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Abstract: Electroencephalography (EEG) is a non-invasive method employed to discern human
behaviors by monitoring the neurological responses during cognitive and motor tasks. Machine
learning (ML) represents a promising tool for the recognition of human activities (HAR), and eXplain-
able artificial intelligence (XAI) can elucidate the role of EEG features in ML-based HAR models. The
primary objective of this investigation is to investigate the feasibility of an EEG-based ML model for
categorizing everyday activities, such as resting, motor, and cognitive tasks, and interpreting models
clinically through XAI techniques to explicate the EEG features that contribute the most to different
HAR states. The study involved an examination of 75 healthy individuals with no prior diagnosis of
neurological disorders. EEG recordings were obtained during the resting state, as well as two motor
control states (walking and working tasks), and a cognition state (reading task). Electrodes were
placed in specific regions of the brain, including the frontal, central, temporal, and occipital lobes (Fz,
C1, C2, T7, T8, Oz). Several ML models were trained using EEG data for activity recognition and
LIME (Local Interpretable Model-Agnostic Explanations) was employed for interpreting clinically the
most influential EEG spectral features in HAR models. The classification results of the HAR models,
particularly the Random Forest and Gradient Boosting models, demonstrated outstanding perfor-
mances in distinguishing the analyzed human activities. The ML models exhibited alignment with
EEG spectral bands in the recognition of human activity, a finding supported by the XAI explanations.
To sum up, incorporating eXplainable Artificial Intelligence (XAI) into Human Activity Recognition
(HAR) studies may improve activity monitoring for patient recovery, motor imagery, the healthcare
metaverse, and clinical virtual reality settings.

Keywords: eXplainable AI; electroencephalography; activity recognition; machine-learning; LIME

1. Introduction

The swift progress in wearable electronics, data science, artificial intelligence (AI),
metaverse, the internet of things (IoT), and similar technological advancements has led
to the emergence of intelligent sensor systems that are significantly transforming human
lifestyles and the associated infrastructure. Human activity recognition (HAR) is a field that
revolves around the identification of human activities based on data collected from sensors
and various other sources. In HAR systems, the detection of object movements relies on
the utilization of accelerometers, gyroscopes, inertial measurement unit (IMU), cameras,
and proximity sensors [1–3]. While they provide valuable motion data, they lack other
types of sensory information, such as cognitive, visual, or auditory cues, which may be
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important for certain activity recognition tasks. Physiological sensors play a crucial role in
enhancing the precision of human activity recognition (HAR) systems by capturing diverse
physiological parameters like heart rate, respiration rate, and skin temperature. These
sensors provide valuable additional information about an individual’s physiological state.
One approach to incorporating physiological sensors into HAR involves the use of wearable
devices like fitness trackers and smartwatches. These devices can continuously monitor
physiological parameters and transmit the collected data to a server for thorough analysis.
Additionally, various biosensors, such as electrocardiogram (ECG), offer further possibilities
for capturing physiological data accurately [4], electromyography (EMG) [5], foot pressure
insole [6] and electroencephalography (EEG) [7,8], have been used to recognize activities
of daily living (ADLs). Multimodal wireless wearable biosensors have made it possible
to create Human-Computer Interaction (HCI) systems for user interfaces that are more
accessible [9,10].

The choice of activity sensor depends on the type of activity being measured and the
research or clinical goals. In certain applications, such as virtual spaces or metaverses where
tracking virtual activities is essential, EEG can be preferred over IMU. IMU utilization
may be limited in these environments. EEG provides valuable insights into cognitive pro-
cesses, emotions, and neural responses during various activities, including cognitive tasks,
emotion recognition, brain-computer interfaces (BCIs), sleep monitoring, and more. Addi-
tionally, EEG can detect different mental states, such as attention, meditation, drowsiness,
or engagement, which may not be directly measurable with IMU sensors.

