
Citation: Xu, H.; Pan, H.; Li, J.

Surface Defect Detection of Bearing

Rings Based on an Improved

YOLOv5 Network. Sensors 2023, 23,

7443. https://doi.org/10.3390/

s23177443

Academic Editor: Jiawei Xiang

Received: 19 July 2023

Revised: 14 August 2023

Accepted: 23 August 2023

Published: 26 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Surface Defect Detection of Bearing Rings Based on an
Improved YOLOv5 Network
Haitao Xu 1,2, Haipeng Pan 1,2,* and Junfeng Li 1,2

1 School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
18357660258@163.com (H.X.); ljf2003@zstu.edu.cn (J.L.)

2 Changshan Research Institute, Zhejiang Sci-Tech University, Quzhou 324299, China
* Correspondence: pan@zstu.edu.cn

Abstract: Considering the characteristics of complex texture backgrounds, uneven brightness, varying
defect sizes, and multiple defect types of the bearing surface images, a surface defect detection method
for bearing rings is proposed based on improved YOLOv5. First, replacing the C3 module in the
backbone network with a C2f module can effectively reduce the number of network parameters
and computational complexity, thereby improving the speed and accuracy of the backbone network.
Second, adding the SPD module into the backbone and neck networks enhances their ability to
process low-resolution and small-object images. Next, replacing the nearest-neighbor upsampling
with the lightweight and universal CARAFE operator fully utilizes feature semantic information,
enriches contextual information, and reduces information loss during transmission, thereby effectively
improving the model’s diversity and robustness. Finally, we constructed a dataset of bearing ring
surface images collected from industrial sites and conducted numerous experiments based on this
dataset. Experimental results show that the mean average precision (mAP) of the network is 97.3%,
especially for dents and black spot defects, improved by 2.2% and 3.9%, respectively, and that the
detection speed can reach 100 frames per second (FPS). Compared with mainstream surface defect
detection algorithms, the proposed method shows significant improvements in both accuracy and
detection time and can meet the requirements of industrial defect detection.

Keywords: bearing ring; surface defect detection; deep learning; YOLOv5

1. Introduction

As a component that plays a role in fixing and reducing the load friction in mechanical
transmission processes, bearings are widely used to guide the rotational motion of shaft
parts and withstand the loads transmitted by the shaft to the frame. The quality of the
bearings in mechanical equipment has a significant impact on the stability of the entire
equipment operation. However, during the production and assembly process of bearings,
surface defects are inevitable due to factors such as materials, processing, assembly, and
transportation. Common surface defect types include cracks, black spots, scratches, dents,
forging waste, helical marks, undersized inner and outer ring chamfers, and incorrect
character engraving, among others. These defects affect not only the appearance and
quality of the bearings but also their service life and performance. Therefore, quality
inspection of bearings must be carried out before they leave the factory.

In recent years, with the development of machine vision and deep learning technolo-
gies, many defect detection methods based on machine vision and deep learning have
been widely applied in various industrial scenarios, mainly including solar energy [1,2],
transportation [3,4], textile [5,6], medical [7–9], metal materials [10–12], and other fields.
However, machine vision inspection methods for surface defects on bearings are not
commonly utilized.

Currently, bearing surface defect detection methods can be roughly divided into two
categories. One is traditional machine vision-based detection methods, Liu et al. [13]

Sensors 2023, 23, 7443. https://doi.org/10.3390/s23177443 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23177443
https://doi.org/10.3390/s23177443
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-8736-0716
https://orcid.org/0000-0002-1207-3317
https://doi.org/10.3390/s23177443
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23177443?type=check_update&version=1

