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Abstract: This research presents a comprehensive study of the dichotomous search iterative parabolic
discrete time Fourier transform (Ds-IpDTFT) estimator, a novel approach for fine frequency estima-
tion in noisy exponential signals. The proposed estimator leverages a dichotomous search process
before iterative interpolation estimation, which significantly reduces computational complexity while
maintaining high estimation accuracy. An in-depth exploration of the relationship between the
optimal parameter p and the unknown parameter δ forms the backbone of the methodology. Through
extensive simulations and real-world experiments, the Ds-IpDTFT estimator exhibits superior perfor-
mance relative to other established estimators, demonstrating robustness in noisy conditions and
stability across varying frequencies. This efficient and accurate estimation method is a significant
contribution to the field of signal processing and offers promising potential for practical applications.

Keywords: Ds-IpDTFT; fine frequency estimation; noisy exponential signals; computational complexity;
signal processing

1. Introduction

The problem of precise and efficient frequency estimation in noisy signals, essential
for signal synchronization, is pervasive in numerous domains such as power transmis-
sion [1–3], satellite control [4,5], mechanical systems [6,7], mobile communication [8,9],
radar systems [10–12], and biomedical signal processing [13]. To address this issue, a
multitude of strategies have been proposed. Notably, estimators informed by the peri-
odogram maximizer [14] estimate the frequency of a time-domain signal via the maximum
search of the Discrete Fourier Transform (DFT) spectrum, leveraging the time-frequency
characteristics of the received signals for an easy-to-achieve frequency estimation [15].

However, the accuracy of these estimators is often limited by the frequency resolu-
tion of DFT. Because the signal sampling period is usually asynchronous with its real
period, the energy of the signal leaks into adjacent frequency bins, producing an estimation
bias, namely spectral leakage. In this case, the estimation error is limited to less than
one frequency resolution without noise interference. In response, several interpolation
techniques have been introduced. These include methods like Quinn [16,17], Macleod [18],
Jacobsen [19], Yang [20], Candan [21,22], parabolic [23,24], and Fang [25], which utilize
assistant DFT samples. By analyzing the relationship between the frequency offset to be
estimated and the adjacent DFT samples, the interpolation formula is obtained, and the
estimation error of these estimators can be reduced to less than half a frequency resolu-
tion through several multiplications, which is very useful for practical applications with
limited computing resources. The mean square error (MSE) of parabolic [24] can reach
1.0033 times the Cramér–Rao lower bound (CRLB). The utilization of these interpolation
techniques, in addition to an alternative strategy that employs signal samples with zero
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padding for DFT calculation [20], has shown that iterative operations are beneficial for
error reduction, because padding zeros after signal samples is equivalent to reducing the
range of the frequency offset to be estimated, and the iterative operation helps to reduce the
dependence of the interpolation formula on actual signal frequency. The methods can be
used for frequency estimation with limited signal samples and strong noise, such as burst
communication and satellite communication. This is evident in [26], where the root mean
square error (RMSE) of the estimator reached 1.014 times the ACRB after two iterations.
The use of windows for signal filtering while computing DFT can further enhance estima-
tion accuracy [3,27], and various windows, such as the quasi-synchronous window [28],
combined cosine window [29], and triangular self-convolution window [30], have been
designed to decrease estimation error caused by spectral leakage. The suppression of
spectral leakage is realized by performing windows on the signal samples to reduce the
discontinuity introduced by the truncation of signal sequences, which is useful for spectral
leakage and harmonic interference in practice. However, these improved methods require
substantial matrix computations, rendering them computationally costly.

Despite these improvements, the accuracy of interpolation estimators is still influenced
by the frequency resolution ∆ f , which is the ratio of the discrete sampling frequency to the
discrete sampling number. In response, many interpolations using discrete time Fourier
transform (DTFT) samples, which are closer to the DFT maximum than DFT samples, have
been explored [31,32]. Without considering noise, the estimation range of the frequency
offset can be reduced to less than a quarter of the frequency resolution by using DTFT
samples 0.5∆ f away from the spectral maximum for interpolation. This technique has
demonstrated a further reduction in the estimation error after two iterations. It is suitable
for application scenarios that requires fast and accurate communication, such as high-speed
trains and aircraft. The estimators proposed by Fan [33] and Serbes [34], which achieved
state-of-the-art performance by integrating most optimization methods described above,
can still be optimized for stability.

