yes
High Low Low Low Low Low No
High High Medium Medium Low Medium Yes
High High Low Medium Medium High Yes
High Low Medium Low High Low No
High Low Medium Low Low Low No

The threshold for a node n; to become CH is computed as

Pi ' 1eC
T(n;) = {1 — pi x (rmod 1/p;)” if nje 5

0, Otherwise

In this case, G is the collection of all candidates for CH who have been eliminated in
earlier stages. The probability value (p;) of each node is computed as follows:

_ . Eir) 6
pi p—T(rfl) (6)
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where E(r) denotes the residual energy at round r and E¢ is the average regional energy
of node #; in its cluster C at round r — 1. By computing the residual and average energy
values, the CH selection probability is computed with the proposed method. The nodes are
arranged from the highest to the lowest weight. The median weight value is then used in
the following formula to obtain the cutoff value:

[ (W(Ny) +W(Na) +--- + W(Ny)) @

n

Only the nodes whose weights are greater than a certain threshold (W>) are considered
for the next phase. Thus, the number of nodes to be processed in the next stage is reduced
based on the weight value.

After CH selection, a cluster is formed with its cluster members (CMs). All [oMT
devices in the region are sensed, and their data are transmitted to the CH. In this step,
environmental monitoring is learned, and it is held in the blockchain gateway using
Circular-based Hidden Markov Model (C-HMM). The main aim of this algorithm is to
determine the hidden state that corresponds to the output and to observe the parameters
from the output. C-HMM includes a set of hidden states h = {h1,h2,...hn} at time t for
any state. The hidden states are determined based on the output O = (01,02,...0n}
with time t. In the present work, C-HMM monitors the environment. Generally, C-HMM
includes state emission probability and state transition probability.

State probability is the probability that is obtained from hidden state /i (t) at time
t, and it is the transition to hidden state hj(t +1) at time t + 1, which are represented as
follows:

State emission probability is a probability that is received from hidden state /;(t) at
time t, and it emits observed states O;(t), which are defined as follows:

EP = P(Ol(t)|h](t)) = epjj 9)

Finally, C-HMM finds the current state of each IoMT device and updates its infor-
mation to the gateway. In addition, a GN is deployed for each cluster region, and its
main purpose is to hold the value of transmitted packets. Due to the energy-consumption
issue of the CH, the GNs are placed, and they do not transmit any information, but they
communicate with the CH for avoiding security risks.

With the use of current sensor measurements and environment data, incorrect data
are identified and removed from the edge. To find this information, Awad’s Entropy-based
Ten-Fold Cross Entropy Verification (TCEV) has been proposed. This method computes
the entropy value for each sensed datum. To determine the current sensed data, entropy is
computed and compared with the ten sets of the last transmitted data entropy values. This
process is held in the CH.

Then, the correct sensed data packets (Dj) are encrypted using a lightweight cryptog-
raphy algorithm called Twine-LiteNet (Lightweight Neural Network), which is represented
as Algorithm 2. LiteNet is a type of lightweight algorithm that consists of six layers:
convolutional layer, LiteModule convolutional layer, dense layer 1, dense layer 2, and
softmax layer. To reduce the time consumption of encryption, the aggregated sensed data
are encrypted in parallel mode. The convolutional layer of the proposed LiteNet model
includes a linear filter that is used to reduce the computational cost of the convolutional
layers during encryption. Table 2 describes the shuffle and hexadecimal values of the S-Box.
The values are used to encrypt and decrypt the input blocks.
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Algorithm 2: Twine-LiteNet

INPUT: Dp

OUTPUT: Ep

Begin {

Initialize Dp

// convolutional layer

for i from 1 ton do

for j from 1 to n do{

encrypt the data packets Dp using TWINE
Y%4 < Dp

for i < 1to0 35 do

yg;?+1 — S(Ygf@Rk;6)@yg;+l
Ep+Y3%)

// Fully connected layer (Lite module, 2 dense layers, and softmax layer)
forifromt ton do

temp =0

forjfrom 1tondo

temp = temp + w;; x X[j]
end for

Y; = temp

end for

end for

end for

end

Table 2. Shuffle and hexadecimal values of S-box.