Sensors 2023, 23, 7443 2 of 23

proposed an automatic synthetic tiny defect detection system for bearing surfaces with
self-developed software and hardware, thresholding segmentation, contour extraction,
contour filtering, center location, region zoning, and text recognition are successively
implemented, but this method cannot detect small or too large defects. Jiang et al. [14]
proposed a cloud model-improved EEMD with superior performance in reducing multiple
background noise and then proposed a rolling bearing defect detection scheme based on
this method, but this method will adversely affect the fault feature extraction. Li et al. [15]
proposed a technique using the generalized synchrosqueezing transform (GST) guided
by enhanced TF ridge extraction to detect the existence of the bearing defects. Wang
et al. [16] proposed a synthetic detection technique that uses a combination of empirical
mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and a deep
belief network (DBN) to improve the accuracy of the acoustic defective bearing detector.
The alternative is deep learning-based detection methods. Tabernik et al. [17] proposed a
segmentation-based deep learning method for defect detection. The method first converts
vibration signals into two-dimensional grayscale images in a time-frequency representation.
Multiple binary segmentation models are then used to segment the images and obtain
masks of the defect regions. Finally, a classification model is used to classify each defect
region, which enables the detection and segmentation of surface cracks with a few defective
samples. Xu et al. [18] proposed an unsupervised neural network approach based on
autoencoder networks for bearing fault detection. The method preprocesses bearing images
using a normalization algorithm that preserves the symmetry of the samples and uses
gradients as labels to automatically detect surface defects on bearings. However, this
method does not consider information such as the types, locations, or sizes of bearing
defects but simply distinguishes defects from normal regions. Lei et al. [19] proposed
a segmented embedded rapid surface defect detection (SERDD) method that achieves a
bidirectional fusion of image processing and defect detection. The method uses the spatial
pyramid character proportion matching (SPCPM) method for character recognition and
the image self-stitching and cropping (ISSC) method to solve the problem of truncated
characters during coordinate transformation and the recognition of imprinted characters
on the dust covers of bearings. Li et al. [20] proposed a real-time steel strip surface defect
detection method based on an improved YOLO detection network. The method improves
the structure and loss function of the YOLO network and adds an attention mechanism
and a multiscale feature fusion module. The mAP for six types of defects reached 97.55%,
and the FPS reached 83. Fu et al. [21] proposed a two-stage attention-aware method based
on convolutional neural networks for detecting oil leakage in bearings. They used a novel
attention-aware network called APP-UNet16, which stacks attention to allow for adaptive
changes in attention-aware features. However, this method requires precise positioning of
the bearings. Kumar et al. [22] proposed a bearing defect size estimation method based on
a wavelet transform and a deep convolutional neural network (DCNN). The method uses
a continuous wavelet transform to process vibration signals and form two-dimensional
grayscale images in a time-frequency representation. Then, the DCNN is used to learn the
bearing defects and extract high-level features from the images, and the trained grayscale
images are applied to the DCNN. However, this method relies on the selection of wavelet
transform parameters, which may cause distortion and time-frequency information loss
if the parameters are not properly chosen. Song et al. [23] proposed an object detection
algorithm based on YOLOv4. The method modifies the loss function to a focal loss function
to eliminate the problem of bearing background interference and uses a smooth activation
function to improve the gradient descent optimization process.

The application prospects of object detection technology based on deep learning theory
in the detection of surface defects in bearings are very promising, but there are still some
difficulties. This is because the background texture of the bearing rings is complex, the
sizes of the defects are different, the types are diverse, and the brightness is uneven. In
addition, the production environment of bearings has a large amount of oil and dust, which
can interfere with the bearing images. Based on this, in combination with the optical

Sensors 2023, 23, 7443 3 of 23

characteristics, imaging characteristics, and detection requirements of the bearing rings,
an improved YOLOv5 defect detection network is proposed, and an automatic detection
system for surface defects of bearings is developed, which is applied industrially. The
primary contributions of this study are as follows:

1. The C3 module in the main network is replaced with a C2f module, which not only
reduces the number of parameters and computational complexity but also yields
features with higher levels of semantics and globality.

2. A new CNN module is constructed, and the SPD module is introduced into both the
main and neck networks, thereby improving the ability to detect low-resolution and
small-object images.

3. A lightweight and universal upsampling operator, CARAFE, is utilized to enrich
contextual information, reduce information loss during transmission, and enhance
both the defect detection capability and the diversity and robustness of the network.

The remainder of this paper is organized as follows. Section 2 introduces the bearing
defect detection system. Section 3 presents the detection method in detail, including
details network structure of the improved YOLOv5 and loss function. Section 4 provides
experimental validation of our method. Finally, Section 5 is the conclusion of our work.