In the pursuit of further improvements, we propose a new estimator, named Ds-
IpDTFT, derived from dichotomous search and iterative interpolation on DTFT samples.
The estimator includes two stages: the first stage provides a coarse frequency estimate
by locating the maximum of the DFT spectrum, followed by a second stage that employs
a dichotomous search to narrow the estimation range. Afterwards, the fine frequency
estimate is iteratively calculated according to an asymptotically unbiased closed-form
formula. This proposed method integrates many of the above-discussed techniques, aiming
to improve not only estimation accuracy but also computational efficiency and stability. By
introducing the dichotomous search into the frequency estimation, the estimation error is
expected to reach less than one eighth of the frequency resolution after dichotomous search,
and the computation is slightly reduced, and explained in Section 4. Thus, it provides an
effective method to realize fast and accurate communication in high dynamic conditions.

The main contributions of this study are as follows:

• The study introduces the Ds-IpDTFT estimator, a pioneering methodology for fine
frequency estimation in noisy exponential signals.

• A comprehensive theoretical analysis is provided, with a focus on the relationship
between the parameters p and δ.

• The performance of the Ds-IpDTFT estimator is validated through rigorous simula-
tions and real-world experiments.

• The research propels the field forward by presenting a more accurate and efficient
estimator, thereby opening up new pathways for future research.

The remainder of the paper is organized as follows. Section 2 discusses the signal
model with additive noise, the CRLB expression, and a generalized iterative interpolation
estimator. In Section 3, a comprehensive discussion on the principle of the new estimator
ensues, with detailed steps of the proposed estimator. This leads into Section 4, where we
analyze the performance of the Ds-IpDTFT compared with other estimators and CRLB
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through simulations. Finally, in Section 5, we verify the proposed estimator on real data
and conclude our work in Section 6.

2. Preliminaries

In this section, we consider a discrete-time exponential signal transmitted over the
AWGN channel. The model of this signal in noise can be described as in Equation (1):

y(n) = x(n) + z(n)

= Aej(2π
f
fs

n+φ0) + z(n),
(1)

where x(n) = Aexp(j(2π
f
fs

n + φ0)) represents the discrete-time complex exponential
signal; φ0 and A represent the phase and magnitude of the signal, respectively; f / fs
represents the normalized frequency to be estimated, which is divided by the discrete
sampling frequency fs; n = 0, 1, . . . , N − 1 represents the index of the received signal
samples; and N represents the length of the received signal sequence. z(n), on the other
hand, follows the distribution N(0, σ2) and indicates complex additive Gaussian noise. As
a result, the normalized frequency can be denoted as in Equation (2):

f
fs

=
km + δ

N
, (2)

where km represents the integer part of the normalized frequency and equals the index of
the DFT maximum obtained in the first estimation stage. Furthermore, −0.5 < δ < 0.5
represents the fractional part of the normalized frequency, which is computed in the second
estimation stage.

2.1. CRLB of Frequency Estimation

Transitioning to the topic of frequency estimation, we note that the CRLB places a low
bound on the MSE of the estimate, as presented in Equation (3) [14]. Here, γ denotes the
signal-to-noise ratio (SNR), which can be computed by γ = A2

σ2 .

CRLB =
3

2π2γ · N(N2 − 1)
. (3)

2.2. Generalized Iterative Interpolation Estimator

In the context of interpolation estimators, a generalized iterative interpolation using
magnitudes of optional DTFT samples has been proposed in [35]. This estimator is char-
acterized by its flexible form and is known to obtain an estimation accuracy comparable
with other state-of-the-art estimators. In this scheme, the coarse estimate is computed by
locating the position of the DFT maximum, followed by estimating the residual frequency
offset through iterative interpolations on the DFT maximum, X(km), and two neighboring
DTFT samples, X(km ± p), next to the DFT maximum. Their expressions can be described
as in Equation (4).