Recent cutting-edge technologies showed the potential to enhance activity recognition
outcomes and healthcare delivery using the Internet of Things (IoT), wearable technology,
digital twins, and big data [11,12]. Physiological signals were utilized as effective tools for
the monitoring of health and the early diagnosis of disease in real time [6,13–16]. The EEG
provides a valuable alternative diagnostic tool for assessing cognitive function because it
can identify changes in brain rhythms caused by activity variation [17]. HealthSOS and Big-
ECG were proposed that utilize EEG and ECG, data analytics to provide stroke prognosis
and monitoring of stroke patients following stroke [4,18]. Wearable gait monitoring systems
for stroke patients involve the use of a portable EMG device and pressure insoles to monitor
the patient’s gait or walking pattern [5,19].

Machine learning (ML) and deep learning (DL) techniques have found extensive appli-
cation across various domains, encompassing activity recognition, disease diagnosis, drug
discovery, personalized treatment planning, and predictive analytics. However, many ML
models are considered “black boxes,” lacking interpretability and immediate understand-
ability for healthcare professionals. To address this issue, eXplainable artificial intelligence
(XAI) has emerged as an approach to enhance the interpretability and trustworthiness
of ML models. XAI aids in explaining the outcomes of ML algorithms, enabling doctors
and therapists to gain a better understanding of how the algorithm classifies and analyzes
patient activities [20,21]. To establish trust in ML-based activity recognition using EEG,
an efficient ML-based HAR model has been developed, highlighting the contributions of
EEG features and leveraging visual interpretability through an XAI framework such as
Local Interpretable Model-Agnostic Explanations (LIME). We hypothesized that changes
in activities would be reflected in EEG spectrum, enabling ML models to recognize HAR
and XAI models to interpret clinically. As per our understanding, our study marks the first
occurrence of introducing EEG-derived activity identification in conjunction with LIME,
an interpretable AI approach highlighting the significance of EEG features in proposed
machine learning HAR models. This paper presents several key contributions, which can
be summarized as follows:

• Development of machine-learning classification models capable of recognizing resting,
motor, and cognitive activities using EEG spectral features.

• Utilization of the LIME method to interpret the ML activity classification models and
provide visual representations of the contributions made by EEG features for clinical
reasoning in the context of human activity recognition (HAR).
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The remaining sections of this article are organized into four parts. Section 2 provides
a detailed description of the experimental protocol, including information about the EEG
datasets used, EEG pre-processing techniques employed, feature extraction methods, and
the machine learning (ML) approaches utilized in conjunction with the XAI approach.
Section 3 presents the results of the activity prediction process, along with the insights
provided by XAI techniques. Section 4 is dedicated to the discussion of the results. Finally,
Section 5 presents the conclusions drawn from the research.

2. Materials and Methods
2.1. Study Design

This research study was conducted in accordance with the approved protocol by
the Institutional Review Board of the Korea Research Institute of Standards and Science,
located in Daejeon, South Korea. The study involved a total of 75 healthy adults with an
average age of 77 years, of which 69% were female. To minimize age-related variations in
physiological signals, participants were selected from a similar age group. All participants
had no known history of neurological disorders. Prior to the commencement of the study,
the participants were thoroughly informed about the experimental protocol. The study
encompassed various activities of daily living (ADLs), including resting, motor tasks, and
cognitive tasks. The motor activity tasks involved walking along a designated line and
moving a bottle vertically between shelves. The resting task required the participants to
lie down on a bed or recline on a sofa with their eyes closed while remaining awake. The
cognitive task involved reading literature that was relatively unfamiliar to the participants.
The study protocol commenced with a three-minute period of rest on the bed, followed by
walking along the designated line, performing the bottle-moving task, resting on a chair,
and concluding with the reading of the literature. The participants were directed to have a
5-min break after each activity interval to minimize the influence of the previous activity
on the subsequent one. Throughout the entire study protocol, EEG data were continuously
recorded to ensure comprehensive data collection.