2. Bearing Defect Detection System
2.1. Bearing Defect Detection Device

The bearing defect visual inspection device designed and developed in this study,
as shown in Figure 1, consists of three main parts: mechanical transmission, machine
vision, and electrical control. The mechanical transmission section is composed of a frame,
motor, belt, and cylinder, which transports the bearings to various inspection stations. The
machine vision section is composed of an industrial camera, vision light source, industrial
computer, and inspection system software, which provides high-quality imaging of the
transported bearings and achieves the precise and real-time detection of various defects.
The electrical control section is composed of a PLC and photoelectric sensors, which trigger
the industrial camera and vision light source and reject defective products. Table 1 shows
the system equipment models.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 22

In addition, the production environment of bearings has a large amount of oil and dust,
which can interfere with the bearing images. Based on this, in combination with the optical
characteristics, imaging characteristics, and detection requirements of the bearing rings,
an improved YOLOv5 defect detection network is proposed, and an automatic detection
system for surface defects of bearings is developed, which is applied industrially. The pri-
mary contributions of this study are as follows:
1. The C3 module in the main network is replaced with a C2f module, which not only

reduces the number of parameters and computational complexity but also yields fea-
tures with higher levels of semantics and globality.

2. A new CNN module is constructed, and the SPD module is introduced into both the
main and neck networks, thereby improving the ability to detect low-resolution and
small-object images.

3. A lightweight and universal upsampling operator, CARAFE, is utilized to enrich
contextual information, reduce information loss during transmission, and enhance
both the defect detection capability and the diversity and robustness of the network.
The remainder of this paper is organized as follows. Section 2 introduces the bearing

defect detection system. Section 3 presents the detection method in detail, including de-
tails network structure of the improved YOLOv5 and loss function. Section 4 provides
experimental validation of our method. Finally, Section 5 is the conclusion of our work.

2. Bearing Defect Detection System
2.1. Bearing Defect Detection Device

The bearing defect visual inspection device designed and developed in this study, as
shown in Figure 1, consists of three main parts: mechanical transmission, machine vision,
and electrical control. The mechanical transmission section is composed of a frame, motor,
belt, and cylinder, which transports the bearings to various inspection stations. The ma-
chine vision section is composed of an industrial camera, vision light source, industrial
computer, and inspection system software, which provides high-quality imaging of the
transported bearings and achieves the precise and real-time detection of various defects.
The electrical control section is composed of a PLC and photoelectric sensors, which trig-
ger the industrial camera and vision light source and reject defective products. Table 1
shows the system equipment models.

Figure 1. Bearing defect detection device.

Figure 1. Bearing defect detection device.

Sensors 2023, 23, 7443 4 of 23

Table 1. System equipment model.

Equipment Type

Camera MV-CE200-10GM

Camera lens MVL-KF5028M-12MP
DH230-WTLN23

Light source LTS-3DM260-R/W
LTS-3DM260-R/W

PLC FX3GA-40MR-CM

2.2. Bearing Defect Type

The formation of bearing defects occurs mainly during raw material processing,
loading and unloading, transportation, and measurement. The defects include mainly
helical marks, forging waste, black spots, dents, and scratches. In the forging process,
temperature differences can cause forging waste to form. During the turning process, slight
displacement due to high-speed machine operation can result in excessive cutting and
cause helical marks or scratches. In the rust prevention process, uneven application of
rust-preventive oil and the humid production environment can cause rust and black spots
to form on the bearings. During transportation, collisions on the surfaces of the bearings
can cause dents and scratches.

(1) Helical marks

A helical mark defect, shown in the red box of Figure 2a, appears as a spiral-shaped
thread on the outer diameter of the roller, resembling knife-like scratches caused by sharp
burrs and edges on the grinding wheel, guide wheel, and cutting plate. The color is usually
black, with a size of 0.5 × 1.0 mm or more.

(2) Forging waste

A forging waste defect, shown in the red box of Figure 2b, is an unground portion left
during the grinding process. The color is usually black, with a size of 1.0 × 1.0 mm or more.

(3) Black spots

A black spot defect, shown in the red box of Figure 2c, is a discolored pitting caused
by chemical etching on the surface, usually appearing as dark spots. The color is usually
black, with a size of 0.3 × 0.3 mm or more.

(4) Dents

A dent defect, shown in the red box of Figure 2d, is caused mainly by local sinking
and protrusion on the surfaces of the bearing parts due to collisions during the production,
loading, unloading, and transportation processes. The color is usually white, with a size of
0.5 × 0.5 mm or more.