X(km ± p) =
N−1

∑
n=0

Aej
[
2π(

f
fs
− k

M )n+φ0

]
| f=(km+δ)∆ f ,k=km∓p . (4)

In the above equation, p denotes the distance between the index of the DFT maximum,
km, and the index of the neighboring DTFT samples, km ± p. M denotes the number of data
used in the DFT computation, and M = 2N signifies that N zeros are padded after N signal
samples. Lastly, ∆ f represents the frequency resolution of DFT.
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The expression of X(km ± p) can be simplified to Equation (5), and the matched
magnitudes of X(km ± p) are given in Equation (6).

X(km ± p) = Aejφ0ejπ N−1
M (δ∓p) sin(π(δ∓ p))

sin( π
M (δ∓ p))

. (5)

|X(km ± p)| = A

∣∣∣∣∣ sin(πN
M (δ∓ p))

sin( π
M (δ∓ p))

∣∣∣∣∣. (6)

In order to further simplify the expression, let X(km − p), X(km), and X(km + p) be
represented as Xkm−p, Xkm , and Xkm+p, respectively. Considering that M/N > 2 and
|δ∓ p| ≤ 1, the ratio between sin(πN

M (δ ∓ p)) and sin( π
M (δ ∓ p)) is positive, hence the

expression of |X(km ± p)| becomes as in Equation (7).

∣∣∣Xkm±p

∣∣∣ = A
sin(πN

M (δ∓ p))
sin( π

M (δ∓ p))
. (7)

Subsequently, the ratio between
∣∣∣Xkm±p

∣∣∣ and
∣∣Xkm

∣∣ can be written as in Equation (8).∣∣∣Xkm±p

∣∣∣∣∣Xkm

∣∣ =
sin(πN

M (δ∓ p))
sin( π

M (δ∓ p))
/

sin(πN
M δ)

sin( π
M δ)

. (8)

Assuming that M� π(δ∓ p), Equation (8) approximates to equation∣∣∣Xkm±p

∣∣∣∣∣Xkm

∣∣ ≈ sin(πN
M (δ∓ p))

sin(πN
M (δ))

/
δ∓ p

δ
. (9)

Following some transformations, we obtain the sum as expressed in Equation (10).∣∣∣Xkm+p

∣∣∣∣∣Xkm

∣∣ δ− p
δ

+

∣∣∣Xkm−p

∣∣∣∣∣Xkm

∣∣ δ + p
δ
≈ 2 cos(

πN
M

p). (10)

Finally, the estimate δ̂ is computed by Equation (11). This generalized iterative inter-
polation estimator’s flexible form is clearly shown in the equation and can be regarded as a
generalization of some iterative estimators with an equivalent interpolation equation and a
determined value of p.

δ̂ =
p
(∣∣∣Xkm+p

∣∣∣− ∣∣∣Xkm−p

∣∣∣)∣∣∣Xkm+p

∣∣∣+ ∣∣∣Xkm−p

∣∣∣− 2
∣∣Xkm

∣∣ cos(πN
M p)

. (11)

The corresponding mean square error (MSE) of the generalized interpolation estimator
can be expressed as in Equation (12) (the detailed deduction process is available in [35]).

E
[
(δ̂− δ)

2
]
≈



π2 N
M2 ·

δ2((δ2−p2))
2

γ ·
p2+δ2+2δ2cos2( πN

M p)−(3δ2+p2)sinc( 2πN
M p)

4p2(p sin( πN
M δ) cos( πN

M p)−δ sin( πN
M p) cos( πN

M δ))
2 ,

δ 6= 0 & |δ| 6= p
p2

4N·γ ·
1−sinc 2πN

M p

(sinc πN
M p−cos( πN

M p))
2 , δ=0

2p2

N·γ ·
1+cos2( πN

M p)−2sinc 2πN
M p

(1−sinc 2πN
M p)

2 , |δ|=p

. (12)
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3. Proposed Estimator

This section introduces a novel estimator inspired by the correlation between the offset
p and the residual frequency offset that requires estimation. To observe this correlation, a
simulation is carried out, and the results are visualized in Figure 1.

