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Abstract: Formaldehyde is a known human carcinogen and an important indoor and outdoor air
pollutant. However, current strategies for formaldehyde measurement, such as chromatographic
and optical techniques, are expensive and labor intensive. Low-cost gas sensors have been emerging
to provide effective measurement of air pollutants. In this study, we evaluated eight low-cost
electrochemical formaldehyde sensors (SFA30, Sensirion®, Staefa, Switzerland) in the laboratory with
a broadband cavity-enhanced absorption spectroscopy as the reference instrument. As a group, the
sensors exhibited good linearity of response (R2 > 0.95), low limit of detection (11.3 ± 2.07 ppb), good
accuracy (3.96 ± 0.33 ppb and 6.2 ± 0.3% N), acceptable repeatability (3.46% averaged coefficient of
variation), reasonably fast response (131–439 s) and moderate inter-sensor variability (0.551 intraclass
correlation coefficient) over the formaldehyde concentration range of 0–76 ppb. We also systematically
investigated the effects of temperature and relative humidity on sensor response, and the results
showed that formaldehyde concentration was the most important contributor to sensor response,
followed by temperature, and relative humidity. The results suggest the feasibility of using this
low-cost electrochemical sensor to measure formaldehyde concentrations at relevant concentration
ranges in indoor and outdoor environments.

Keywords: formaldehyde; low-cost electrochemical sensor; broadband cavity-enhanced absorption
spectroscopy; sensor evaluation

1. Introduction

Globally, formaldehyde is the most abundant carbonyl [1]. It is also a known human
carcinogen [2,3]. More than 25 million people in the US are exposed to formaldehyde
levels that exceed the cancer risk threshold, making it the biggest driver of cancer risk
among hazardous air pollutants [4]. Hazardous air pollutants are defined by the US EPA as
compounds that known to cause cancer and other serious health impacts [5]. Formaldehyde
also plays a key role in ozone and secondary particulate matter formation—both of which
are associated with significant adverse health effects [6–8]. Should formaldehyde sources
be better characterized and controlled, it will reduce health risks to the local citizens and
help address critical air pollution challenges: PM2.5 and ozone.

The existing measurement techniques for formaldehyde can be broadly categorized as
satellite-based, spectrometric, and optical techniques. Satellite-based estimates of average
annual formaldehyde concentration have been made at a grid resolution of approximately
5 × 5 km2 [9]. This resolution is excellent for monitoring regional and global trends, but is
unsuitable for identifying local emission sources. Chromatographic technologies, such as
ion mobility spectrometry (IMS) and gas chromatography-mass spectrometry (GC-MS) are
gold standards for aldehyde identification [10]. In practice, samples are usually collected in
canisters, which are analyzed by contract labs at a high cost per sample and results can be
delayed for weeks to months. Although portable systems exist, they tend to be prohibitively
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expensive. Optical techniques include differential optical absorption spectroscopy (DOAS),
infrared spectrophotometry, Raman spectroscopy, fluorescence, and colorimetric [1,11].
These methods provide sensitive measurements for a wide range of VOCs, but they are
labor-intensive and require daily maintenance. Overall, these strategies for formaldehyde
measurement are either expensive or labor-intensive, which hamper the ability to identify
formaldehyde sources.

Low-cost gas sensors have been emerging in recent years, which can complement
measurements from regulatory or research-grade measurements [12–19]. These sensors
can be easy to deploy and provide real-time measurement with higher spatial coverage
than conventional measurements [18]. Common low-cost formaldehyde sensors can be
categorized as semiconductor sensors and electrochemical sensors [16,18,20]. Semiconduc-
tor sensors can detect formaldehyde by enabling a redox reaction and then measuring the
resistance change [21]. These sensors have high sensitivity and stability. However, some of
them, such as metal oxide sensors, require high operating temperature (>100 ◦C) and have
low selectivity [20–22]. On the other hand, electrochemical sensors detect formaldehyde by
enabling an electrochemical reaction and then measuring the current change [23]. These
sensors can have high selectivity and accuracy. In addition, they consume less power
compared to metal oxide sensors because the sensors generally work under room or am-
bient temperature. However, the signals of electrochemical sensors can be influenced by
temperature and relative humidity (RH) [24,25].