Shuffle Values of Block Hexadecimal Values of S-Box
j pljl p 15l y S(y)
0 5 1 0 C
1 0 2 1 0
2 1 11 2 F
3 4 6 3 A
4 7 3 4 2
5 12 0 5 B
6 3 9 6 9
7 8 4 7 5
8 13 7 8 8
9 6 10 9 3
10 13 A D
11 2 14 B 7
12 15 5 C 1
13 10 8 D E
14 11 15 E 6
15 14 12 F 4

The calculation of the proposed convolutional layers is defined as follows:

X(n) =Y(n) x H(n)

(10)



Sensors 2023, 23, 7474

11 of 21

y o X(m)H(n —m) (11)

where X(n) represents the length of the input data packets, H(n) represents the kernel
selection, and Y(n) represents the output value. In this layer, the sensed data packets
are encrypted. Then, the proposed TWINE algorithm converts plaintext into ciphertext
(encrypted data) of 64 bits by performing the round function. It takes 36 rounds to generate
ciphertext. The S-box permutation values are defined in the table. The permutation block
indexes are defined as p : {0,1,...15}, and they are mapped with p[j] sub-block. This is
also illustrated in the table.

Then, the lite module includes a 1 x 1 convolutional layer, and the filter size of the
current lite moduleis 1 x 1, 1 X 2, 1 x 3. The main objective of this module is to reduce the
computational cost among the convolutional layers. The lite module is also used to reduce
the volume efficiency of the parameters. The 1 x 1 convolutional layer is used to improve
the local and cluster feature map representations. LiteNet considers the sense data packets
to be input. It includes one lite module, two dense layers, and one softmax layer, which
include five units that are defined as follows:

yUsi=1 (12)
wherei =1, 2...5 and S; denotes the probability distribution.
Y =) Xuwy (13)
n

where w represents the weight values of the softmax layer and X represents the output of
the upper layer. The final calculation of the softmax layer is defined as follows:

i exp (Vi)
S=———- 14
X exp (Y) -

Finally, the softmax layer provides the encrypted data packets.

The pseudocode describes the encryption process using the Twine-LiteNet algorithm.
It encrypts the data packets (D_P) using the TWINE algorithm; then, a fully connected
layer (Lite module) is applied to produce the encrypted data (E_D). Figure 5 shows the
representation of the flowchart. Later, the optimum route is selected among CHs using
four factors: available bandwidth, link quality, residual energy, and path duration. It is
selected by the SRO algorithm, and its performance is high when it is compared with other
optimization algorithms.

64 bitlpl intext | |
Toput —> Sensed data packet
N % ‘
Conv. Layer l TWINE
L Yij Ry Yijel.
Lite Module 4 4
I 5
Conv. Layer
- : | Permutation | ; (o . < .
Dense layer Yitt, pli] Y i1, plit1]. M
L ; AN

64 bit Ciphertext

Dense layer i l
T i X
{ «———| Encrypted data packet T
Softmax |/ k

Figure 5. LiteNet with Twine Mode.
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Single-Objective Optimization (SRO) is chosen for route optimization to focus on
optimizing a specific objective, such as minimizing travel distance or reducing delivery
time, without considering the conflicting objectives. The motivation behind using SRO
algorithms is to simplify the optimization process by reducing the problem to a single
objective, by making it easier to find an optimal solution within limited computational time.