Figure 1. RMSE/CRLBs of the generalized iterative interpolation estimator versus p for various |δ|.

From Figure 1, the minimal root mean square errors (RMSEs) of the generalized
iterative interpolation estimator for different |δ| at γ = 0 dB and N = 512 are labeled
as a red hexagram. These RMSEs show variation with p, suggesting that an appropriate
choice of p can minimize the estimation error of δ. However, due to its correlation with
the unknown parameter δ, p cannot be precisely determined. Therefore, we narrow down
the selection range of p using the dichotomous search algorithm, an efficient method for
extreme search in a limited range, to reduce the estimation error of the generalized iterative
interpolation estimator. The fine frequency estimation is initiated with the dichotomous
search, allowing us to define a narrowed range of p before proceeding with interpolation.

In the dichotomous search, which includes two search steps, we initially compare the
left and right DFT samples (Xkm−1 and Xkm+1) surrounding the DFT maximum. Depending
on the results, we establish the next search range. If Xkm+1 exceeds Xkm−1, then the range is
(km, km + 0.5) as Xkm is larger than Xkm+1, based on the outcome of the coarse frequency
estimation. On the contrary, if Xkm−1 is larger than Xkm+1, the range is (km − 0.5, km), since
Xkm exceeds Xkm−1. For the subsequent search, we compute the DTFT samples Xkm+0.5 or
Xkm−0.5 as the edge point of the next range. Continuing this process further refines the
search range. After the dichotomous search is complete, the final estimation of the residual
frequency offset is carried out using the generalized iterative interpolation estimator.

For the next search range, suppose it is (km, km + 0.25). In the first iteration, the
interpolation of the generalized estimator is conducted on Xkm , Xkm+0.125, and Xkm+0.25 with
p = 0.125. Subsequent iterations follow the same methodology as outlined in Algorithm 1.

The process outlined in Algorithm 1 concludes that only one-bin DTFT needs to be
computed during one iteration of the dichotomous search, while the generalized iterative
interpolation estimator may need zero or three one-bin DTFT computations depending on
whether the iteration parameter q equals one or not.
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Algorithm 1: Proposed dichotomous search-enhanced IpDTFT (Ds-IpDTFT)
estimator

input :Signal samples r, Q1, Q
output :Estimate of carrier frequency f̂

1 First estimation stage: compute the DFT of M-point samples, find the index of
the DFT maximum km, and record DFT samples

∣∣Xkm−1
∣∣, ∣∣Xkm

∣∣, and
∣∣Xkm+1

∣∣.
2 Second estimation stage: set the dichotomous search iteration parameters:

p1 = 1, q1 = 1, Xle f t =
∣∣∣Xkm−p1

∣∣∣, Xright =
∣∣∣Xkm+p1

∣∣∣.
3 for q1 ≤ Q1 do
4 if Xle f t < Xright then
5 if q1 = 1 then
6 p1 = p1/2, compute

∣∣∣Xkm+p1

∣∣∣, Xright =
∣∣∣Xkm+p1

∣∣∣.
7 end
8 Xle f t =

∣∣Xkm

∣∣, p1 = p1/2, km = km + p1, compute
∣∣Xkm

∣∣.
9 else if Xle f t > Xright then

10 if q1 = 1 then
11 p1 = p1/2, compute

∣∣∣Xkm−p1

∣∣∣, Xle f t =
∣∣∣Xkm−p1

∣∣∣.
12 end
13 Xright =

∣∣Xkm

∣∣, p1 = p1/2, km = km − p1, compute
∣∣Xkm

∣∣.
14 else if Xle f t = Xright then
15 break.
16 end
17 end
18 Set the iteration parameters of the generalized iterative estimator: δ̂ = 0, q = 1,

and p = p1.
19 for q ≤ Q do
20 if q 6= 1 then
21 Calculate the DTFT samples

∣∣∣Xkm+p

∣∣∣, ∣∣Xkm

∣∣, and
∣∣∣Xkm−p

∣∣∣ according
to (6).