2.2. EEG Data Acquisition

As depicted in Figure S1a, the EEG data were gathered from six specific channels,
namely Fz, Oz, C1, C2, T7, and T8, using gold-plated cup electrodes in accordance with the
international 10-20 EEG system. For data acquisition, a wireless Biopac BioNomadix EEG
device connected to the Biopac MP 160 Module (as shown in Figure S1b) was utilized in
this study. The ground electrode was placed at the FpZ point, while a reference electrode
was positioned at A1, adhering to the 10-20 EEG system. To eliminate muscle tone and
eye-blink artifacts, a single-channel chin electromyogram (EMG) and a single-channel
electrooculogram (EOG) were recorded. Before the EEG recordings, participants were
instructed to refrain from consuming coffee or alcohol. EEG data were captured during
cognitive reading activities, the resting state, and motor activities such as walking and
working tasks, as illustrated in Figure S1d.

2.3. Pre-Processing

EEG becomes contaminated with various artifacts such as powerline noise, muscular
activity, ocular activity, motion artifacts, and cardiac activity, and these artifacts remain
in the raw EEG data [7,22]. The recorded EEG data was initially band-stop filtered to
eliminate 60 Hz AC noise. Independent Component Analysis. (ICA) is useful to identify
the individual components that correspond to the EMG, ECG, and EOG signals and can
then remove them from the contaminated EEG signals, leaving only the pure EEG signal.
In this study, FastICA method was used to separate unwanted artifacts from the EEG
signals, shown in Figure 1 [23]. In order to filter motion artifacts, a signal-to-noise ratio
(SNR) was estimated for EEG signal and the EEG epochs with SNR below 25 dB were
removed from the dataset [24]. The EEG waveform was then filtered within the frequency
range of 0.5–44 Hz using a band-pass filter to obtain the desired EEG spectrum. EEG data
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preprocessing and feature extraction were conducted using AcqKnowledge version 5.0
(Biopac Systems Inc., Goleta, CA, USA) and MNE-python [25].
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2.4. EEG Feature Extraction

The Welch periodogram estimation method was utilized to extract EEG frequency-
specific waveforms like delta, theta, alpha, beta, and gamma waves, with frequency ranges
of 0.5–4 Hz, 4–8 Hz, 8–13 Hz, 13–30 Hz, and 30–44 Hz from artifact-free EEG signal [26]. By
computing the power spectral density (PSD) using a 10 percent hamming window, the Fast
Fourier Transforms (FFT) approach was used to extract the frequency-band waveforms of
the EEG signal. Then, different features were extracted over a range of frequency ranges
from the spectral waveforms that had been split into 10-s epochs. Those EEG features
included the mean relative power, pairwise-derived brain symmetry index (pdBSI), delta-
alpha ratio (DAR), delta-theta ratio (DTR), and (delta + theta)/(alpha + beta) ratio (DTABR)
providing insight into the frequency characteristics of the EEG spectral waveforms [7]. To
get the relative EEG band power, absolute EEG band powers were normalized relative to
total EEG power of the entire frequency range of 0.5–44 Hz. The relative EEG band power
was defined by Equation (1).

RP_j_k =
Pj

∑
q
j=1 Pj

(1)

where, Pj represents the absolute power density of the spectral frequency at j (where
j = 1, 2, . . ., q) and q represents the frequency range of 0.5–4 Hz, 4–8 Hz, 8–13 Hz, 13–30 Hz,
and 30–44 Hz. k is the EEG electrode positions, such as frontal (F), central (C), temporal (T),
and occipital (O) cortex. Features of C1 and C2 channels are averaged and refer to the
central lobe (C); T7 and T8 channels are averaged and refer to the temporal lobe (T) [7].
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pdBSI is calculated utilizing the method proposed by Sheoralpanday [27] and Van
putten [28]. This index ranges from 0 (no asymmetry) to 1 (total asymmetry). Equation (2)
defines the pdBSI.

pdBSI =
1

pq ∑q
j=1 ∑p

i=1

∣∣∣∣∣Rtij − Ltij

Rtij + Ltij

∣∣∣∣∣ (2)

where Rtij and Ltij are the PSD of right and left channels of homologous EEG pairs (with
i = 1, 2, . . ., p) at frequency j (with j = 1, 2, . . ., q).

DTR is the ratio of the power of EEG delta band to that of theta band. DTABR is the
sum of the EEG power of slow waves (delta and theta) relative to that of fast waves (alpha
and beta). DAR is the ratio of the power of delta band to that of alpha band [22].

