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Abstract: In this paper, an adaptive backstepping terminal sliding mode control (ABTSMC) method
based on a double hidden layer recurrent neural network (DHLRNN) is proposed for a DC-DC buck
converter. The DHLRNN is utilized to approximate and compensate for the system uncertainty.
On the basis of backstepping control, a terminal sliding mode control (TSMC) is introduced to
ensure the finite-time convergence of the tracking error. The effectiveness of the composite control
method is verified on a converter prototype in different test conditions. The experimental comparison
results demonstrate the proposed control method has better steady-state performance and faster
transient response.

Keywords: DC-DC buck converter; backstepping control; terminal sliding mode control; double
hidden layer recurrent neural network

1. Introduction

With the rapid development of power electronics technology, power electronic con-
verters have been widely used in power systems [1]. Due to its simple structure and high
efficiency, the DC-DC buck converter has attracted extensive attention. It has been widely
applied in wind energy systems, DC microgrids, DC motor drives, photovoltaic systems
and energy storage systems [2–6].

The main control objective of the buck converter is to design a control signal, allowing
the output voltage to be adjusted arbitrarily according to the reference value. However,
there exist multiple disturbances and uncertainties in the buck converter system, including
load variation [7], reference variations [8] and input voltage fluctuations [9], etc. The output
voltage regulation has become a challenging task. Hence, how to develop advanced control
methods has drawn the attention of researchers.

It can be seen from the early literature that linear control is widely applied in buck
converters, such as PI control [10,11] and fixed frequency control [12,13]. Due to simple
structure and principle, PI control can obtain accurate tracking without any disturbances.
In [12], a fixed-frequency boundary control is designed to maintain the steady state of
the buck converter, and Lai et al. [13] developed a fixed-frequency quasi-sliding mode
voltage controller. However, both PI control and fixed frequency control possess linear
behavior, which makes it difficult to ensure the system’s robustness. Therefore, in recent
research, more nonlinear control schemes have been developed for buck converters, such
as sliding mode control [14], finite-time control [15] and robust control [16]. As is known,
sliding mode control (SMC) is one such nonlinear method that becomes a better choice
for converter applications due to its insensitivity to disturbances [17]. In [18], the general
design problem of SMC in voltage tracking control is reported, and Tan et al. [19] put an
additional double integral term into the sliding surface to suppress the regulation error of
the converter.
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However, SMC can only ensure that the tracking error asymptotically converges to
zero. With regard to this problem, the terminal sliding mode control (TSMC) is proposed,
which can obtain finite time convergence of the tracking error by introducing the terminal
function. In the buck converter application, Repecho et al. [20] adopted a TSMC algo-
rithm to achieve a faster transient response. Wang and Li [21] designed a discretized
fast TSMC algorithm to improve the dynamic properties of the converter system. Babes
et al. [22] proposed a new fractional-order nonsingular TSMC method to improve the
tracking performance of converters.

The backstepping design has become an effective approach for high-order systems
in strict feedback form. It designs virtual control laws for each subsystem via a recursive
design process, which can reduce the complexity of the control design [23]. In [24], a single-
loop disturbance observer-based control strategy is proposed by using the backstepping
technique, and Liu et al. [25] designed a second-order sliding mode control by combining
backstepping designs. Here, the backstepping sliding model control (BSMC) is proposed,
which is developed in different scenarios. In [26], the BSMC is designed for the position
tracking of elastic manipulators with nonlinear elements, and Alam et al. [27] proposed
a backstepping integral terminal sliding mode control to obtain voltage control of the
buck converter.

Some scholars have investigated model predictive control (MPC). In [28], an MPC
is presented for a boost converter to directly regulate output voltage by minimizing the
objective function. In [29], a finite control set MPC is proposed to directly control the
switching states of the power converter without additional modulation. However, the
conventional MPC makes it difficult to reject disturbance and uncertainty, thus causing
large estimation errors. Adaptive control is another effective predictive method that can be
adopted to estimate model parameters [30]. Xu et al. [31] proposed an adaptive projection
algorithm to guarantee the boundness of the estimated term. However, when handling
fast-varying parameters, control behavior through adaptive control alone is also not reliable.
In addition, several large-signal-based tuning methods are proposed in [32–34]. The large
signal-averaged model is built by considering the parasitic parameters existing in the
model. Specifically, in [32], based on the designed large signal model, an online monitoring
technology is utilized to estimate the capacitor and its equivalent series resistance. However,
this method fails to deal with the effect of other parameter variations. Leung and Chung [33]
proposed a dynamic hysteresis control to guarantee the large-signal stability of a buck
converter by setting the state of the main switch. Liu and Sen [34] designed a general
large-signal averaged model for a buck converter to eliminate the effect of the parasitic
parameters. However, when facing parameter variations, these methods make it difficult to
obtain satisfactory results. These shortcomings can be overcome by adopting the neural
network feedforward control method.