The optimal route is computed by the SRO algorithm. When compared with other
optimization algorithms, its performance is high, due to the adoption of clue-based ex-
ploration. The clue matrix is formulated, and it consists of route selection attributes and
available routes. This can be represented as

(A1 -+ Aip ]

A An1 ... AnND

{R] Ry1 -+ Rip (15)
LRn1 -+ Rnp

where A and R denote the attribute and available routes, respectively. The search direction
of the route considering the attributes is expressed as

JD, = (Ax—Ry), x #y (16)

where |D, denotes the direction of the search for the xt" route, and A & Ry denote the xth
route position and y*" attribute position, respectively. To diversify the change directions to
search for a route repeatedly, the binomial crossover mechanism is adopted, and it can be
represented as

Hyjo+ 01 x (A= Hyi), if of (Hy) > of (4s)
Al = Ay +0l % (Ax,k - Hy,k), if k = kyana (17)

Ay k, otherwise

where A;/k denotes the new position of the k' dimension of the x! route. H, x represents
the position of the k" dimension of the y™ attribute. of (H,) and of (A,) represent the
objective functions for H, and Ay, respectively. Let v1 denote a random number between 0
and 1. The new position of x* route can be formulated as

Al =Ax+02x (Hy—Hy), x £y #r (18)

If v2 is a random number from 0 to 1, then the following holds. The boundary condi-
tions are calculated such that the new location is optimal, and they may be expressed as

Ak + A™M / max
e > , lf Ax,k > Ak

,k=1,2,.D (19)
Jif AL > A

/ — .
x,k - Ax,k + Akmm
2

where A" and A;™" denote the upper and lower boundaries of the k" dimension.
The above equations are used to search the route in each iteration and the change of the
previous position to the new position is stored in the matrix R which can be formulated as,

_ [ Ay if of (AY) > of (Ax)
Ru = { R, Otherwise (20)
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The changeover of position is expressed as,

_ [ AL if of (AY) > of (Ay)
Ax = { Ay Otherwise @b

The pseudo-code for the proposed route selection-based SAR algorithm is presented
below as Algorithm 3.

Algorithm 3: SAR

Population initialization in the range (Akm‘”‘,Ak"‘i”)
Perform sorting and determine the best solution

The routing matrix A takes the first half of the sorted solution and the remaining to matrix R
Initialize SE, MF, and FN=0

While the end criterion is not fulfilled do

For x=1to N do

Update H using Equation (15)

If rand<0.5 do

Computation of the position of x"* route using Equation (17)
Else

Computation of the position of x"* route using Equation (18)
End If

Perform boundary conditions of xt route by Equation (19)
Updation of matrix R and position of x route by (20)
Updation of FN

If FN > MF do

Ay is replaced with a random solution using Equation (21)
End if

Perform restart strategy

End for

Compute the current best position and update the previous best
End while

Return the best solution

Finally, the encrypted data are stored in the cloud servers and securely accessed by
the end users. Due to the strong edge connection in clustering and routing, interoperabil-
ity is achieved in information transfer. Similarly, data collection is executed effectively
with accurate environment sensing, and it dynamically identifies the fault/incorrect data.
Furthermore, blockchain technology is proposed to improve scalability and decentralized
communication among IoMT devices.

The above pseudocode represents the Search and Rescue Optimization (SAR) algo-
rithm for solving a routing problem. It initializes a population, which performs sorting to
determine the best solution, and updates the routes based on equations, boundary condi-
tions, and restart strategies until the end criterion is met. The algorithm aims to optimize
routing matrix A and achieve the best solution to the given problem.

4. Results and Discussion

This section discusses the experimental findings and the suggested interoperable Al-
based IoMT. The simulation environment and a case study are the first topics of discussion.
Then, the proposed work is contrasted with the current methods. The proposed method
enhances security in IloT environment authentication for device integrity and Twine-
LiteNet-based encryption to improve the confidentiality of data packets by providing a
global model for illness detection in healthcare applications within the Internet of Medical
Things (IoMT) context.
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4.1. Simulation Study

As part of the modeling of the suggested method, 100 IoMT devices are placed over a
100 m? area and simulated using NS3.26. The machine runs Ubuntu 14.04 and has the NS-3
simulator loaded onto it. Initially, nodes consist of limited energy and are exhausted for each
communication. Table 3 portrays the obtained simulation values for the implementation
of interoperable network operations, and it represents the simulation parameters and
descriptions.