2.5. Feature Selection

Feature selection, the process of reducing features, is vital in analyzing high-dimensional
biomedical data. The accuracy of classification depends on the relevance of the features,
and redundant features can cause adverse impact on computational time. SelectKBest, a
Scikit-Learn library for feature selection technique, was utilized here [29]. The significance
of the predictor is measured by the k-highest scores. The top 20 EEG features with higher k
values were chosen for training the ML algorithms for activity recognition.

2.6. Machine Learning Classification

In this study, we employed machine learning techniques to classify human activities
based on neurological responses captured in EEG data. Specifically, we utilized Random
Forest (RF), Gradient Boosting Model (GBoost), and Extreme Gradient Boosting Model
(XGBoost) algorithms to recognize four distinct human activities using EEG features.

RF is one of the widely used ensemble learning classifiers in machine learning studies,
building a large number of decision trees, as shown in Figure 2 [30]. On the other hand,
boosting algorithms use an iterative procedure to combine weak learners into strong
learners [31]. GBoost is a boosting classification approach, iteratively adding decision trees
to build a model, as shown in Figure 3 [32]. Another ensemble model based on Gradient
Boosting with a high degree of scalability is called XGBoost, as shown in Figure 4 [33].
XGBoost constructs a loss function that is minimized if the objective of the function is
expanded additively, like GBoost.
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We performed non-exhaustive k-fold (k = 10) cross-validation using the training
dataset to get rid of overfitting [34]. For our classification, we used the Scikit-Learn library,
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which offered a range of functionalities, including Decision Tree and Random Forest
classifiers, and other methods [29]. Seaborn and Matplotlib libraries were utilized for the
visualization of our results [35,36]. We derived various performance parameters from the
confusion matrix of the ML models, such as precision, recall, F1-score, accuracy (ACC), and
area under the curve (AUC). The formulae used to calculate the performance evaluation
metrics are given in Equations (3)–(6).

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy(ACC) =
TN + TP

TN + TP + FN + FP
(5)

F1− score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(6)

where TP denotes the true positive, TN stands for the true negative, FP represents the false
positive, and FN denotes the false negative. Our experiments were conducted on Google
Colaboratory, which provided us with 16 GB of RAM and a 2-core Intel Xeon Processor.

2.7. eXplainable Artificial Intelligence (XAI)

LIME is an open-source XAI framework that can provide interpretability to the
decision-making steps of black-box ML models [37]. LIME defines the model explanation
by the following formula:

ξ(x) = argmin
g∈G
L(f, g,πx) + Ω(g) (7)

where G represents a set of interpretable models, and g denotes the complexity of the expla-
nation, g ∈ G. Equation (7) aims to find the interpretable model ξ(x) that minimizes the sum
of two terms: the loss term L(f, g, π_x), which ensures the fidelity of the interpretable model
to the black-box model, and the complexity regularization term Ω(g), which promotes
simplicity and interpretability. LIME ignores the process within the model and makes
explanations absolutely on the data level. Therefore, the explainer explains predictions on
tabular data by perturbing features based on the statistical properties of the training data.

3. Results
3.1. Activity Recognition Model Using Machine Learning Approach

As indicated in Table S1, we selected the top 20 EEG features with higher k values
using feature selection to train the machine learning Human Activity Recognition models.
State-of-the-art machine learning algorithms were employed to classify the human activities
of healthy individuals based on EEG characteristics. Among the various ML models tested,
Gradient Boosting Model (GBM) demonstrated superior performance in recognizing activi-
ties. To visualize the classification accuracy, Receiver Operator Characteristics (ROC) curves
were plotted. The EEG feature dataset comprises 793 instances of reading, 408 instances of
walking, 267 instances of working, and 243 instances of resting data. To train the model,
80% of the EEG feature data was used as the training dataset, and the remaining 20% as the
test dataset. Figure 3 presents an example of a ROC curve for an ML model.