Since the hidden layer of the neural network adopts the Gaussian function as an acti-
vation function, it possesses nonlinear mapping capability and can be utilized to estimate
complex nonlinear functions, which provides an effective solution to handle system uncer-
tainty [35]. As a simple and common network structure, the radial basis function neural
network (RBFNN) is reported in [36] for handling the uncertain term of the system, but the
approximation accuracy of RBFNN is low, and it is difficult to deal with the time-varying
inputs. Tousif and Chitralekha [37,38] proposed an adaptive backstepping controller based
on a single-layer Chebyshev neural network (CNN). The Chebyshev polynomials are used
to approximate the unknown load resistance. In [39,40], adaptive neural networks are
designed for nonlinear control, where the neural network parameters are updated online
through adaptive laws, and thus the neural network can obtain self-regulation capability.
In [41], a neural network controller is designed to rapidly track reference trajectory, but the
proposed neural structure is relatively complex, and the requirements for training data are
high, so it is not a favorable choice. Meanwhile, the recurrent neural networks (RNN) pro-
posed in [42,43] not only have a simple structure but also possess a higher approximation
accuracy due to the addition of a neuron feedback loop. In [42], a self-organizing recurrent
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radial basis function neural network is developed to predict the future dynamic behav-
iors of a nonlinear system. In [43], a novel adaptive fuzzy RNN is proposed to solve the
nonrepetitive motion problem of robot manipulators. On the other hand, the single-layer
neural network may need to train numerous neurons, which will increase the computa-
tional complexity. Hence, the multiple layer neural network (MLNN) has been developed
in [44,45], and both the reduced neuron training and stronger estimation capability of the
neural network can be obtained. Fei et al. [44] designed a multilayer fuzzy neural network
for the tracking problem of a class of universal SISO nonlinear systems. In [45], for the
harmonic compensation of the active power filter, a multiple hidden layer neural network
is proposed to estimate the equivalent control term. There also exist some fuzzy neural
controllers that make full use of neural networks to improve the control effect of complex
models, reflecting the versatility and structural flexibility of neural networks [46–49].

More sliding mode control methods based on neural networks are investigated for
different application scenarios. In [50], a second-order sliding mode control (SOSMC) using
a wavelet fuzzy neural network (WFNN) is proposed for PMSM, where the WFNN is
adopted to approximate the lumped uncertainty. Fei et al. [51] developed the fractional
sliding-mode control and recurrent neural network (RNN) for the tracking control of the
micro-gyroscope system, where the RNN is utilized to estimate the system uncertainty.
Moreover, for active power filter (APF), Chen et al. [52] designed an RNN to estimate the
switching term gain of sliding mode control, which can effectively avoid the switching
gain being selected as too large or too small, and thus the chattering phenomenon can
be alleviated.

More recently, some advanced controllers have been investigated to obtain better
performance of the buck converter. In [53], a fractional-order SMC with a high-order distur-
bance observer (DO) is proposed, where two observers are built to estimate both matched
and mismatched disturbances to improve the stability and dynamic performance of the con-
verter system. Yang et al. [54] investigated an optimized active disturbance rejection control
(ADRC) method, and a new reduced-order generalized proportional integral observer
is designed to estimate the lumped disturbances. This control scheme presents strong
robustness to various disturbances and uncertainties. Furthermore, according to the pas-
sivity theory and coordinate transformation, He et al. [55] developed a new energy-based
controller for the buck converter.

Motivated by this research, an adaptive backstepping terminal sliding mode controller
using a DHLRNN structure is designed for a buck converter. The main contributions of the
proposed strategy are listed as

(1) The DHLRNN can be used to estimate complex nonlinear functions due to its strong
learning ability and compensation accuracy. To handle the model uncertainty and
improve the tracking performance of the buck converter, the DHLRNN is designed to
estimate the nonlinear function of the converter system, and the nonlinear function
being estimated integrates state variables and model parameters. The DHLRNN
possesses strong learning capability to approximate the nonlinear function;

(2) The ABTSMC is introduced to ensure finite-time convergence and reduce the com-
plexity of the control design. The switching control term can counteract the external
disturbances and network approximation error, thus improving the steady-state accu-
racy and disturbance rejection performance.

2. System Description and Problem Statement
2.1. DC-DC Buck Converter Model

Figure 1 gives the typical circuit diagram of a DC-DC buck converter, where R0 denotes
a load resistance, L denotes a filter inductor, C denotes a filter capacitor, D denotes a diode,
Q denotes a controlled switch (insulated gate bipolar transistor, IGBT) and Vin denotes
a DC-supplied voltage. The switch ON and OFF cases of the DC-DC buck converter are
plotted by dashed lines 1 and 2.
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Figure 1. The circuit diagram of the DC-DC buck converter (ON case: Line 1, OFF case: Line 2).

According to the Kirchhoff law and state averaging method, the dynamic model of
the DC-DC buck converter can be expressed as{

diL
dt = − 1

L vo +
Vin
L u

dvo
dt = 1

C iL − 1
R0C vo

(1)

where vo and iL represent output voltage and inductor current, respectively. u ∈ [0, 1] is
the control signal, i.e., duty ratio, which is compared with a fixed-frequency triangle signal
to generate the PWM driving signal.