Some laboratory studies have evaluated the performance of low-cost formaldehyde
sensors. Chattopadhyay et al. [26] evaluated the performance of two electrochemical sen-
sors and three metal oxide sensors in a laboratory chamber over the concentration range of
10–800 ppb, a temperature range of 22–50 ◦C, and a RH range of 8–85%. Deng et al. [27]
developed a metal oxide sensor based on hierarchical flower-like CuO nanostructure and
evaluated the sensor response to a formaldehyde concentration range of 50–1000 ppb. Gau-
tam et al. [28] developed a Si-chip assisted MOS/SiNWs nanocomposite-based sensor and
evaluated the sensor response to a formaldehyde concentration range of 0.01–1000 ppm.
Li et al. [29] synthesized SnO2 microspheres and evaluated the sensor response to a
formaldehyde concentration range of 1–500 ppm. Hu et al. [30] reported batch fabri-
cation of formaldehyde sensors based on LaFeO3 film and evaluated sensor response over
a concentration range of 0.05–1 ppm. However, these studies have some limitations. First,
most of the studies focused on sensor fabrication and provided limited sensor performance
metrics. Most of the studies reported the linearity of response [28–30], but only a few
studies reported limit of detection (LOD) [27,30], sensor accuracy [26], or sensor repeatabil-
ity [28,29]. Second, most of the studies focused on formaldehyde concentration ranges that
were higher than typical indoor (~17 ppb) [31] or ambient (~3 ppb) [32] levels in the United
States. In addition, previous studies have reported the influence of temperature and RH on
the performance of electrochemical sensors [25,33–36]. However, some studies report con-
tradictory results regarding the effect of RH [37], and many studies only report qualitative
results [30,38–40]. The effects of temperature and RH on electrochemical formaldehyde
sensors have not been systematically investigated, which is crucial to understanding sensor
performance in the ambient environment.

This study aims to evaluate the laboratory performance of eight low-cost electrochemi-
cal formaldehyde sensors (Sensirion SFA30®, Staefa, Switzerland) over an environmentally
relevant concentration range of 0–76 ppb, compared to a high-accuracy broadband cavity
enhanced absorption spectrometer (BBCEAS) as the reference instrument [41]. It pro-
vides comprehensive performance metrics including linearity of response, LOD, accuracy,
repeatability, response time, and inter-sensor variability. This study also aims to systemati-
cally investigate the effects of temperature and RH on sensor performance by implementing
a Box-Behnken experimental design and developing a multiple linear regression (MLR)
model. Understanding the sensor performance in a laboratory environment paves the way
to future studies of applying the sensors to field measurement of formaldehyde.
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2. Materials and Methods
2.1. Sensor Preparation

This study evaluated eight Sensirion SFA30® formaldehyde sensors (Sensirion AG,
Staefa, Switzerland). These sensors had integrated temperature and RH modules. The
laboratory evaluation entailed exposing the low-cost sensors to target concentrations of
formaldehyde, temperature, and RH. Each sensor was placed in a 3D-printed polylactic acid
(PLA) chamber, which was sealed with polytetrafluoroethylene (PTFE) tape to minimize
leakage. These eight sensors were divided into two sets. Each set included four sensors that
were connected to an Arduino board via a multiplexer (I2C interface), as shown in Figure
S1. This setup allowed real-time viewing and recording of the sensor signal, temperature,
and RH using the Arduino interface on a computer.

2.2. Broadband Cavity-Enhanced Absorption Spectrometer

A BBCEAS provided the reference formaldehyde measurements [42] for this study.
The BBCEAS consisted of a light source module, an optical cavity module, and a detection
module, as shown in Figure S2. A deep ultraviolet LED (DUV-325, Roithner LaserTechnik,
Vienna, Austria) centered at 325 nm provided the light source. The LED was aligned within
a PTFE optical cavity, which contained two highly reflective mirrors (Layertec GmbH,
Mellingen, Germany). An optical fiber collected light at the rear of the cavity, and this
optical fiber was connected to a high-sensitivity optic spectrometer (AvaSpec-Hero, Avantes,
Inc., Apeldoorn, Netherlands ). Spectra were saved every minute.

The BBCEAS measurements were given by:

α(λ) =

[
1− R(λ)

d
+ α(λ)Rayleigh,ZA

][
IZA(λ)− I(λ)

I(λ)

]
(1)

where α(λ) is the extinction coefficient of the transmitted light through the cavity, λ is the
wavelength of light, d is the cavity length, R(λ) is the mirror reflectivity, α(λ)Rayleigh,ZA is
the extinction due to Rayleigh scattering of zero air, IZA(λ) is the reference spectrum of
zero air, and I(λ) is the measured spectrum at each wavelength.