3.1.1. Hyperparameter Tuning

To improve the ML model’s performance, several hyperparameters can be tuned, such
as number of estimators, maximum tree depth, and the number of trees in the ensemble.
We adjusted the hyperparameters of RF classifier model to cover the ranges of 1 to 100 for
the n estimator and 1 to 30 for the max depth. RF model accuracy reached 80.33% using n



Sensors 2023, 23, 7452 8 of 15

estimators = 98 and max depth = 21. The accuracy using the best depth and the default
value of n estimators for the GBoost classifier was not quite acceptable. The model was
tuned at the parameters, and the optimal depth had a range of 1 to 14 and n estimators
with a range of 1 to 50 with an interval of 1. The most acceptable result was obtained for
n estimators = 50 and best dept = 8. In this hyperparameter setting, the GBoost model’s
accuracy is 78.94 percent. The optimal depth for the XGBoost model included a range of 1
to 30, and the parameters and estimators included a range of 1 to 100 with an increment of 1.
For n estimators of 83 and best dept of 10, the best accuracy of this model reached 79.70%.

3.1.2. ML Classification Results

It is worth mentioning that the performance of activity recognition using the random
forest, GBoost, and XGBoost models exhibited considerable similarity. The classification
performance parameters of the machine learning (ML) activity recognition models are
summarized in Tables 1–3.

Table 1. Results of the Classification performance of Random Forest Classifier.

Random Forest Classifier (Accuracy = 80.33%)

Activity Class Precision Recall F1-Score

Reading 0.77 0.71 0.74
Resting 0.78 0.88 0.82
Walking 0.78 0.82 0.80
Working 0.89 0.82 0.86

Weighted Average 0.81 0.80 0.80

Table 2. Results of the Classification performance of Extreme Gradient Boosting Classifier.

XGB Classifier (Accuracy = 79.70%)

Activity Class Precision Recall F1-Score

Reading 0.78 0.7 0.74
Resting 0.78 0.89 0.83
Walking 0.76 0.77 0.76
Working 0.88 0.85 0.86

Weighted Average 0.80 0.80 0.80

Table 3. Results of the Classification performance of Gradient Boosting Classifier.

Gradient Boosting Classifier (Accuracy = 78.94%)

Activity Class Precision Recall F1-Score

Reading 0.75 0.7 0.73
Resting 0.76 0.87 0.81
Walking 0.75 0.79 0.77
Working 0.9 0.81 0.86

Weighted Average 0.79 0.79 0.79

The RF classifier performs better than all other approaches. The RF model classified
human activities with 81% precision, 81% recall, 81% F1-score, 80.33% accuracy, and AUC:
0.92; in contrast, the XGBoost technique classified HAR with 81% precision, 81% recall,
78% F1-score, and 79.57% accuracy. Moreover, the other boosting algorithms, such as
GBoost classifier achieved comparable results in terms of evaluation metrics and gave
outcomes that were equal in terms of the evaluation criteria outlined above with only a 1%
performance drop in each metric.

Overall, RF classifier was the best-performing algorithm for classifying human activ-
ities. However, all performance measurements showed that the other boosting methods
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competed well. The cross-validated ROC curves of individual activity classes were dis-
played in Figure 5. In addition, the confusion matrix of RF classifier was reported in
Figure 5.
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3.2. Interpretations of ML Models

Black box models, like the random forest, GBoost, and XGBoost ML algorithms, need
to be interpreted by an XAI framework like LIME, which enables analyzing how a model
predicted outcomes and explaining how various features affected those outcomes [21].
In order to establish trust in the ML model for HAR, it is essential to look at how our
models predict each data instance for each class. This will enable us to decrease the feature
space, which will speed up model training and improve accuracy if we can identify the
key elements that influence prediction outcomes. To establish clinical trust in the ML
approaches in activity prediction, it was needed to bring the role of EEG spectral features,
such as gamma, delta, and theta rhythms to light. eXplainable AI may assist to investigate
the contribution of EEG spectral rhythms in ML classification.

Here, the LIME model was applied in ML algorithms, such as RF Classifier to un-
derstand the prediction performance and individual role of EEG features in detecting
human activities.