Considering the output voltage and its derivative as the state variables, it can be
obtained that {

x1 = vo

x2 =
.
x1 = dvo

dt
(2)

Hence, the dynamic model (1) can be rewritten as{ .
x1 = x2.
x2 = f (x) + Fu

(3)

where f (x) = − x1
LC −

x2
R0C is the nonlinear function of the system and F = Vin

LC is the control
coefficient.

Remark 1. The control coefficient F is considered bounded such that Fi ≤ F ≤ Fa, where Fi and Fa
are positive constants.

Remark 2. In a practical system, due to environmental fluctuations and measurement errors, the
model parameters are difficult to obtain accurately. Moreover, considering the parasitic components
in the converter system, such as inductor/capacitor equivalent series resistance (ESR), these factors
will lead to system uncertainty, and thus, the voltage regulation accuracy of the buck converter will
inevitably be degraded. Therefore, based on the above uncertainties, f (x) and F are rewritten as

f (x) = f0(x) + ∆ f (x) (4)

F = F0 + ∆F (5)

where f0(x) and F0 are the nominal parts, ∆ f (x) and ∆F are the uncertain terms, which comprise
parameter and parasitic component variations. These terms possess strong nonlinear behavior, and
their variations are relatively complex. To handle system uncertainty, the proposed DHLRNN is
designed to estimate the nonlinear function f (x), and the adaptive law using a projection algorithm is
adopted to estimate the control coefficient F. Then, the above two estimation methods are integrated
into the structure of the proposed control algorithm. Due to the learning and approximation
capability of the DHLRNN and adaptive projection algorithm, they can be utilized in real time
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to counteract and compensate for parameter and parasitic component variations by introducing
estimates into the controller.

2.2. Backstepping SMC Design

The main principle of backstepping control is to decompose the complex nonlinear
system into subsystems. Then, the virtual control term is recursively designed for each
subsystem, and thus, the complexity of the control design can be reduced.

The reference voltage value is denoted as vre f . According to the backstepping control
theorem, the backstepping variables z1 and z2 are defined as

z1 = x1 − vre f (6)

z2 = x2 + cz1 −
.
vre f (7)

where c > 0, z2 is the virtual control term.
Considering the following Lyapunov function as

V1 =
1
2

z2
1 (8)

According to (6) and (7), it can be obtained that

.
z1 = z2 − cz1 (9)

Taking the derivative of V1 and combing with the dynamic model (3) yields

.
V1 = −cz2

1 + z1z2 (10)

If z2 = 0, then
.

V1 ≤ 0 can be obtained. Therefore, z2 → 0 will be proved in the
following steps.

The sliding surface is defined as

s = kz1 + z2 (11)

where k > 0 is the sliding gain.
Taking the derivative of s yields:

.
s = k(z2 − cz1) + f (x) + Fu + c

.
z1 −

..
vre f (12)

Then, the ideal control law u is designed as follows:

u =
1
F
(−k(z2 − cz1)− f (x)− c

.
z1 +

..
vre f − h(s + βsgn(s))) (13)

where h and β are positive constants.

Theorem 1. For the dynamic model of the buck converter (3), if the model parameters are all known,
the sliding surface is chosen as (11), and the control law is designed as (13), then the stability of the
closed-loop system is guaranteed.

Proof of Theorem 1. A new Lyapunov function candidate is defined as

V = V1 +
1
2

s2 (14)
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Differentiating V and combining with (13) to obtain

.
V2 = −cz2

1 + z1z2 + s(k(z2 − cz1) + f (x) + Fu + c
.
z1 −

..
vre f )

= −cz2
1 + z1z2 − hs2 − hβ|s|

= −zTQz− hβ|s|
(15)

where z =
[
z1 z2

]T and

Q =

[
c + hk2 hk− 1

2
hk− 1

2 h

]
(16)

If Q is a positive definite matrix, it can be concluded that

.
V2 = −zTQz− hβ|s| ≤ 0 (17)

As can be seen from (16), |Q| = h(c + k)− 1
4 , then Q can be guaranteed to be a positive

definite matrix through choosing h, c and k.
According to the Lyapunov stability theorem and LaSalle invariance principle, the

stability of the closed-loop system can be guaranteed, and the voltage tracking error will
asymptotically converge to zero. �

3. Design of Adaptive Backstepping Terminal Sliding Mode Control Using DHLRNN

Due to the effect of environmental fluctuations, the exact model parameters are difficult
to obtain directly in practical application because it will cause system uncertainty. Therefore,
the control law (13) is not reliable. Moreover, the above controller can only guarantee that
the voltage tracking error asymptotically converges to zero. To effectively compensate for
the system uncertainty and obtain the finite-time convergence of the tracking error, both
the TSMC and DHLRNN are integrated into the controller design.