22 end
23 Calculate δ̂ according to (11).
24 Update the iteration parameters: q = q + 1, km = km + δ̂.
25 end
26 Calculate f̂ according to (2)
27 return f̂

3.1. Discussion of M and N

The data length, M, and signal length, N, are two crucial parameters of the generalized
iterative interpolation estimator. Their impact on estimation accuracy is observed by
plotting the RMSE curves of the generalized iterative interpolation estimator versus N for
different M at γ = 0 dB. This is visualized in Figure 2, where N varies from 16 to 1024 in
steps of 16.
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Figure 2. RMSEs of the generalized iterative interpolation estimator versus N for different M.

It can be inferred from Figure 2 that the RMSEs of the generalized iterative interpola-
tion estimator decrease as N increases, with the estimator’s RMSEs falling below 10 Hz
when N exceeds 500. However, the improvement of the RMSE diminishes with increas-
ing N. The RMSEs can also be reduced by increasing M, but, when M exceeds 2N, the
RMSE’s improvement is limited. Increasing the data length, M, and signal length, N, have
similar effects, but they work on different principles. As the signal length, N, increases,
the frequency resolution decreases, but the estimation accuracy is improved. With the
increasing of the data length, M, the range of frequency offset to be estimated is reduced,
but the frequency resolution remains the same. Although larger M or N values lead to
better estimates, they require higher computational complexity due to calculations of DFT
and DTFT.

3.2. Discussion of Q and Q1

The parameters Q and Q1, representing the iteration numbers of the generalized
iterative interpolation estimator and the dichotomous search, respectively, are crucial in
the proposed estimator. While a larger Q1 can further narrow the search range, it requires
more DTFT computation. For every increase of one of Q1, the search range of the frequency
offset is halved, but one DTFT computation is added. Q exhibits a similar effect. For
every increase of one of Q, the estimation error is reduced, but the DTFT computation is
doubled. Detailed discussions about Q can be found in [33,34], which recommend a value
of two because the improvement in estimation error is very limited for Q ≥ 3. However,
considering the interaction between Q and Q1, the influence of these parameters on the
RMSEs of the proposed estimator is investigated here.

Figure 3 shows the RMSEs of the Ds-IpDTFT estimator as a function of Q1 for each
δ at Q = 1. Here, RMSEs decrease as Q1 increases when Q1 ≤ 3, then remain stable,
irrespective of changes in Q1. This suggests that the dichotomous search can provide a
promising estimation accuracy with Q1 values greater than 2 at Q = 1. Thus, Q1 = 2 or
Q1 = 3 can be used as experimental parameters in Section 4.
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Figure 3. RMSEs of proposed Ds-IpDTFT estimator versus Q1 for |δ| = 0.1, 0.3, and 0.5 at Q = 1.

In Figure 4, the RMSEs of the proposed estimator are shown as a function of Q1 for each
δ at Q = 2. Interestingly, the RMSEs decrease only when δ = ±0.5 as Q1 increases. This
can be attributed to the fact that the interpolation of the generalized interpolation estimator
after two iterations provides a more precise result compared with the dichotomous search,
even though it requires more DTFT computation during one iteration.

Figure 4. RMSEs of proposed Ds-IpDTFT estimator versus Q1 for |δ| = 0.1, 0.3, and 0.5 at Q = 2.