Figure 6 reports the LIME visualization for the RF Classifier to forecast a reading
activity instance. The predicted probability of an instance of the reading activity is 99%.
The three most contributing features of this model are RP_Gamma_C, RP_Alpha_F, and
RP_Beta_C to predict a reading activity. These three features are ranked in order of
importance as follows: 13%, 9%, and 8%. Using the RF Classifier, lower central gamma,
lower frontal alpha, and lower frontal beta rhythms contribute more to the prediction of
cognitive reading activity.

Figure 7 reports the LIME visualization for the RF Classifier to forecast a resting
activity instance. The predicted probability of an instance of resting activity is 100%. For
recognizing an instance of the resting activity, the three most contributing features of this
model are RP_Theta_T, RP_Beta_C, and pdBSI_Alpha_C. These three features are ranked in
order of importance as follows: 13%, 10%, and 6%. Using the RF Classifier, lower temporal
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theta, lower central beta, higher central alpha waves, and higher pdBSI have significantly
greater impacts on the prediction of the resting activity.
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Figure 8 reports the LIME visualization used by the RF Classifier to forecast a motor
activity, in this case, walking. The predicted probability of the test instance of the walking
activity is 96%. To predict a walking activity, the most contributing features of this model
are RP_Theta_F, RP_Alpha_O, RP_Beta_C, and pdBSI_C. The feature importance of these
three features are 10%, 7%, 6%, and 5% respectively. Higher frontal theta, higher occipital
alpha, and higher central beta bands have much greater contributions to the prediction of
motor activity using the RF Classifier.

Figure 9 reports the LIME visualization for the RF Classifier to forecast a specific
instance of the working activity. The predicted probability of an instance of the working
activity is 100%. To predict a working activity, topmost contributing features of this model
are RP_Gamma_C, RP_Beta_C, and RP_Gamma_G. These three features are ranked in
order of importance as follows: 36%, 6%, and 5%. Utilizing the RF Classifier, higher central
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and global gamma, and lower central beta rhythms have much greater contributions to
predict motor activity.
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4. Discussion

Our goal in this study was to interpret the activity prediction ML model using EEG
data in ADLs. Specific EEG spectral power is associated with the specific functional
outcome of the brain according to the demand of cognitive and motor workload in different
activities. This work employs decision tree models to classify the resting, motor activities
(walking and working), and cognitive reading states. LIME interpretable model described
the role of EEG spectral bands for classifying activities using ML models and provides the
findings of model explanation. Most earlier investigations have supported the EEG feature
contribution trend provided by LIME, which has continued across all classifiers employed
in this study.

In this study, the focus was on human activities involving both physical and mental
tasks, which are integral to our daily routines. The three common sensory technologies
used for Human Activity Recognition (HAR) were smart wearable devices with IMU
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sensors, cameras, and biosensors [3,9,10]. Among these, the IMU and camera primarily
captured resting and physical movements, lacking the ability to detect cognitive activities.
To implement HAR accurately, multiple IMU sensors were placed on various limbs of the
body [3]. To overcome this limitation, innovative approaches were introduced using EEG
wearable devices for HAR [8,10]. This technique has demonstrated its effectiveness in
identifying both resting and cognitive activities, overcoming the limitations of previously
discussed sensory technologies. However, the main drawback in previous EEG studies lies
in the interpretability of ML models used.

The EEG spectrum captures variations in neurological responses that occur in response
to changes in activity. Alpha wave is typically a maker of a relaxed, awake state, and has
been associated with creativity, problem-solving, and other cognitive processes. EEG Alpha
rhythm is also used in various fields such as cognitive research and neurofeedback [38].
Beta waves are also indicators of heightened awareness, focused attention, reading, or
active problem-solving [39]. Gamma rhythm is considered to be a marker of the brain’s
highest level of cognitive processing; heightened cognitive functions, including percep-
tion, memory, pattern recognition, critical problem-solving, information integration, and
decision-making [40].