3.1. Structure of DHLRNN

The four-layer structure of the DHLRNN is shown in Figure 2, where the activation
function of each hidden layer adopts the Gaussian function. Moreover, the previous output
vector will be fed back to the current input nodes through feedback weights, which can
improve the approximation performance and dynamic regulation capability of the neural
network. The node input and node output in each layer of the proposed neural network
are described as follows:

(1) Input layer: In this layer, each node will transmit input data to the subsequent layers,
and the previous output value exY from the output layer will be fed back to the
current input layer. The ith node output can be described as

θi = xi ·Wroi · exY, (i = 1, 2, · · · , m) (18)

where X = [x1, x2, · · · xm]
T is the input vector, θ = [θ1, θ2, · · · , θm]

T is the output
vector and Wro = [Wro1, Wro2, · · ·Wrom]

T is the feedback weight vector.
(2) First hidden layer: The output form of this layer adopts a nonlinear activation func-

tion φ1j, which can map the input signal to a high-dimensional space and extract
signal features. The neuron feedback loop is constructed in this layer, and the previous
output vector Lφ1j is connected to the current input nodes. Thus, the self-regulation
capability of the neural network can be improved through the cyclic connections of
the neurons. The jth node output is described as follows:

φ1j = e−net1j , (j = 1, 2, · · · , n)

net1j =
m
∑

i=1

(θi ·Wrj ·Lφ1j−c1j)
2

b2
1j

(19)
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where the center vector is C1 = [c11, c12, · · · c1n]
T , the base width vector is

B1 = [b11, b12, · · · , b1n]
T , the output vector of this layer is Φ1 = [φ11, φ12, · · · φ1n]

T ,
and the internal feedback weight vector is Wr = [Wr1, Wr2, · · ·Wrn]

T .
(3) Second hidden layer: In the second hidden layer, the Gaussian function is also

utilized here as the activation function to further implement dynamic mapping and
extract signal features. The kth node output is described as follows:

φ2k = e−net2k , (k = 1, 2, · · · , l)

net2k =
n
∑

j=1

(φ1j−c2k)
2

b2
2k

(20)

where the center vector is C2 = [c21, c22, · · · c2l ]
T , the base width vector is

B2 = [b21, b22, · · · , b2l ]
T and the output vector of this layer is Φ2 = [φ21, φ22, · · · φ2l ]

T .
(4) Output layer: This layer has only one node, and each node output of the second

hidden layer is connected to the output layer through the weights Wk(k = 1, 2, · · · , l).
The overall output of the neural network is calculated as

Y = WTΦ2 = W1φ21 + W2φ22 + · · ·+ Wlφ2l (21)

where the output weight vector is W = [W1, W2, · · · , Wl ]
T .
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3.2. Controller Design and Stability Analysis

The block diagram of the proposed control method is plotted in Figure 3, where the
DHLRNN is utilized to estimate the nonlinear function f (x), and the adaptive projection
algorithm is adopted to approximate the control coefficient F. Moreover, all parameters of
the DHLRNN are trained online through the adaptive laws derived from the Lyapunov
stability theorem. Hence, the system uncertainty can be effectively counteracted and
compensated by introducing the above estimates into the controller.

To guarantee the finite-time convergence of tracking errors, the terminal function p(t)
is introduced. Thus, the backstepping variables z1 and z2 are redefined as

z1 = x1 − vre f − p = e− p
z2 = x2 + cz1 −

.
vre f −

.
p

(22)
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Figure 3. The block diagram of the proposed control method.

Remark 3. With regard to the definition of the terminal function p(t), for the sake of ensuring
global robustness of the system, let e(0) = p(0),

.
e(0) =

.
p(0). Moreover, in order to ensure that the

tracking error can obtain finite-time convergence, when t ≥ T, the condition of p(t) = 0,
.
p(t) = 0,

..
p(t) = 0 should hold. Thus, the terminal function p(t) can be constructed as follows:

p(t) =


e(0) +

.
e(0)t + 1

2
..
e(0)t2 − ( a00

T3 e(0) + a01
T2

.
e(0) + a02

T
..
e(0))t3

+( a10
T4 e(0) + a11

T3
.
e(0) + a12

T2
..
e(0))t4

−( a20
T5 e(0) + a21

T4
.
e(0) + a22

T3
..
e(0))t5, 0 ≤ t ≤ T

0, t > T

(23)

where aij(i, j = 0, 1, 2) are the equation coefficients.

Then, the sliding surface is defined as follows:

s = kz1 + z2 (24)

where z1 and z2 are the redefined variables from (22), k > 0 is the sliding gain.
The derivative of s is given by

.
s = k

.
z1 +

.
z2

= k(z2 − cz1) + f (x) + Fu + c
.
z1 −

..
vre f −

..
p (25)

According to the optimal approximation theory, there exist optimal parameters W∗,
B∗1 , C∗1 , W∗r , B∗2 , C∗2 , Wro

∗ to estimate the nonlinear function such that

f (x) = W∗
T

Φ∗2(B∗1 , C∗1 , W∗r , B∗2 , C∗2 , W∗ro) + ε (26)

where ε is the network reconstructed error.
Then, when the nonlinear function is approximated by the proposed neural network,

the corresponding estimated value is expressed as

f̂ (x) = ŴTΦ̂2(B̂1, Ĉ1, Ŵr, B̂2, Ĉ2, Ŵro) (27)
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Hence, the following approximation error of the neural network can be obtained:

f (x)− f̂ (x) = W̃TΦ̂2 + ŴTΦ̃2 + ε0 (28)

where ε0 = W̃TΦ̃2 + ε.
Here, Taylor expansion is employed for linearization, and thus, the nonlinear DHLRNN

can be transformed into a partial linear form. The expansion of Φ̃2 is expressed as