We obtained the mirror reflectivity by flowing 1 LPM of nitrogen for 10 min followed
by flowing 1 LMP of helium for 10 min into the BBCEAS. Mirror reflectivity was obtained
using the following relationship:

R(λ) = 1− d·
IN2 ·nN2 ·σRay,N2(λ)− IHe·nHe·σRay,He(λ)

IHe(λ)− IN2(λ)
(2)

where d is the cavity length, IN2(λ) and IHe(λ) are the measured spectral intensities when
the cavity is filled with nitrogen and helium, respectively, σRay,N2(λ) and σRay,He(λ) are the
Rayleigh scattering cross section of nitrogen and helium, respectively.

Subsequently, we obtained the reference spectra by flowing 1 LPM of zero air into
the BBCEAS for 20 min. For each formaldehyde sample gas, the sampling time was
75 min. Extinctions from the cavity were fitted using standard literature absorption cross-
sections for formaldehyde [43]. All spectra were post-processed using Equations (1) and (2)
with a custom-made Python package to obtain the formaldehyde concentration. To obtain
formaldehyde concentration from the BBCEAS, we averaged 30 min of stable spectra for the
concentration-only tests and 10 min of stable spectra for the environmental simulation tests.

2.3. Laboratory Evaluation System

We designed a laboratory system to evaluate four formaldehyde sensors simulta-
neously in parallel (Figure 1). The system contained two gas lines, a blank line, and a
sample line. Both the blank and sample lines were set to 1 LPM using a mass flow con-
troller (MFC, Cole Parmer, Inc., Vernon Hills, IL, USA). The blank line consisted of zero
air, which provided the baseline signal for both the sensors and the BBCEAS. This blank
line was also used to flush the system. The sample line started from the permeation oven
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(Dynacalibrator® Model 340, VICI, Inc., Houston, TX, USA), which generated formalde-
hyde with a permeation tube of paraformaldehyde (325 ng/min, VICI, Inc., Houston, TX,
USA) heated to 90 ◦C. By adjusting the dilution rate of the permeation oven, formaldehyde
concentrations ranging from 0–76 ppb were obtained. A switching valve (Parker, Inc.,
Mayfield Heights, OH, USA) allowed the two lines to alternate.
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Figure 1. Flow chart of the laboratory evaluation system. All the tubing inside the system was PTFE
tubing (OD 1/4′′).

The evaluation system was capable of generating different temperature and RH condi-
tions with its environmental chamber, which consisted of a temperature module (water
bath, Precision, Thermo Fisher Scientific, Waltham, MA, USA) and an RH module (Nafion
tube, Perma Pure LLC, Lakewood, NJ, USA), which provided a temperature range of
0–40 ◦C and an RH range of 15–75%. The water bath provided the heat source or sink for
the environmental chamber. A 6” Nafion (OD 0.110”) tube immersed in deionized water
inside a closed glass container provided humidity. A humidity bypass was implemented
to adjust the dry/humid gas ratio and provide the target humidity. The sample gas with
target concentration, temperature, and RH flowed past the four sensors and then entered
the BBCEAS.

For all tests in this study, we used 75 min as the sampling time to obtain relatively
stable formaldehyde concentration, sensor signal, temperature, and RH. In between any
two samples, we flushed the system with zero air for 20 min. The sensor signal, temperature,
and RH from the Arduino interface were recorded and post-processed by taking the average
of each stable signal (30-min average for the concentration-only tests and 10-min average
for the environmental simulation tests).

2.4. Experimental Design

We evaluated the sensor response to formaldehyde concentration alone (concentration-
only tests) and their response to different formaldehyde concentrations, temperature, and
RH conditions (environmental simulation tests).

a. Concentration-only tests

The concentration-only tests included target formaldehyde concentrations of 10, 20,
30, 40, and 50 ppb at 24 ◦C and approximately 15% RH.

b. Effects of temperature and RH

To further investigate the sensor performance under different temperature and RH
conditions, we performed environmental simulation tests with a Box-Behnken experimental
design (Table 1). This Box-Behnken design effectively reduced the total number of tests
needed to evaluate the influence of temperature and RH on sensor response to formaldehyde.
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Table 1. Box-Behnken design for environmental simulation tests of the sensors.

Test No. Target Concentration * (ppb) Target Temperature * (◦C) Target RH * (%)

1 25 0 15
2 25 40 15
3 25 0 75
4 25 40 75
5 0 0 45
6 0 40 45
7 50 0 45
8 50 40 45
9 0 20 15

10 0 20 75
11 50 20 15
12 50 20 75
13 25 20 45
14 25 20 45
15 25 20 45

* Note that these were target concentrations, temperatures, and RHs. Actual conditions can be found in Table S1.