The brain activity associated with cognition includes visual processing, orthographic
processing, phonological processing, semantic processing, and syntactic processing [41].
Reading is a cognitive task that involves the decoding and comprehension of written or
printed text. The process of reading is associated with complex neural activity that involves
multiple regions of the brain, including the occipital, temporal, and parietal lobes [42].
Each stage of reading is associated with different patterns of brain activity, which can be
reflected in the EEG signal. EEG studies of reading have also found that different types of
reading tasks, such as reading for comprehension or reading for decoding, are associated
with different patterns of brain activity. For example, reading for literature is associated
with a greater degree of semantic processing, while reading for decoding is associated with
a greater degree of phonological processing. For example, during the initial stage of visual
processing, there may be an increase in alpha and beta activity in the occipital regions of
the brain, while during the later stages of semantic and syntactic processing, there may be
an increase in gamma activity in the temporal and parietal regions of the brain [43].

Lower temporal theta, lower central beta, and higher central alpha is observed in the
resting state EEG. Alpha plays a role in attention regulation and sensory processing; theta
is thought to play a part in memory consolidation and attention regulation [44]. Reduced
theta, beta activity, and increased alpha best describe the resting state [7]. The working
activity, the object moving task, is associated with different stages of motor planning and
control, such as the guided reaching and grasping movements. Gamma activity is increased
in the primary motor cortex during the planning and execution of reaching and grasping
movements [45]. Additionally, studies have found that gamma activity is modulated by
the difficulty of a motor task, with higher levels of gamma activity observed during more
difficult tasks [46].

Motor tasks are a complex process, associated with different cognitive and motor
functions, and it is related to different EEG bands. Alpha activity is typically observed
in the occipital and parietal regions during walking, and it is thought to be related to
visual perception and spatial attention. Beta activity is typically observed in the primary
motor cortex during walking, and it is thought to be related to motor planning and control,
attention, and perception [47]. Gamma activity, observed in the primary motor cortex
during walking, is thought to be related to the integration of sensory information and
motor planning [48]. Additionally, the EEG activity in the delta band may also increase in
the sensorimotor cortex. This could be associated with the repetitive and rhythmic nature
of the walking.

In collaborative platforms, like smart home, cyber metaverse, human-robot interaction,
and autonomous transportation, it is expected that people can interact with each other
in a shared virtual environment. HAR can facilitate understanding human activities
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within a collaborative environment, performing specific cognitive tasks within the virtual
environment, personalized healthcare monitoring, elderly assisted living, and collaborative
robots. It is evident that activity recognition is a challenging cognitive job involving
several different brain regions and each EEG signal could reflect only a part of the neural
response involved in an activity. Therefore, it’s important to use high-density EEG to
have a comprehensive understanding of ADLs. Although we used clinical EEG in this
study to explore changes in EEG caused by tasks or human activities, consumer-grade
EEG may facilitate HAR in real-life scenarios. In forthcoming times, we plan to expand
our research by conducting cross-laboratory experiments to automate activity recognition
utilizing multimodal wearable biosensors.

5. Conclusions

The rapid advancement of the cyber metaverse has opened up exciting possibilities
in the field of human activity recognition research. In this study, machine learning tech-
niques were employed to recognize human activities using clinical EEG data. To enhance
interpretability, eXplainable artificial intelligence techniques were successfully integrated
to provide clinical reasoning behind the EEG spectral features in human activity recog-
nition (HAR). The results of this research using eXplainable AI in HAR have significant
potential in rehabilitation settings. Therapists can leverage this information to customize
treatment plans according to the specific needs and capabilities of individual patients. This
advancement holds great promise in improving rehabilitation outcomes, virtual reality, and
optimizing patient care.
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www.mdpi.com/article/10.3390/s23177452/s1, Figure S1: EEG Signal Processing and electrode
positions and layout. (a) six-channel EEG, reference and ground electrodes position based on
Standard 10-20 EEG system, (b) Biopac EEG module, (C) Experimental scenario, (c) Activity Classes
with scenarios. Table S1. List of the top 20 EEG features with higher k values using feature selection
to train the machine learning Human Activity Recognition (HAR) models. RP: Relative Power; T:
Temporal lobe; C: Central lobe; F: Frontal lobe; O: Occipital lobe; G: Global (Averaged over F, C, T,
and O).
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