Φ̃2 = Φ2B1 · B̃1 + Φ2C1 · C̃1 + Φ2Wr · W̃r

+Φ2B2 · B̃2 + Φ2C2 · C̃2 + Φ2Wro · W̃ro + Oh
(29)

where Oh represents the higher-order term and the first-order partial derivatives in (29) can
be expressed in the following matrix forms:

Φ2B1 =
[

∂φ21
∂B1

∂φ22
∂B1

· · · ∂φ2l
∂B1

]T
(30)

Φ2C1 =
[

∂φ21
∂C1

∂φ22
∂C1

· · · ∂φ2l
∂C1

]T
(31)

Φ2Wr =
[

∂φ21
∂Wr

∂φ22
∂Wr

· · · ∂φ2l
∂Wr

]T
(32)

Φ2B2 =
[

∂φ21
∂B2

∂φ22
∂B2

· · · ∂φ2l
∂B2

]T
(33)

Φ2C2 =
[

∂φ21
∂C2

∂φ22
∂C2

· · · ∂φ2l
∂C2

]T
(34)

Φ2Wro =
[

∂φ21
∂Wro

∂φ22
∂Wro

· · · ∂φ2l
∂Wro

]T
(35)

Then, substituting the expansion (29) into approximation error (28) yields

f (x)− f̂ (x) = W̃TΦ̂2 + ŴTΦ2C1 C̃1 + ŴTΦ2C2 C̃2 + ŴTΦ2B1 B̃1
+ŴTΦ2B2 B̃2 + ŴTΦ2Wr W̃r + ŴTΦ2Wro W̃ro + ∆0

(36)

where ∆0 = ŴTOh + εo is a lumped higher-order approximation error, which is bounded
as |∆0| ≤ ∆d.

As shown in Figure 3, the DHLRNN and adaptive projection algorithm are integrated
into the controller. According to the real-time estimation information, a new control law is
constructed as

u =
1
F̂
(−k(z2 − cz1)− f̂ (x)− c

.
z1 +

..
vre f +

..
p− h(s + βsgn(s))− ηsgn(s)) (37)

where η > ∆d, F̂ is the estimated value of the control coefficient F.

Theorem 2. For the dynamic model of the buck converter (3) with external disturbance and
parameter variations, if the sliding surface is selected as (24), the control law is designed as (37),
the adaptive laws of DHLRNN are designed as (38)–(44) and the adaptive projection algorithm
is designed as (45), then the stability of the closed-loop system can be guaranteed, and the voltage
tracking error will converge to zero in finite time.

.
W̃ = −η1sΦ̂2 (38)

.
B̃

T

1 = −η2sŴTΦ2B1 (39)

.
C̃

T

1 = −η3sŴTΦ2C1 (40)
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.
W̃

T

r = −η4sŴTΦ2Wr (41)

.
B̃

T

2 = −η5sŴTΦ2B2 (42)

.
C̃

T

2 = −η6sŴTΦ2C2 (43)

.
W̃

T

ro = −η7sŴTΦ2Wro (44)

.
F̂ = ProjF̂(γsu) (45)

Remark 4. The adaptive projection algorithm [31] in (45) is expressed as

ProjF̂(·) =


0 F̂ ≥ Fa and · > 0
0 F̂ ≤ Fi and · < 0
· otherwise

(46)

When F̂ ≥ Fa and tends to increase, then
.
F̂ = 0, i.e., the value of F̂ remains unchanged.

On the other hand, when F̂ ≤ Fi and tends to decrease, then
.
F̂ = 0, i.e., the value of F̂ remains

unchanged. Therefore, this algorithm can ensure that F̂ belongs to a bounded region, thus obtaining
the stability of the control signal.

Proof of Theorem 2. A new Lyapunov function is defined as follows:

V = 1
2 z2

1 +
1
2 s2 + 1

2η1
W̃TW̃ + 1

2η2
B̃T

1 B̃1 +
1

2η3
C̃T

1 C̃1 +
1

2η4
W̃T

r W̃r

+ 1
2η5

B̃T
2 B̃2 +

1
2η6

C̃T
2 C̃2 +

1
2η7

W̃T
roW̃ro +

1
2γ F̃2 (47)

where η1, η2, η3, η4, η5, η6, η7, γ are the parameter learning rates.
Taking the derivative of the Lyapunov function (47) and combining it with (25), it can

be obtained that
.

V = −cz2
1 + z1z2 + s(k(z2 − cz1) + f (x) + F̃u + F̂u + c

.
z1 −

..
vre f −

..
p)

+ 1
η1

W̃T
.