2.5. Data Analysis

We applied ordinary least squares (OLS) to evaluate the effects of the different pa-
rameters on sensor response. All eight sensors were evaluated both individually and as
a group.

a. Linear regression (LR) model

For the concentration-only tests, a linear regression (LR) model provided the relation-
ship between the sensor response and the reference measurements (BBCEAS):

ŷ = kc + b (3)

where c is the formaldehyde concentration from the BBCEAS, k is the slope of the linear
regression, b is the intercept of the linear regression and ŷ is the predicted sensor response
based on the LR model.

b. Multiple linear regression model

An MLR model provided the relationship between the sensor response to formalde-
hyde concentration, temperature, and RH:

ŷ = k1c + k2T + k3RH + b (4)

where ŷ is the predicted sensor signal, c is the formaldehyde concentration from the
BBCEAS, T is the temperature, RH is the relative humidity, b is the intercept, and k1, k2, k3
are the coefficients of the environmental factors.

2.6. Sensor Performance Metrics

Although the performance guidelines for low-cost formaldehyde sensors do not
exist, we discussed typical performance metrics (linearity of response, LOD, accuracy, and
repeatability), which have been used to evaluate other low-cost air quality sensors [16,18].
In addition, the U.S. environmental protection agency (EPA) also uses these metrics for the
evaluation of low-cost gas sensors [44]. We also investigated into the response time and
inter-sensor variability.

a. Linearity of response

In this study, we used the coefficient of determination (R2) to evaluate linearity
of response:

R2 = 1− ∑(yi − ŷi)
2

∑(yi − y)2 (5)
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where yi is the observed sensor signal, y is the mean of the observed sensor signal, ŷi is the
predicted sensor signal.

b. Limit of detection

The LOD was calculated based on the linear relationship between each sensor and the
BBCEAS [45]:

LOD =
3.3σ

k
(6)

where σ is the standard error of the linear regression and k is the slope of the linear
regression from Equation (3).

c. Sensor accuracy

We used root mean squared error (RMSE) and normalized root mean squared error
(NRMSE) to evaluate sensor accuracy:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − ci)
2 (7)

NRMSE =
RMSE

cmax − cmin
(8)

where ŷi is the predicted sensor signal, ci is the observed formaldehyde concentration
from the BBCEAS, cmax is the maximum of the observed formaldehyde concentration and
cmin is the minimum of the observed formaldehyde concentration, N is the total number
of measurements.

In addition to, some other studies of formaldehyde sensor performance have presented
mean absolute error (MAE) [26]. MAE is given by:

MAE =
∑|ŷi − ci|

N
(9)

where ŷi is the predicted sensor signal, ci is the observed formaldehyde concentration from
the BBCEAS, N is the total number of measurements.

d. Sensor repeatability

To evaluate the ability of the sensors to generate reproducible responses to the same
formaldehyde concentrations, the concentration-only tests were repeated three times. Coef-
ficient of variation (CV) is a common metric for low-cost sensor repeatability [16], and it is
given by the following equation:

CV =
σ

µ
× 100% (10)

where σ is the standard deviation of repeated measurements and µ is the mean of re-
peated measurements.

However, in this study, the target formaldehyde concentrations could not be repro-
ducibly achieved because of two reasons. First, the dilution rate of the permeation oven
could not be precisely controlled. Secondly, the BBCEAS provided formaldehyde con-
centration only after post-processing at the end of each test; hence the formaldehyde
concentration could not be dynamically adjusted to the target concentration. Consequently,
we conservatively estimated the CV by calculating the mean and standard deviation of the
sensor responses for each target formaldehyde concentration.

e. Response time

The response time of the sensors was estimated by t90, which is the time needed for
the sensors to reach 90% of the final stable signal [46].

f. Inter-sensor variability
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We implemented intraclass correlation coefficient (ICC) to examine inter-sensor vari-
ability [47]. Widely used in reliability testing, ICC is a number ranging from 0 to 1, which
refers to the correlations within a class of data [48]. Based on the 95% confidence interval
of the ICC estimate, values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and
greater than 0.90 are indicative of poor, moderate, good, and excellent reliability, respec-
tively [49]. In this study, we used a linear mixed effect model implemented in R Studio®

(version 4.2.2) to calculate the ICC, where formaldehyde concentration was the fixed effect
and the sensor IDs were the random effect:

y = kc + b + bs + ε (11)

where y is the sensor signal, c is the formaldehyde concentration from the BBCEAS, k is the
slope of the linear regression, b is the intercept of the linear regression, bs is the random
intercept that captures the variability of sensor IDs, ε is the random error.