Upon comparison of Figures 3 and 4, it is observed that the configurations of Q1 = 3,
Q = 1 and Q1 = 2, Q = 2 provide the best balance between estimation accuracy and
computation complexity. In fact, both configurations require almost the same computational
effort for the proposed estimator. This can be deduced based on the computation complexity
analysis in Section 4.
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4. Simulations

This section presents a comparative analysis of the accuracy of several estimators,
namely the proposed Ds-IpDTFT estimator, Jacobsen estimator [19], Candan estimator [36],
Fan estimator [33], Aboutanio & Mulgrew (A&M) estimator [26], rational combination of
three spectrum lines (RCTSL) estimator [20], and Fang estimators [25], as evidenced by
experimental results. We conducted these experiments with N = 512 signal samples, with
a consideration of M = 2N for Section 4.1. For each Monte-Carlo simulation, the initial
phase, φ0, is randomly generated within the interval [0, 2π). A sampling rate of 512 kHz is
employed, and all results are gathered from 30,000 simulation runs.

4.1. Discussion on SNR

Figures 5–9 illustrate the RMSE curves of the seven estimators as functions of γ,
considering a range of δ from −0.5 to −0.1. The RMSEs of estimators with comparable
accuracy at γ = −5 dB are further examined for a detailed performance assessment.

Insights from these figures reveal that the SNR thresholds of these interpolation
estimators hover around−10 dB, with the RMSEs of these estimators closely approximating
the CRLB from γ = −10 dB to 40 dB. However, a noticeable discrepancy in the RMSEs exists
between the Jacobsen estimator, Candan estimator, and the other simulated estimators, a
gap that amplifies as |δ| increases. In contrast, the Ds-IpDTFT estimator’s RMSEs remain
quite proximal to the CRLB across the range of δ = −0.5 to δ = −0.1. A closer look at the
results for γ = −5 dB indicates that the proposed estimator with Q1 = 3, Q = 1 records
the smallest RMSE among the simulated estimators for the five values of δ. Interestingly, a
trend emerges where the accuracy of the A&M estimator deteriorates as δ increases. This is
attributed to the A&M estimator’s high dependency on the value of δ, while the proposed
Ds-IpDTFT estimator manages to minimize the influence of δ by utilizing a dichotomous
search during the second estimation stage.

Additionally, some estimators show a different trend, where their RMSEs are influ-
enced by the value of γ and deviate from the CRLB, as opposed to the Ds-IpDTFT estimator,
which adheres closely to the CRLB. For instance, in Figures 6 and 7, the RMSEs of the
RCTSL estimator escalate rapidly when the SNR exceeds 25 dB. Similarly, Figures 8 and 9
show that the RMSEs of the A&M estimator noticeably increase when the SNR is below
5 dB.

Figure 5. RMSEs of the five estimators versus γ at δ = −0.1.
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Figure 6. RMSEs of the five estimators versus γ at δ = −0.2.

Figure 7. RMSEs of the five estimators versus γ at δ = −0.3.

Taking into account the RMSE gaps between the Jacobsen estimator, Candan esti-
mator, and the other simulated estimators, we decided to exclude these two estimators
from the subsequent performance evaluation of the simulated estimators demonstrating
comparable accuracy.
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Figure 8. RMSEs of the five estimators versus γ at δ = −0.4.

Figure 9. RMSEs of the five estimators versus γ at δ = −0.5.

4.2. Discussion on δ

In this section, we evaluate the performance of the Ds-IpDTFT estimator over the full
range of δ and assess its anti-noise ability. Figures 10–13 present RMSEs of various estima-
tors as a function of δ, demonstrating the different estimation accuracies and robustness of
these estimators.

Through Figures 10 and 11, we find that the proposed Ds-IpDTFT estimator generally
outperforms the other simulated estimators, with its RMSEs being consistently smaller.
This superiority holds especially for Q1 = 3, Q = 1 and Q1 = 2, Q = 2, where the RMSEs
hover around the CRLB across the entire δ range. Importantly, the performance of the
Ds-IpDTFT estimator shows relative stability, with a small RMSE fluctuation over the
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estimation range. Unlike the Fang and RCTSL estimators, the Ds-IpDTFT estimator avoids
an RMSE peak, a quality particularly evident around |δ| = 0.3.