W̃ + 1
η2

.
B̃

T

1 B̃1 +
1
η3

.
C̃

T

1 C̃1 +
1
η4

.
W̃

T

r W̃r +
1
η5

.
B̃

T

2 B̃2 +
1
η6

.
C̃

T

2 C̃2

+ 1
η7

.
W̃

T

roW̃ro − 1
γ F̃

.
F̂

(48)

where F̃ = F− F̂.
Substituting the control signal (37) into (48) yields

.
V = −cz2

1 + z1z2 + s( f (x)− f̂ (x) + F̃u
−h(s + βsgn(s))− ηsgn(s)) + H

(49)

Considering the approximation error of DHLRNN in (36), then substituting (36) into
(49) obtains

.
V = −cz2

1 + z1z2 + F̃su + W̃TΦ̂2s + ŴTΦ2B1 B̃1s
+ŴTΦ2C1 C̃1s + ŴTΦ2Wr W̃rs + ŴTΦ2B2 B̃2s
+ŴTΦ2C2 C̃2s + ŴTΦ2WroW̃ros− hs2 − hβ|s|
+∆os− η|s|+ H

(50)

By combining with the above adaptive laws of neural network and adaptive projection
algorithm, (50) can be further derived as

.
V ≤ −cz2

1 + z1z2 − hs2 − hβ|s|+ ∆os− η|s| (51)
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According to the analysis in (15)–(17) and the condition of η > ∆d, the following
inequality holds:

.
V ≤ −zTQz− hβ|s| ≤ 0 (52)

The condition of |Q| > 0 can be ensured through choosing h, c and k. Hence, according
to the Lyapunov stability theorem and LaSalle invariance principle, the stability of the
closed-loop system can be guaranteed. When t→ ∞ , then z1 → 0 , s→ 0 . Moreover,
Remarks 5–7 are described in the following to demonstrate the finite-time convergence
property of the converter system. �

Remark 5. According to the Remark 2, it can be concluded that p(0) = e(0),
.
p(0) =

.
e(0).

Therefore, the following expression can be obtained:

s(0) = kz1(0) + z2(0)
= k(e(0)− p(0)) + (

.
e(0)− .

p(0)) + c(e(0)− p(0))
= 0

(53)

The initial state of the system is already on the sliding mode surface, and it has been proved
that s(t)→ 0 as t→ ∞ , which means that the reaching condition of sliding mode is eliminated.

Remark 6. Considering the sliding surface (24) and Remark 4, let δ(t) = E(t)− P(t), yielding

s = C(E(t)− P(t))
= Cδ(t)

(54)

where C =
[
k + c 1

]
and k + c > 0 satisfy the Hurwitz condition. E(t) =

[
e(t)

.
e(t)

]T is the

error vector and P(t) =
[
p(t)

.
p(t)

]T is the terminal function vector.
Since the system already possesses global robustness, i.e., s = 0, if taking P(t) = 0(∀t ≥ T),

the tracking error of the system E(t)(∀t ≥ T) will converge to zero in finite time.

Remark 7. According to Remark 2, when t = T, the condition of p(T) = 0,
.
p(T) = 0,

..
p(T) = 0

needs to be satisfied. Hence, the coefficients of the terminal function p(t) can be calculated as

p(T) = 0→


a00 = −10
a10 = 15
a20 = −6

(55)

.
p(T) = 0→


a01 = −6
a11 = 8
a21 = −3

(56)

..
p(T) = 0→


a02 = −1.5
a12 = 1.5
a22 = −0.5

(57)

Remark 8. Some limitations still exist in the proposed control method when compared with the
conventional technique. Firstly, all parameters of the proposed neural network are updated online
through the adaptive laws, which can realize optimal regulation and ensure the stability of a closed-
loop system. However, full-parameter learning may cause a high calculation burden. Moreover, in
this approach, the detailed network structure is determined by continuous trial and error in advance.
If the number of neurons is chosen too large, it will also bring a high calculation burden. Therefore,
how to reduce the calculation burden and improve algorithm efficiency by using advanced control
strategies will be analyzed in future work.
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4. Experimental Results

In this section, an experimental prototype is built to illustrate the proposed control
method, which is depicted in Figure 4. The experimental prototype comprises a dSPACE-
based controller, converter main circuit, signal collecting circuit, DC-supplied voltage and
digital oscilloscope. The real-time interface circuit is built by MATLAB/Simulink. The
signal-collecting circuit includes the Hall current sensor and the Hall voltage sensor. They
acquire voltage signals and current signals, respectively, and the collected signals are sent to
the dSPACE through ADC ports. Then, dSPACE calculates the control signal; the obtained
control signal is connected to the drive circuit through the PWM output ports to activate
IGBT, thus realizing the control of the whole circuit. Moreover, the output waveforms
are recorded by the digital oscilloscope DSO-X3034A. The switching frequency for the
driving signal is selected as 10 kHz, and the sampling period is selected as 1.5× 10−4 s.
The structure diagram of the experimental platform is provided in Figure 5.
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The nominal parameter values of the main circuit are listed in Table 1. To demonstrate
the effectiveness of the proposed control method, the following two methods are proposed
for comparison, including the ideal ABTSMC method and backstepping sliding mode
control based on RBFNN (BSMC-RBFNN), where the RBFNN is also utilized to estimate
nonlinear function.