Consequently, ICC was calculated as:

ICC =
σbs

2

σbs
2 + σε

2 (12)

where σbs
2 is the variance of the random effect and σε

2 is the variance of the random error.

2.7. Preliminary Cross-Sensitivity Tests

Although electrochemical sensors generally have high selectivity, previous studies
have reported cross sensitivity to common atmospheric trace gases [12,25,28,50,51]. In this
study, we considered common ambient trace gases, including carbon monoxide (CO), nitric
oxide (NO), nitrogen dioxide (NO2) and isobutylene. The tests were performed using the
same experimental setup as the concentration-only tests, except for the gas generation
and reference instrument. Four sensors were exposed to each target gas at the following
concentrations: CO (39.7 ppm), NO (101 ppb), NO2 (83 ppb), and isobutylene (100 ppb). The
target CO, NO, and NO2 concentrations were based on US National Ambient Air Quality
Standards [52]. Each target gas concentration was obtained by diluting a calibration gas
cylinder with zero air. The concentrations of CO and isobutylene were measured by a
Q-Trak 7575-X (TSI Inc., Shoreview, MN, USA). The concentrations of NO and NO2 were
measured by Model 42i NO-NO2-NOX Analyzer (Thermo Fisher Scientific Inc., Waltham,
MA, USA). The tests were performed at a temperature of 24 ◦C and a RH of approximately
15%. We compared sensors signals between zero air and each target gas individually using
a Student’s t-test.

3. Results and Discussion
3.1. Concentration-Only Tests

Figure 2 shows the response of the eight sensors to formaldehyde concentrations
ranging from 10.7 ppb to 70.9 ppb (at 24 ◦C and approximately 15% RH). Figure S3 shows
the sensor responses for the other two repeated tests. In general, the sensor response
increased linearly as formaldehyde concentration increased. Previous laboratory studies of
formaldehyde sensors found a linear relationship between sensor response and formalde-
hyde concentration [29,30,53]. These previous studies included a LaFeO3 thin film sensor, a
SiO2 microsphere sensor, and a Ni-Doped SnO2 nanoparticle sensor. In this study, a linear
regression model was applied to the concentration-only tests. As shown in Table S2, the
slopes of the three repeated concentration-only tests are 1.11 ± 0.097, 1.13 ± 0.086, and
1.07 ± 0.090. The intercepts of the three repeated tests are −7.39 ± 2.44, −8.98 ± 2.02 and
−6.68 ± 2.93 ppb.
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We evaluated the performance of the formaldehyde sensors both as a group and
individually (Section 2.6 describes the performance metrics). Table 2 shows the perfor-
mance metrics for the eight sensors evaluated as a group. Figure 3 and Table S2 show the
performance metrics for individual sensors.

Table 2. Performance metrics of all sensors as a group in three repeated concentration-only tests.

Metrics Average Standard Deviation

R2 0.964 0.012
LOD (ppb) 11.3 2.07

RMSE (ppb) 3.96 0.33
NRMSE% 6.23 0.33

a. Linearity of response

As shown in Figures 2 and 3A, the sensors demonstrated an R2 > 0.98 for individual
sensors and an R2 > 0.95 as a group within the target formaldehyde concentration range of
0–50 ppb. Linearity of formaldehyde sensor response has been widely reported in previ-
ous laboratory studies, and linear regression models have often been applied to evaluate
formaldehyde sensors compared to research-grade instrumentation. Alonso et al. [37] re-
ported an R2 = 0.775 using OLS in their evaluation of low-cost micro fuel cell formaldehyde
sensors over the concentration range of 17.3–477.1 ppb (22–606 µg/m3). Hu et al. [30]
fabricated a LaFeO3 thin-film formaldehyde sensor and reported an R2 = 0.993 over the
concentration range of 0.05–1 ppm in a laboratory test. An R2 value greater than 0.75 is
generally considered as a strong agreement between a low-cost sensor and a reference
instrument [16,18]. Therefore, our sensors demonstrate a good linearity of response.