Looking specifically at Figure 10, we note a unique advantage of the Ds-IpDTFT
estimator: it avoids the edge effect around |δ| = 0.5 that hampers the A&M estimator,
whose RMSEs significantly increase at this point. Due to this edge effect, which intensifies
as γ decreases, the A&M estimator’s RMSE curve is omitted from Figure 11 to allow a more
effective comparison of the remaining estimators.

Figure 10. RMSEs of the four estimators versus δ at γ = −5 dB and N = 512.

Figure 11. RMSEs of the five estimators versus δ at γ = −10 dB and N = 512.
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Figure 12. RMSEs of the four estimators versus δ at γ = −5 dB and N = 256.

Figure 13. RMSEs of the four estimators versus δ at γ = −5 dB and N = 1024.

Furthermore, a comparison of Figure 10 with Figure 11 reveals the robust anti-noise
performance of the Ds-IpDTFT estimator, whose RMSEs remain low even when the SNR drops.

Turning to Figures 12 and 13, which show RMSE curves for γ = −5 dB at different
signal lengths, N = 256 and N = 1024, we see that an increase in N leads to a reduction in
the RMSE of the Ds-IpDTFT estimator for Q1 = 3, Q = 1—dropping from 1.008 times the
CRLB to 1.0026 times the CRLB. At the same time, the edge effect of the A&M estimator
and the peak magnitude of the RCTSL and Fang estimators also diminish. This observation
reinforces the idea that selecting a large N contributes to achieving better estimation
accuracy, a finding consistent with the results in Figure 2.
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4.3. Computation Complexities of Simulated Estimators

The computational complexity of common iterative interpolation estimators is primar-
ily composed of two components. The first component originates from the DFT compu-
tation, which is primarily determined by the number of signal samples. For an N-point
DFT, if the signal length N = 2l , the complex computation can be reduced to N

2 log2N com-
plex multiplications and Nlog2N complex additions through fast Fourier transform (FFT)
computation. The second component consists of either four or five discrete time Fourier
transform (DTFT) computations, depending on the interpolation formula and assuming the
iteration number is equal to 2. Computing a one-bin DTFT of N-point samples necessitates
N − 1 complex additions and N complex multiplications. Given these considerations, we
have calculated the complex computation load of the five estimators, which are presented
in Table 1.

Table 1. Computational requirements for the simulated estimators.

Estimators Complex Multiplications Complex Additions

Fang (M points) M
2 log2 M Mlog2 M

RCSTL (M points) M
2 log2 M + 1 Mlog2 M

A&M (N points, 2 iterations) N
2 log2N + 4N + 2 Nlog2N + 4N

Fan (M points, 2 iterations) M
2 log2 M + 5N + 8 Mlog2 M + 5N + 1

Proposed (M points, 2 dichotomous
searches, 2 iterations) M

2 log2 M + 5N Mlog2 M + 5(N − 1)
Proposed (M points, 3 dichotomous

searches, 1 iteration) M
2 log2 M + 3N Mlog2 M + 3(N − 1)

In Table 1, the additional complex multiplications and additions, which supplement
those used in the FFT computation, are used to compute the DTFT samples and the residual
frequency offset, δ̂. If three dichotomous search iterations and one interpolation iteration are
adopted in the proposed estimator, three one-bin DTFT computations are required. Thus,
its complex multiplication number and complex addition number are M

2 log2M + 3N and
Mlog2M + 3(N − 1), respectively. Alternatively, if two dichotomous search iterations and
two interpolation iterations are implemented, five one-bin DTFT computations are required,
two from the dichotomous search and three from the second iteration of the generalized
iterative interpolation estimator. In comparison with other estimators of similar estimation
accuracy, the proposed Ds-IpDTFT estimator possesses a lower computational complexity.
Compared with the Fan estimator, for Q1 = 2 and Q = 2, the complex multiplications and
additions are reduced by eight times and N + 1 times, respectively, and for Q1 = 3 and
Q = 1, the complex multiplications and additions are reduced by 2N times and 2N + 4
times, respectively. One complex multiplication requires four real multiplications, and
one full-precision multiplication needs 13 clock periods for Xilinx V5 chips. If the clock
frequency is 200 MHz, the two configurations of Ds-IpDTFT save 8× 4× 13× 5 ns = 2080 ns
and 2N × 4× 13× 5 ns for the calculation of complex multiplications, respectively.