Table 3. Simulation parameters.

Parameter

Value

Imitation zone

1000 x 1000 m

Quantity of radar node

100

Deployment Random
MAC layer IEEE 802.15.4
Control message 20 bits
Original oomph of node 750]
Packet amount 400
Retransmission amount 7 (Max)
Size of packet 12 KB
Interval of packet 10 uS
Communication range in sensor 200 m
Rate of data 88 Mbps (Max)
Slots amount 16
Slot period 10 uS

SE 0.05
RO MU 70D

R 5

Number of iterations 100

Number of rounds 100
Simulation time 100s

In this section, a performance analysis is conducted to validate the proposed interoper-
able IoMT approach with two existing approaches, i.e., EIR-CIoT [35] and BDCS-IoMT [36].
For the proposed interoperable IoMT implementation, two kinds of scenarios are compared,
i.e., all-information transfer (with error/fault values) and correct data (without any error
readings). In Industry 4.0, fault data event generation and transmission cause a higher
number of issues, such as large energy consumption, lower throughput, packet delivery
ratio, etc. In the following sub-sections, the evaluation metrics and the simulation results
are discussed.

4.1.1. Impact of Throughput

Throughput is defined as the average number of packets successfully received at the
destination node. Figure 6 represents the impact of throughput on the number of nodes.
Applying four different deep neural networks for processing the inputs decreases the
throughput, and it is implemented in BDCS-IoMT. Likewise, EIR-CIoT uses interoperability
and energy-aware routing for throughput optimization. The RSS-based CH is elected for
information transfer. RSS with beacon message transmission increases the communication
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and the computational overhead; hence, the performance of throughput decreases as the
number of nodes increases.

OEIR-CIoT
OBDCS-IIoT
O Scenario 1
O Scenario 2

&
) 1000
H
e 500
=]
=
= 0
=
40 60 %0 —
Number of nodes 100

Figure 6. Many nodes vs. throughput.

However, uncertainty in data forwarding increases this overhead and reduces the
throughput level. This challenge is focused on employing the optimum route using the
SRO algorithm. As the objective of routing is lower communication overhead and energy-
balanced information transfer, SRO determines the global optimum solution. Further,
the elimination of unauthorized nodes in the network and employing authentication
decrease the overhead and increase the chance of throughput. For instance, EIRCIoT obtains
190 Kbps throughput for 40 nodes, whereas BDCS-IoMT obtains 230 Kbps throughput for
40 nodes, and 280 Kbps and 320 Kbps for throughput, respectively.

4.1.2. Impact of Energy Consumption

The ratio of the total amount of energy used during information transfer is known as
the energy-consumption ratio (ECR). The remaining power of a node is calculated using
this value. The ECR may be written down as

AE

ECR = D (22)
where AE and AD denote the average energy consumption and average information
transfer rate, respectively. Further, the number of messages in the buffer is estimated. This
parameter is considered if a node has a large number of messages; then, all those data
are dropped. This metric is defined as the number of messages that are waiting in the
buffer of the node. When the number of simulation runs increases, the energy-consumption
rate increases. Minimizing the energy consumption of loMT devices requires knowledge
about the specific traffic in the network and also associated end-to-end communications.
Routing packets requires a certain amount of energy to store them in the buffer. Most
researchers have found intelligent algorithms for routing packets that improve the network
performance in the network layer. In this paper, a study of the energy-consumption usage
of wireless devices is presented. The optimization of routing using a simple design in the
IoMT environment addresses the energy-consumption problem. Also, loMT devices and
sensors enable not only interoperability among devices but also control in the environment.
The simulation results of energy usage per node are shown in Figure 7. The suggested
work reduces power usage by eliminating the faulty data before sending them to the target
node, as shown by the simulation results. Further, this is illustrated in Figure 8 based on

the simulation rounds.
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Figure 7. Number of nodes vs. energy consumption.
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Figure 8. Simulation rounds vs. energy consumption.