b. Limit of detection

In this study, the LOD (Figure 3B) was calculated based on the linear regression of the
sensor response vs. the BBCEAS. Our results show that the individual LOD of the sensors
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ranged from 2.86–9.73 ppb. As a group, the sensors demonstrated an LOD of 11.3± 2.07 ppb.
Overall, the sensors exhibit an LOD that is lower than those reported in previous laboratory
studies. Alolaywi et al. [38] evaluated an electrochemical formaldehyde sensor and reported
a LOD of 60 ppb. Evaluations of nanomaterial-based formaldehyde sensors have reported
LODs ranging from 50–90 ppb [27,40,53]. It is important for low-cost sensors to be capable
of measuring relevant levels of formaldehyde. Hun et al. [31] reported a mean indoor
formaldehyde concentration of 17 ppb. Typical ambient formaldehyde concentrations
in urban areas of the U.S. range from 11–20 ppb [54] with some industrial areas of the
U.S. reporting higher levels of formaldehyde (24–66 ppb) [55]. Our low LOD suggests the
potential of using the sensors to measure indoor and ambient levels formaldehyde.

c. Sensor accuracy

The accuracy of the sensors was characterized by RMSE (Figure 3C) and NRMSE
(Figure 3D). In the three repeated concentration-only tests, the individual RMSE ranged
from 1.84 ppb to 10.1 ppb, and the individual NRMSE ranged from 2.9% to 16.8%. Sensor
S6 and S8 exhibited higher RMSEs (8.76 ± 1.01 ppb and 7.22 ± 1.95 ppb, respectively)
compared to the rest of the sensors. As a group, the eight sensors demonstrated an RMSE
of 3.96 ± 0.33 and an NRMSE of 6.23 ± 0.33%, indicating low errors between the measure-
ments of the low-cost sensors and the reference instrument. Although accuracy criteria for
low-cost formaldehyde sensors do not exist, for discussion purposes, we compared the
RMSE and NRMSE values of the formaldehyde sensors to EPA’s criteria for low-cost ozone
sensors (RMSE ≤ 5 ppb) [56] and particulate matter sensors (NRMSE ≤ 30%) [57]. These
comparisons suggest that the sensors evaluated in this study would meet EPA guidelines
for low-cost sensor accuracy.

Limited laboratory studies have reported RMSE or NRMSE for formaldehyde sensors.
Song et al. [58] developed an yttrium-doped ZnO sensor array with a back propagation
neural network model, reporting an RMSE of 0.892 ppm over a formaldehyde concentration
range of 5–45 ppm in a chamber test. In this study, the individual MAE of the sensors in
three repeated tests ranged from 1.53 ppb to 10.1 ppb, as shown in Table S2. Sensor S6 and
S8 demonstrated higher MAEs (8.66 ± 1.02 ppb and 7.04 ± 1.82 ppb, respectively) com-
pared to the rest of the sensors in the three repeated concentration-only tests. Chattopad-
hyay et al. [26] evaluated both electrochemical (MAE ranging from 70.8 ppb to 78.8 ppb)
and metal oxide (MAE ranging from 154 ppb to 335 ppb) formaldehyde sensors over a
concentration range of 10–800 ppb in a laboratory environment. Our results demonstrated
lower measurement error between the low-cost sensors and the reference instrument.

d. Sensor repeatability

In addition to accuracy, repeatability is another important factor in the evaluation of
low-cost sensors. As discussed in Section 2.6, we conservatively estimated the CV of the
eight sensors, which ranged from 1.36 to 6.41% (Table S3). Some previous studies [28,29,59]
reported that the formaldehyde sensors demonstrated good repeatability by repeatedly
exposing the sensors to the same formaldehyde concentration. However, these studies lack
quantitative evaluation of the repeatability. Alonso et al. [37] reported a CV of 20%, 14.86%
and 14.82% for three different models of a micro fuel cell formaldehyde sensor. Although
CV criteria for low-cost formaldehyde sensors do not exist, EPA recommends CV ≤ 30%
for both ozone [56] and PM2.5 [57] sensors. Our conservative estimation indicates that the
low-cost formaldehyde sensors have acceptable repeatability.

e. Response time

Table S4 summarizes the response time for sensor S1-S4 in the concentration-only tests.
In general, the response time increased as the formaldehyde concentration increased. We
observed a minimum response time of 131 s and a maximum response time of 439 s over the
formaldehyde concentration range of 17.2–60.1 ppb. Our sensors demonstrate comparable
response times to previous studies. Descamps et al. [39] evaluated a hand-held fluorescence-
based sensor in the laboratory and reported a response time of 180 s for formaldehyde
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concentrations ranging from 0–30 ppb. Evaluations of thin-film semiconductor sensors
presented response times of less than 120 s for ppm-level formaldehyde concentrations [60].