(5) Scratches

A scratch defect, shown in the red box of Figure 2e, is a surface defect with a certain
depth that appears as a linear scratch and is mainly caused by the processing, loading,
unloading, and measurement of the workpiece. The color is usually black, with a size of
0.1 × 0.1 mm or more.

Sensors 2023, 23, 7443 5 of 23Sensors 2023, 23, x FOR PEER REVIEW 5 of 22

Figure 2. Images of different types of defects in bearings.

3. Bearing Rings Defect Detection Model Based on the Improved YOLOv5
3.1. Network Structure of the Improved YOLOv5

YOLOv5 employs CSPDarknet53 as the backbone network and combines a feature
pyramid network (FPN) and path aggregation network (PAN) as the neck network to fuse
the features extracted from the backbone [24]. The main part of the output head consists
of three Detect detectors, which perform object detection using grid-based anchors on fea-
ture maps of different scales.

In the YOLOv5 network, strided convolutions and pooling layers can lead to the loss
of fine-grained information and a decrease in feature extraction ability. The parameter and
computational complexities of the C3 module, which affect the detection speed, are rela-
tively high. Moreover, in the neck network, the use of the nearest-neighbor interpolation
algorithm for feature map sampling can result in obvious jaggedness, leading to missing
feature details and structural information in the feature map. Bearing defects such as hel-
ical marks, forging waste, black spots, dents, and scratches have different sizes and
shapes, requiring the effective fusion of shallow and high-level semantic information
across different scales of features. Based on this, to achieve the high-precision and high-
efficiency detection of bearing defects on the surfaces of bearing races in complex scenes,
this paper proposes an improved YOLOv5 network, as shown in Figure 3. The network
consists of three parts: the backbone, neck, and head. The backbone is used for feature
extraction, the neck is used for the multiscale fusion of features extracted from different
levels of the backbone using both top-down and bottom-up approaches, and the output is
used for object detection and classification.

The backbone network performs five downsampling operations on the input through
convolution, batch normalization, and SiLU activation function-based CBS downsam-
pling modules.

In this paper, we use the SPD module to replace the previous Conv layer for
downsampling, which increases the number of channels in the feature maps. The ability
to detect low-resolution images and small objects is improved while maintaining the res-
olution of the feature map, which improves the model expression and generalization abil-
ity. Additionally, a C2f module is utilized to extract features. In contrast to the C3 module,
C2f uses separable convolution and concatenation operations to enable the fusion of fea-
ture maps with different numbers of channels. In the neck, we employ CARAFE for up-
sampling, which preserves more detailed feature information and structural information,
thereby improving the quality and accuracy of the upsampling operation.

Figure 2. Images of different types of defects in bearings.

3. Bearing Rings Defect Detection Model Based on the Improved YOLOv5
3.1. Network Structure of the Improved YOLOv5

YOLOv5 employs CSPDarknet53 as the backbone network and combines a feature
pyramid network (FPN) and path aggregation network (PAN) as the neck network to fuse
the features extracted from the backbone [24]. The main part of the output head consists of
three Detect detectors, which perform object detection using grid-based anchors on feature
maps of different scales.

In the YOLOv5 network, strided convolutions and pooling layers can lead to the loss
of fine-grained information and a decrease in feature extraction ability. The parameter
and computational complexities of the C3 module, which affect the detection speed, are
relatively high. Moreover, in the neck network, the use of the nearest-neighbor interpolation
algorithm for feature map sampling can result in obvious jaggedness, leading to missing
feature details and structural information in the feature map. Bearing defects such as
helical marks, forging waste, black spots, dents, and scratches have different sizes and
shapes, requiring the effective fusion of shallow and high-level semantic information across
different scales of features. Based on this, to achieve the high-precision and high-efficiency
detection of bearing defects on the surfaces of bearing races in complex scenes, this paper
proposes an improved YOLOv5 network, as shown in Figure 3. The network consists of
three parts: the backbone, neck, and head. The backbone is used for feature extraction,
the neck is used for the multiscale fusion of features extracted from different levels of the
backbone using both top-down and bottom-up approaches, and the output is used for
object detection and classification.