Table 1. Nominal circuit parameter values.

Description Parameter Value Units

Inductor L 6 mH
Capacitor C 2200 uF

Load resistance R0 30 Ω
Input voltage Vin 25 V

Reference voltage vre f 12 V

To ensure a fair comparison, the above controllers are implemented on identical test
conditions. The controller parameters are carefully selected, as listed in Table 2.

Table 2. Controller parameter values.

Controllers Parameters and Values

ABTSMC c = 2× 105, k = 4000, h = 2000, β = 1200, η = 0.1, T = 0.01

BSMC-RBFNN c = 2× 105, k = 4000, h = 100, β = 120, η = 0.1

ABTSMC-DHLRNN c = 2× 105, k = 4000, h = 2000, β = 1200, η = 0.1, T = 0.01

Remark 9. It is worth mentioning that the signals collected by sensors will be reduced due to the
turn ratio between the input port and output port. Therefore, the signals sent to the dSPACE are
reduced. In order to eliminate this effect, in the real-time interface circuit, the gain modules are
introduced, and their value is the same as the turn ratio. Thus, the collected signal can be restored,
and the calculation of the control signal will be corrected. Moreover, the ADC and DAC ports
often possess non-idealities. These uncertain behaviors will be counteracted by the SMC due to
its immunity towards disturbances so that the system can obtain stronger robustness and better
disturbance rejection performance.

Remark 10. To clearly present the generation process of the closed-loop duty cycle of the converter
system, the real-time interface (RTI) model is designed in Figure 6. Firstly, the MUX_ADC module
receives the voltage and current signals from the converter circuit. Secondly, according to the
reference voltage value, the collected signals and the proposed algorithm, the control signal (37),
i.e., duty cycle, can be generated by compiling the main controller module. Then, in the PWM
module, the obtained duty cycle is compared with a triangle signal to generate a PWM driving
signal. Finally, the driving signal is connected to the IGBT driver through the PWM output module.
Moreover, the flowchart of the proposed control method is shown in Figure 7, where the operating
steps of the control algorithm in the main controller module are presented.

In normal conditions, the proposed control method is applied to the buck converter.
The steady-state response curves are depicted in Figure 8, where the three curves represent
input voltage (golden curve), output voltage (blue curve) and inductor current (red curve),
respectively. The corresponding waveform descriptions are given at the bottom. It can be
seen that output voltage and inductor current are stabilized to the desired value without
obvious rise or drop, revealing that the converter system possesses high steady-state
accuracy under the proposed control method.
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Figure 7. Flowchart of the proposed control method in dSPACE.
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Since the DHLRNN proposed in this paper is utilized to estimate the nonlinear func-
tion, in order to further enrich the experimental results, the comparison results of the
real function and the DHLRNN estimation are shown in Figure 9. From Figure 9, it can
be concluded that the DHLRNN provides a high estimation precision, which can effec-
tively compensate for the system uncertainty by introducing the estimated value into the
controller.
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The following conditions are carried out to verify the performance of the above
controllers.

4.1. Start-up Phase Analysis

In normal conditions, the response curves obtained for output voltage and inductor
current during start-up are shown in Figure 10a–c. As can be seen in Figure 10, the BSMC-
RBFNN method produces obvious voltage overshoot during start-up, the peak voltage is
about 0.7 V higher than the reference voltage, and the settling time is longer than other
control strategies. This is mainly because the lower compensation accuracy of the RBFNN
and the BSMC fails to ensure finite-time convergence of the voltage tracking error. Although
the ABTSMC method can obtain accurate tracking without obvious voltage overshoot, it
takes about 75 ms to stabilize the output voltage through SMC alone. On the contrary, the
proposed control method tracks the reference trajectory in 28 ms but with absolutely no
overshoot. It is fully confirmed that the TSMC can accelerate the convergence rate of the
system, and the DHLRNN can effectively compensate for the system uncertainty.

4.2. Load Resistance Variations

In order to investigate the robustness of the above controllers against the load resis-
tance variations, the buck converter is subjected to a sudden change in load resistance. The
load resistance is switched at the value of 30Ω and 20Ω. Figure 11 shows the responses of
vo and iL under such a change. As can be seen in Figure 11, the ABTSMC method fails to ob-
tain satisfactory performance when facing load variations, which provides a larger voltage
drop/rise and longer settling time. Although BSMC-RBFNN method can provide a faster
response when the estimated term is introduced into the controller, it needs about 210 ms
to eliminate the effect of load resistance variations due to its slow learning, and the voltage
drop/rise is about 0.5 V, whereas the proposed control method presents slight rise/drop in
output voltage ripple around the reference value, and the settling time is much shorter than
other control algorithms, revealing stronger robustness and better disturbance rejection
performance by the proposed control method in rejecting load resistance variations.
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4.3. Reference Voltage Variations