f. Inter-sensor variability

Although the eight sensors were purchased from the same distributor at the same time,
some inter-sensor variability still existed. As a result, even though the sensors were exposed
to the same formaldehyde concentration, they exhibited slightly different responses, which
were reflected in their slopes, intercepts, R2 values, LODs, RMSEs, NRMSEs and MAEs
(Table S2). This study also evaluated inter-sensor variability using the ICC. Sensors S1-S8
showed an ICC of 0.551, which corresponds to moderate variability (ICC: 0.50–0.75) [49].
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3.2. Environmental Simulation Tests

We evaluated the effects of temperature and RH on sensor response and developed an
MLR model for sensor response (Figure 4 and Figure S4). MLR is a commonly used model
to estimate gas concentrations from the low-cost sensors, and common parameters include
target gas concentration, temperature, RH and interferent gases [18]. This evaluation used
a Box-Behnken experimental design (described in Section 2.4).

The metrics of R2 and RMSE helped determine the optimum input parameters for the
MLR model. Specifically, we observed the R2 and RMSE as we added input variables to
the model in the sequence of concentration, temperature, RH, and intercept (Figure 5 and
Table S5). Group R2 was the best (R2 = 0.878) when including concentration, temperature,
and RH in the MLR model. R2 dropped to 0.751 for the group after adding the intercept
term. Individually, R2 for each sensor was also the best when ignoring the intercept term.
In addition, the p-value and 95% confidence interval (95% CI) of the intercept indicated that
this intercept term was not significant (Table S6). The group RMSE was similar with and
without the intercept term (RMSE = 13.32 ppb, RMSE = 13.28, respectively). Consequently,
the intercept term was ignored in the MLR model.
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Figure 5. R2 and RMSE for the MLR model variable selection: (A) R2 and (B) RMSE. The following pa-
rameters were added sequentially: concentration (C), temperature (T), relative humidity (RH) and the
intercept. Results were included for the group of all eight sensors as well as for the individual sensors.

The resulting MLR relationship for the eight sensors was given by:

ŷ = 0.552 ∗ c + 0.399 ∗ T − 0.142 ∗ RH (13)

where ŷ is the predicted sensor signal, c is the formaldehyde concentration, T is the tempera-
ture, and RH is the relative humidity. The equation indicates that sensor response is largely
dependent on formaldehyde concentration (p-value = 1.01 × 10−31), positively related to
temperature (p-value = 3.06 × 10−12) and negatively related to RH (p-value = 1.02 × 10−7).
If the low-cost sensors are used to predict formaldehyde concentration, the MLR model
could be converted into:

c = 1.812 ∗ ŷ− 0.723 ∗ T + 0.257 ∗ RH (14)

Temperature and RH can affect the baseline and sensitivity of electrochemical sen-
sors [50,61]. Some previous studies have shown that temperature can possibly affect the
electrodes of the electrochemical sensors [25] and RH may affect the humidity equilibrium
between sample gas and the electrodes [24]. Over the long term, RH also changes the
electrolyte chemistry, resulting in a change in zero current and sensitivity [33,34,36]. In
addition, sensor type, sensor material, experimental setup and model selection could also
affect the sensor response to different temperature and RH conditions.

a. Sensor response to temperature and RH
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Alonso et al. [37] evaluated the effects of temperature and RH on the performance of a
micro fuel cell formaldehyde sensor using three different models (OLS, ML, and REML).
Their laboratory evaluation included a formaldehyde concentration range of 17.3–477.1 ppb
(22–606 µg/m3), a temperature range of 19.9–27.7 ◦C and an RH range of 26.8–72.6%.
Their OLS model indicated that both temperature and RH were significant factors for the
sensor performance (temperature negatively related and RH positively related). However,
the other two models in their study showed that RH was not a significant parameter;
temperature significant and was positively related to sensor performance.

Chattopadhyay et al. [26] compared the performance of three different formaldehyde
sensors over the temperature range of 22–50 ◦C and the RH range of 8–85% by looking into
the MAE of each sensor compared to a reference instrument (Gasera One Formaldehyde).
Their study showed that both metal oxide sensors (SGP30, BME680) and electrochemical
sensor (ZE08-CH2O) were sensitive to increasing temperature. Specifically, the metal oxide
sensors exhibited larger MAEs when temperature was above 45 ◦C. The electrochemical
sensor (ZE08-CH2O) appeared to be insensitive to RH and exhibited a consistently low
measurement MAE (29.43 ppb) over the RH range (8–85%). The BME680 sensor showed
low MAE (48.33 ppb) at higher humidity (RH% > 45%) but high MAE (> 500 ppb) when RH
is below 40%. The SGP30 sensor exhibited high sensitivity to humidity with an increasing
MAE as humidity increased. However, they did not quantitatively evaluate the relationship
of temperature and RH on sensor response.