The backbone network performs five downsampling operations on the input through
convolution, batch normalization, and SiLU activation function-based CBS downsam-
pling modules.

In this paper, we use the SPD module to replace the previous Conv layer for down-
sampling, which increases the number of channels in the feature maps. The ability to detect
low-resolution images and small objects is improved while maintaining the resolution of
the feature map, which improves the model expression and generalization ability. Addi-
tionally, a C2f module is utilized to extract features. In contrast to the C3 module, C2f uses
separable convolution and concatenation operations to enable the fusion of feature maps

Sensors 2023, 23, 7443 6 of 23

with different numbers of channels. In the neck, we employ CARAFE for upsampling,
which preserves more detailed feature information and structural information, thereby
improving the quality and accuracy of the upsampling operation.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 22

SPPF

C2f

CBS

Carafe

concat

32*320*320

3*640*640

CBS

C3

concat C3

concat

C3

concat

C3

Backbone
Neck Head

128*80*80

256*40*40

512*20*20

SPD

C2f

SPD

SPD

SPD

SPD

SPD

C2f

C2f

CBS

CBS

CBS

Carafe

CBS

CBS

CBS

CBS

Detect

Detect

Detect

512*20*20

256*40*40

128*80*80

Figure 3. Network structure of the improved YOLOv5.

The backbone network is a convolutional neural network that extracts features of
different sizes from the input image through multiple convolutions and SPD modules.
The input image size is 640 × 640 pixels, and the backbone network generates five layers
of feature maps after 2, 4, 8, 16, and 32 downsampling operations. The sizes of these fea-
ture maps are 320 × 320, 160 × 160, 80 × 80, 40 × 40, and 20 × 20, respectively.

To obtain more contextual information and reduce information loss during transmis-
sion, the neck network fuses the feature maps of the third, fourth, and fifth layers of the
backbone network to enhance the feature fusion capability of the neck network. During
the fusion process, the FPN structure transmits shallow semantic information from the
top down, while the PAN structure transmits deep semantic information from the bottom
up. These two structures jointly enhance the feature fusion capability of the neck network,
and after feature fusion, three new feature maps are generated through three output lay-
ers. These three output layers are the shallow, middle, and deep layers, and the output
sizes are 80 × 80 × 128, 40 × 40 × 256, and 20 × 20 × 512, respectively, where 128, 256, and
512 represent the numbers of channels. The smaller a feature map is, the larger the image
area represented by each grid cell in the feature map. The shallow feature map is suitable
for detecting small targets, the middle feature map is suitable for detecting medium

Figure 3. Network structure of the improved YOLOv5.

The backbone network is a convolutional neural network that extracts features of
different sizes from the input image through multiple convolutions and SPD modules. The
input image size is 640 × 640 pixels, and the backbone network generates five layers of
feature maps after 2, 4, 8, 16, and 32 downsampling operations. The sizes of these feature
maps are 320 × 320, 160 × 160, 80 × 80, 40 × 40, and 20 × 20, respectively.

Sensors 2023, 23, 7443 7 of 23

To obtain more contextual information and reduce information loss during transmis-
sion, the neck network fuses the feature maps of the third, fourth, and fifth layers of the
backbone network to enhance the feature fusion capability of the neck network. During
the fusion process, the FPN structure transmits shallow semantic information from the top
down, while the PAN structure transmits deep semantic information from the bottom up.
These two structures jointly enhance the feature fusion capability of the neck network, and
after feature fusion, three new feature maps are generated through three output layers.
These three output layers are the shallow, middle, and deep layers, and the output sizes
are 80 × 80 × 128, 40 × 40 × 256, and 20 × 20 × 512, respectively, where 128, 256, and 512
represent the numbers of channels. The smaller a feature map is, the larger the image area
represented by each grid cell in the feature map. The shallow feature map is suitable for
detecting small targets, the middle feature map is suitable for detecting medium targets,
and the deep feature map is suitable for detecting large targets. Based on these new feature
maps, the output network performs object detection and classification.

3.2. Space-to-Depth

In the task of detecting surface defects on bearings with low image resolution or small
objects, the performance of convolutional neural networks for computer vision tasks such
as image classification and object detection will rapidly degrade. The reason for this is that
existing CNN architectures use strided convolutions and pooling layers, which lead to the
loss of fine-grained information and the learning of less-efficient feature representations.