4.1.3. Impact of Delay

Most energy-saving solutions fail to reduce delay, as has been explored in the literature.
Delays in the proposed task are kept to a minimum with the use of optimal CH selection,
security provision, and routing mechanisms. Figure 9 shows a comparison of network
latency from end to end. According to the findings, the suggested work outperforms
prior studies in the field. This study demonstrates that minimizing end-to-end latency
cannot be achieved by only cutting energy use. The inefficient information transmission
of the EIR-CIoT approach causes a significant delay of up to 5 s. The proposed work
has latency of 1 second in an environment of fifty packages per second, and it is much
less latency than the EIR-CloT approach. In addition, the EIR-CIoT approach is narrowly
focused on RSS-based routing at the expense of other crucial factors. But with the help of
authentication, appropriate CH selection, routing, and packet validation at intermediate
nodes, the suggested approach improves the network’s overall performance. As a result,
the proposed project achieves a shorter duration of execution than that of similar studies.

4.1.4. Impact of Packet Delivery Ratio

It is the fraction of a source node’s packets that reach its associated CH node. The
PDR, or packet delivery rate, is calculated as

PDR = -3 (23)
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Figure 9. Packets per second vs. delay.

The percentage of packets effectively delivered to the target node is known as the
delivery success ratio. When the data are sent via the best possible route, this proportion
increases. Figure 10 shows a comparison between the success rates of the suggested method
and those of the existing studies. According to the results, the suggested work has a better
delivery success percentage than the existing literature. The proportion of successful
deliveries drops as the amount of nodes grows. This is because of the sheer volume of data
packets being sent to the network when a big number of nodes is present. As the number
of nodes increases, the percentage of successful deliveries decreases across all the works.
While the delivery ratio drops by 40% as the number of nodes grows in EIR-CloT, it drops
by only 9% in the proposed work. This study demonstrates that the suggested approach
may be scaled to a high number of sites without experiencing any loss of data.

OEIR-CloT OBDCS-IIoT
O Scenario 1 O Scenario 2
il
,///-",
£ i
£ 100 gttt
z i i '//i'/"’/ /i
d) /// i
2 /\; // /////
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A 80

Number of nodes

100

Figure 10. Number of nodes vs. packet delivery ratio.

4.1.5. Impact of Network Lifetime

The effectiveness of the suggested method may be measured, in part, by looking at
how long a network lasts. If the network’s energy usage is low, this measure is high.

Eo — E[UU]

NL=57% SE[Rep]

(24)

where Ej is the starting power used by all sensing nodes; E[UU] is the power that is
anticipated to be wasted; and E[Rep] is the power that is expected to be used for reporting,
and it is the typical reporting frequency of sensors. The longevity of a network may be
quantified in terms of either time or rounds. The comparison of network lifetime is shown
in Figure 11. Based on these findings, it seems that the suggested interoperable AI-IoMT
strategy extends the lifespan of networks, as their sizes grow. In an area of 50 nodes,
the network lifespan with the proposed work is 6000 s, and it is much longer than the
previous efforts. As a result, the suggested approach avoids the premature death of nodes
and uses less power. While the computational burden does impact the network lifespan,
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previous techniques such as EIR-CIoT and BDCS-IoMT demonstrate large variations in
network lifetime.

OEIR-CloT OBDCS-IIoT

O Scenario 1 O Scenario 2
S 10,000

E

2

= 0

>

R

(=

£

Z.  Number of nodes

Figure 11. Number of nodes vs. network lifetime.

The false-positive rate of the proposed method refers to the rate at which the incorrect
data are mistakenly identified and removed from the network, and it serves as a measure
of its effectiveness in ensuring data accuracy.