5. Experiments

The performance of the proposed algorithm was validated through experiments using
real-world data. A signal was generated by an SP2461 signal generator with the following
parameters: A = 1 V and fc = (128 + 100 · i) kHz, where i = 0, 1, . . . , 9. Signal samples
were then acquired using an HK-USBe8013-D acquisition board with a sampling frequency
of fs = 1 MHz. Each frequency was subjected to 5000 runs of signal samples, with each run
consisting of N = 1024 samples. Additionally, MATLAB simulations were carried out to
mimic conditions with strong noise. A visual representation of the experimental setup for
frequency estimation is provided in Figure 14.
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Figure 14. The experimental setup featuring the SP2461 signal generator, the HK-USBe8013-D
acquisition board, and a laptop computer.

To assess the performance of the proposed algorithm in comparison with other meth-
ods, Figure 15 presents the RMSEs of four different algorithms as functions of the frequency
offset at γ = −10 dB and N = 1024. From this plot, it can be observed that the proposed
algorithm and the Fan estimator achieve a lower estimation variance in most cases when
compared with the other two estimators. Moreover, the proposed algorithm maintains
a stable and relatively low estimation variance across the entire estimation range. In
Figure 15, the RMSEs of the three estimators for comparison show significant pulse fluc-
tuations around δ = 0.25, but the RMSE of the proposed estimator remains close to the
CRLB. Although the RMSE of the Fan estimator is slightly lower than that of Ds-IpDTFT at
some points, the Ds-IpDTFT exhibits a more stable performance throughout the simulation
range of δ. This consistent performance echoes the simulation results discussed earlier in
Section 4.

Figure 15. RMSEs of the four estimators versus δ at γ = −10 dB and N = 1024.



Sensors 2023, 23, 7461 16 of 18

6. Conclusions

This research thoroughly investigates the Ds-IpDTFT estimator, a pioneering approach
for fine frequency estimation of noisy exponential signals. The study illuminates the
estimator’s exceptional efficiency and reduced computational complexity, as it utilizes a
dichotomous search process prior to iterative interpolation estimation. This innovative
design enables RMSEs to approximate the CRLB across the entire estimation spectrum,
which significantly reduces computational demand.

The foundational concept of the Ds-IpDTFT estimator is rooted in the intricate explo-
ration of the relationship between the optional parameter, p, and the unknown parameter,
δ. While this work makes substantial strides in frequency estimation, it also acknowledges
potential avenues for future research. One such avenue includes refining the selection
process for parameter p, which could further optimize the performance of the estima-
tor. It is a promising way to refine the selection accuracy of p by designing an adaptive
search algorithm.

Beyond theoretical analysis, the study validates the Ds-IpDTFT estimator’s effective-
ness through comprehensive simulations and real-world experiments. These empirical
analyses consistently affirm the estimator’s superior performance relative to other estab-
lished estimators, both in terms of estimation accuracy and computational efficiency. The
Ds-IpDTFT estimator’s robustness in noisy conditions and stability across varying frequen-
cies is particularly noteworthy, marking it as a promising tool for practical applications
in signal processing and related fields. For high-speed mobile terminals and satellite ter-
minals with limited hardware resources, the proposed estimator provides a reliable and
fast carrier estimation method. Specifically, it can be utilized for parameter estimation and
synchronization in wireless communications, radar systems, power systems, mechanical
vibration analysis, and biomedical signal processing. As computing hardware continues
to advance, the computational complexity constraints of DFT will be gradually alleviated,
further expanding the applicability of the proposed methodology.
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