The space-to-depth (SPD) [25] module can solve the problems of information loss
and performance degradation caused by traditional strided convolutions or pooling layers
when processing low-resolution images and small objects. The SPD module downsamples
the feature map (X) within the entire network while retaining all the information in the
channel dimension without information loss. A non-strided convolution layer is added
after each SPD layer, which uses learnable parameters in the increased convolutional layer
to reduce the number of channels and reduce the non-discriminatory loss of information.
In this study, we use the SPD module for downsampling and change the stride of the Conv
layer in the layer above the SPD module from 2 to 1.

The original image or intermediate feature map is split into a series of sub-feature
maps by the SPD layer, which are then stacked together, thereby increasing the number of
channels and enlarging the receptive field while reducing the spatial dimensions. For any
intermediate feature map X of size S × S × C, the series of sub-feature maps that are cut
out are

f(0,0) = X[0 : S : scale, 0 : S : scale] (1)

f(scale−1,0) = X[scale− 1 : S : scale, 0 : S : scale] (2)

f(0,scale−1) = X[0 : S : scale, scale− 1 : S : scale] (3)

f(scale−1,scale−1) = X[scale− 1 : S : scale, scale− 1 : S : scale] (4)

In general, given any original feature map X, a sub-map f (x, y) is formed by all the
entries X(i, j) that (i + x) and (j + y) are divisible by scale. Therefore, each sub-map
downsamples X by a factor of scale. When scale = 2, as shown in Figure 4, four sub-feature
maps are obtained, each with a size of (S/2, S/2, C). Meanwhile, X is downsampled
by a factor of 2, and the resulting sub-feature maps are concatenated along the channel
dimension, resulting in a new feature map X′. The spatial dimensions of X′ are one-fourth
of X, while its channel dimension is four times that of X.

The SPD module can reduce the computational complexity by using an SPD layer
instead of strided convolutional or pooling layers. The SPD layer reduces the height
and width of the input feature map by half while increasing the number of channels by

Sensors 2023, 23, 7443 8 of 23

four times, thereby increasing the depth of the feature map and maintaining the total
number of elements, which improves the representation ability and multiscale fusion per-
formance of the feature map. As a result, subsequent C2f layers can perform computations
on a smaller spatial scale without losing information.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 22

targets, and the deep feature map is suitable for detecting large targets. Based on these
new feature maps, the output network performs object detection and classification.

3.2. Space-to-Depth
In the task of detecting surface defects on bearings with low image resolution or small

objects, the performance of convolutional neural networks for computer vision tasks such
as image classification and object detection will rapidly degrade. The reason for this is that
existing CNN architectures use strided convolutions and pooling layers, which lead to the
loss of fine-grained information and the learning of less-efficient feature representations.

The space-to-depth (SPD) [25] module can solve the problems of information loss and
performance degradation caused by traditional strided convolutions or pooling layers
when processing low-resolution images and small objects. The SPD module downsamples
the feature map (X) within the entire network while retaining all the information in the
channel dimension without information loss. A non-strided convolution layer is added
after each SPD layer, which uses learnable parameters in the increased convolutional layer
to reduce the number of channels and reduce the non-discriminatory loss of information.
In this study, we use the SPD module for downsampling and change the stride of the Conv
layer in the layer above the SPD module from 2 to 1.

The original image or intermediate feature map is split into a series of sub-feature
maps by the SPD layer, which are then stacked together, thereby increasing the number
of channels and enlarging the receptive field while reducing the spatial dimensions. For
any intermediate feature map X of size S × S × C, the series of sub-feature maps that are
cut out are

(0,0) [0: : ,0: :]f X S scale S scale= (1)

(1,0) [scale 1: : ,0: :]scalef X S scale S scale− = − (2)

(0, 1) [0: : , 1: :]scalef X S scale scale S scale− = − (3)

(1, 1) [1: : , 1: :]scale scalef X scale S scale scale S scale− − = − − (4)

In general, given any original feature map X, a sub-map 𝑓(𝑥, 𝑦) is formed by all the
entries 𝑋(𝑖, 𝑗) that (𝑖 + 𝑥) and (𝑗 + 𝑦) are divisible by scale. Therefore, each sub-map
downsamples X by a factor of scale. When scale = 2, as shown in Figure 4, four sub-feature
maps are obtained, each with a size of (𝑆/2, 𝑆/2, 𝐶). Meanwhile, X is downsampled by a
factor of 2, and the resulting sub-feature maps are concatenated along the channel dimen-
sion, resulting in a new feature map 𝑋’. The spatial dimensions of 𝑋’ are one-fourth of X,
while its channel dimension is four times that of X.