b. Effects of RH

Previous studies reported different effects of RH on sensor response. Descamps
et al. [39] found that an increased RH from 0% to 72.5% reduced their fluorescence-based
sensor signal for indoor formaldehyde measurements. Chen et al. [60] reported that a
Ga-doped ZnO sensor with Ag paste and Pt wires was not significantly affected by RH
(0 to 70 ± 10%). Alolaywi et al. [38] studied the influence of RH on a MoOx/carbon
nanocomposite-based electrochemical sensor at room temperature and found that increas-
ing RH from 65% to 90% led to an increased signal response when exposed to 1 ppm
formaldehyde gas.

3.3. Preliminary Cross-Sensitivity Tests

Table S7 summarizes the preliminary cross-sensitivity results. It shows a decrease in
sensor signal when exposed to CO, NO, or NO2, compared to the average sensor signal
when exposed to zero air. This decrease was statistically significant (t-test, p-value < 0.01).
Isobutylene at a concentration of 100 ppb did not appear to affect the sensor signal (t-test,
p-value > 0.06). In general, previous studies have reported cross sensitivity of electrochemi-
cal sensors to common air pollutants, including ozone (O3) cross sensitivity to NO2, and
CO cross sensitivity to NO and NO2 [50]. Previous studies have also reported laboratory
cross-sensitivity results for different types of formaldehyde sensors. Chang et al. [12]
reported responses to ethanol, water vapor, oxygen and acetone that were 7 times lower
than to formaldehyde for their functionalized phosphomolybdic acid (PMA)-based sensor.
Li et al. [59] found that their hollow TiO2 microsphere sensor had a 10 times greater response
to formaldehyde compared to methylbenzene, methanol, ethanol, acetone, and ammonia
(3 ppm of formaldehyde and 3 ppm of potential interferent gas, at a temperature of 20 ◦C
and an RH of 40%). Gautam et al. [28] reported that their Si-chip assisted MOS/SiNWs
nanocomposite-based sensor had double the response to formaldehyde, compared to
methanol, ethanol and acetone (1 ppm of interferent gas and 1 ppm of formaldehyde at
room temperature). In summary, our study suggests that the SFA30® is also sensitive to
CO, NO and NO2. However, additional study is needed to further understand this sensor’s
selectivity to formaldehyde in the presence of other relevant atmospheric trace gases.

3.4. Limitations

This study has several limitations. First, the experimental setup did not permit the
study of sensor performance when temperature was below 0 ◦C or RH exceeded 77%.
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Second, we performed preliminary cross-sensitivity tests that included only a limited
number of species (CO, NO, NO2, and isobutylene) concentrations. This preliminary
cross-sensitivity study did not evaluate e the magnitude of this cross sensitivity or other po-
tentially relevant species or mixtures of species. In the ambient environment, formaldehyde
is part of a complex mixture of traces gases. However, this is a first step at understanding
sensor performance. More sophisticated models [15,26] might be developed to evaluate
sensor performance in an ambient environment.

4. Conclusions

This study comprehensively evaluated eight low-cost electrochemical formaldehyde
sensors over a formaldehyde concentration range of 0–76 ppb in the laboratory, with a
high-accuracy reference instrument (BBCEAS). In general, the sensors exhibited a good
linearity of response (R2 > 0.98 individually and > 0.95 as a group), low LOD (2.86–9.73 ppb
individually and 11.3 ± 2.07 ppb as a group), good accuracy (1.84–10.1 ppb RMSE and
2.9–16.8% NRMSE individually, 3.96 ± 0.33 ppb RMSE and 6.23 ± 0.33% NRMSE as a
group), acceptable repeatability (1.36–6.41% CV individually), moderate inter-sensor vari-
ability (ICC = 0.551) and reasonably rapid response (131–439 s). The effects of temperature
(target range of 0–40 ◦C) and RH (target range of 0–75%) were also systematically inves-
tigated with a Box-Behnken experimental design and an MLR model. The MLR model
indicates that sensor response is largely dependent on formaldehyde concentration, posi-
tively related to temperature and negatively related to RH. Overall, this study is important
for understanding the performance of low-cost electrochemical formaldehyde sensors. It
also reveals the feasibility of applying the sensors to field measurement of formaldehyde in
the future.
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