To examine the tracking performance of each controller during reference variations,
Figure 12 shows the tracking behaviors of the output voltage and inductor current, where
the reference voltage occurs a sudden change from the nominal value of 12 V to 15 V. From
Figure 12, during the occurrence of such uncertainty, the ABTSMC method takes about
90 m to track the new trajectory of 15 V due to the lack of the estimation of the uncertain
terms, while the BSMC-RBFNN method is found to track the new reference voltage in
78 ms, but it produces about 0.6 V voltage overshoot. The proposed control method is
comparatively faster to reject such uncertainty, which can smoothly track the new reference
trajectory in 40 ms. Due to the high compensation accuracy of the DHLRNN, this method
provides better voltage tracking performance with reference voltage variations.
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4.4. Input Voltage Fluctuations

A triangle disturbance (period 100 ms, amplitude 2 V) is introduced to approximate
the input voltage fluctuations. The dynamic processes of the above controllers in the
presence of time-varying disturbance are plotted in Figure 13, where the golden curve is the
real input voltage. It can be seen that the ABTSMC method fails to ensure smooth tracking
curves; the corresponding voltage fluctuations are clearly visible, which will significantly
affect the stability of the output voltage. The BSMC-RBFNN method can provide a smaller
fluctuation amplitude, but it cannot completely eliminate the adverse effect of the time-
varying disturbance. However, since the DHLRNN and adaptive projection algorithm
can continuously adjust output values according to the system dynamics, the ABTSMC-
DHLRNN method provides higher tracking accuracy with the smallest voltage fluctuations,
and the relevant output voltage waveform almost presents a straight line.
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4.5. Comparison Analysis and Summary

Table 3 shows the performance indices of maximum voltage rise/maximum voltage
drop (MVR/MVD) and settling time (ST) of the above controllers. The proposed control
method adopts two estimation techniques to counteract and compensate for the system
uncertainty caused by parameter variations, and the DHLRNN possesses higher estimation
and compensation accuracy than the RBFNN with a single hidden layer due to the design
of multiple hidden layers and neuron feedback loop. Thus, the stability and disturbance
rejection performance of the converter system can be improved during the tracking process.
Moreover, the TSMC can further accelerate the system convergence in comparison with the
conventional SMC, which ensures a shorter settling time. The corresponding comparison
results in Table 3 illustrate that the proposed control method possesses higher tracking
accuracy and faster dynamic response.

To sum up, the proposed control method comprises TSMC, which can ensure the
finite-time convergence of the tracking error. Thus, the converter system obtains a faster
transient response during start-up, which takes a shorter start-up time than other control
algorithms. Secondly, since the proposed control method adopts two estimation techniques
to approximate nonlinear function and control coefficient, the model uncertainty caused by
parameter variations can be effectively compensated and counteracted by combining with
precious estimation information. Thus, the proposed converter obtains better disturbance
rejection ability in the presence of load variations and reference voltage variations, and
the corresponding output waveforms provide shorter tracking time with absolutely no
overshoot. Moreover, due to the approximation capability of the DHLRNN and the dis-
continuous property of the switching term when faced with the time-varying disturbance
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caused by input voltage fluctuations, the proposed controller presents higher tracking
accuracy, and the corresponding output waveform provides smoother curves.

Table 3. Performance indices comparison in the above tests.

Test Controllers
Performance Indices

MVR/MVD (V) ST (ms)

1
ABTSMC −/− 75/−

BSMC-RBFNN 0.7/− 160/−
ABTSMC-DHLRNN −/− 28/−

2
ABTSMC 0.6/0.6 400/400

BSMC-RBFNN 0.5/0.5 210/206
ABTSMC-DHLRNN 0.3/0.35 125/170

3
ABTSMC −/− 90/−

BSMC-RBFNN 0.6/− 78/−
ABTSMC-DHLRNN −/− 40/−

4
ABTSMC 0.4/0.4 −/−

BSMC-RBFNN 0.3/0.4 −/−
ABTSMC-DHLRNN 0.3/0.2 −/−

5. Conclusions

In order to improve the stability of the DC power, a composite ABTSMC method
with DHLRNN is proposed to realize the voltage tracking control of the DC-DC buck
converter. This method adopts the DHLRNN and adaptive projection algorithm to estimate
nonlinear function and control coefficient, and the adverse effect of system uncertainty can
be effectively eliminated by introducing the above estimates into the controller. Moreover,
the switching term of the sliding mode can also be reduced, and thus, the chattering
phenomenon is alleviated. To sum up, due to the design of the double hidden layer
structure and neuron feedback loop, the proposed neural network can obtain higher
estimation accuracy with fewer neurons. The neural network parameters are trained online
by using the adaptive laws to obtain optimal values. The adaptive projection algorithm can
ensure that the estimated term belongs to a bounded region, and the stability of the control
signal can be obtained. Since the backstepping terminal sliding mode control combines the
merits of the backstepping design and TSMC, it can not only reduce the complexity of the
control design but also obtain the finite-time convergence property of the tracking error.
Experimental results demonstrate the superiority of the proposed control method under
multiple operating conditions. Therefore, this method has a good application prospect in
the DC-DC buck converter.
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