A comparison of the effectiveness of the planned and the existing works is shown
in Table 4. Throughput, energy consumption, latency, packet delivery ratio, and network
longevity are only a few of the metrics that are dominated by the suggested interoperable
AI-IoMT solution. The proposed Al-powered method is used for interoperable and secure
data collection and routing in the multivariate Industrial IoT. In this process, the obtained
throughput is 35% greater than that of EIR-CIoT and 23% greater than that of the BDCS-
IoMT approach. The proposed lightweight Al algorithms are suitable for environment-
based data collection and transmission. The presented time-dependent consensus (TDC)
model can replace PoW and PoS in blockchain technology.

Table 4. Performance analysis.

Performance EIR-CIoT BDCS-IoMT Scenario-1 Scenario-2
Throughput (Kbps) 307 £5.0 3464 +3.0 464+ 1.0 530 £ 1.0
Energy Number of nodes 0.384 +0.05 0.356 +0.03 0.322 +0.01 0.162 +0.01
consumption () Simulation rounds 3033 £1.5 28.166 £ 1.0 25.833 £0.5 125+05
Delay (s) 3.6+05 3414+03 2.61+0.1 1.8 £0.01
Packet delivery ratio (%) 59.8+15 61.6+1.0 78+0.5 89.4+0.5
Network lifetime (s) 2224 +5.0 2561.8 £3.0 4620+ 1.0 5700+ 1.0

Table 4 provides a comparison between the suggested method and the existing ap-
proaches in terms of performance metrics for fault data prediction and incorrect information
transfer scenarios in the Internet of Medical Things (IoMT) context. The suggested method
(BDCS-IoMT) offers improved throughput, lower energy consumption, reduced delay;,
higher packet delivery ratio, and extended network lifetime compared with the existing
method (EIR-CIoT).

Ensuring the privacy of patient data in an Internet of Medical Things (IoMT) envi-
ronment is crucial, as flaws in traditional Al systems can expose sensitive information.
The comparison of nodes versus security is shown in Figure 12.This research tackles the
challenges of energy consumption, latency, throughput, packet delivery ratio, and net-

work longevity in the IoMT setting, and it aims to improve the overall system efficiency
and performance.
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Figure 12. Number of nodes vs. security.

The developed approach’s performance in terms of compression and computing
efficiency could be further improved by including event-driven tools and prospective
optimization algorithms [37-39]. The integration of these tools could be investigated in
the future.

5. Conclusions

Devices in the IoMT environment should possess smooth connectivity and interop-
erability to achieve maximal efficacy in industrial applications. Moreover, security is also
an important aspect to be considered in industrial data. In this paper, both security and
interoperability have been achieved in the IoMT environment. Initially, the authentication
of IoMT devices is carried out, and the devices are authenticated by the gateway. The
clustering of devices is carried out to reduce the energy consumption of the devices, and
cluster head selection is performed using the zSlices Triune Fuzzy Sets algorithm based
on significant factors. Environmental monitoring is executed to facilitate the effective
collection of data by the cluster head (CH), which facilitates interoperability among the
devices. The collected data are further examined for correctness using Ten-Fold Cross
Entropy Verification (TCEV) in which only the correct data are allowed to transmit to
the cloud server. The security of correct data is ensured by implementing Twine-LiteNet,
with which the consumption of time for encryption is reduced by operating in parallel
mode. The routing of encrypted data to the cloud is performed using the Search and
Rescue Optimization algorithm (SRO), and it is performed based on four significant factors.
Compared with the counterparts, the suggested technique achieves a 20% improvement
in throughput, a 15% reduction in packet drop rate (PDR), and a 35% increase in network
lifespan. Furthermore, it achieves around 10% reduction in both the amount of energy used
and the amount of latency. In the future, exploring the integration of blockchain technology
for enhanced data immutability and privacy, along with investigating the potential of
federated learning techniques to further optimize collaborative data analysis and model
training, holds promising prospects for advancing the proposed method.
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