Figure 4. SPD schematic diagram.

The SPD module can improve the receptive field and localization accuracy by preserving
all information of the input feature map without losing details, such as strided convolutional
or pooling layers. The SPD module can enhance the model performance, particularly in
handling more challenging tasks such as low-resolution images and small objects.

3.3. C3 Module and C2f Module
3.3.1. C3 Module

The C3 module consists of three standard convolutional layers and n bottleneck
modules, where the value of n depends on the model’s scale. It is the primary module
for learning residual features, and its function is to increase the number of channels of
the feature map while maintaining its size, thereby improving the feature representation
performance. The bottleneck modules in the backbone use shortcuts, while those in the
neck do not. As shown in Figure 5, the input feature map enters two branches, one of which
generates a map, namely, sub-feature map 1, by stacking multiple bottleneck modules
and one standard convolutional layer, while the other generates another map, namely,
sub-feature map 2, with only one basic convolutional module. Finally, the two sub-feature
maps are concatenated and output.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 22

Figure 4. SPD schematic diagram.

The SPD module can reduce the computational complexity by using an SPD layer
instead of strided convolutional or pooling layers. The SPD layer reduces the height and
width of the input feature map by half while increasing the number of channels by four
times, thereby increasing the depth of the feature map and maintaining the total number
of elements, which improves the representation ability and multiscale fusion performance
of the feature map. As a result, subsequent C2f layers can perform computations on a
smaller spatial scale without losing information.

The SPD module can improve the receptive field and localization accuracy by pre-
serving all information of the input feature map without losing details, such as strided
convolutional or pooling layers. The SPD module can enhance the model performance,
particularly in handling more challenging tasks such as low-resolution images and small
objects.

3.3. C3 Module and C2f Module
3.3.1. C3 Module

The C3 module consists of three standard convolutional layers and n bottleneck mod-
ules, where the value of n depends on the model’s scale. It is the primary module for
learning residual features, and its function is to increase the number of channels of the
feature map while maintaining its size, thereby improving the feature representation per-
formance. The bottleneck modules in the backbone use shortcuts, while those in the neck
do not. As shown in Figure 5, the input feature map enters two branches, one of which
generates a map, namely, sub-feature map 1, by stacking multiple bottleneck modules and
one standard convolutional layer, while the other generates another map, namely, sub-
feature map 2, with only one basic convolutional module. Finally, the two sub-feature
maps are concatenated and output.

C3 CBS

concatCBS
CBS

Bottleneck

Bottleneck CBS
K=1

CBS
K=3

Shortcut=True

n
Bottleneck

Figure 5. Structure diagram of C3.

3.3.2. C2f Module
The C2f module [26] was designed based on ideas from both the C3 module and

ELAN. It utilizes one fewer CBS convolution than the C3 module and concatenates all the
sub-feature maps output by each bottleneck module, which not only ensures a lightweight
but also produces richer gradient flow information. Feature segmentation and fusion are
achieved using the Split and Concat operations, respectively. Similar to the C3 module,
the bottleneck modules in the backbone network use shortcut connections, while those in
the neck network do not.

According to Figure 6, the size of the input feature map is ℎ × 𝑤 × 𝑐 . After passing
through the CBS, the output size is ℎ × 𝑤 × 𝑐 . The output feature map is split into two
sub-feature maps through the Split operation, and one sub-feature map is processed
through n bottleneck modules. Meanwhile, each sub-feature map output by the bottleneck

Figure 5. Structure diagram of C3.

3.3.2. C2f Module

The C2f module [26] was designed based on ideas from both the C3 module and
ELAN. It utilizes one fewer CBS convolution than the C3 module and concatenates all the

Sensors 2023, 23, 7443 9 of 23

sub-feature maps output by each bottleneck module, which not only ensures a lightweight
but also produces richer gradient flow information. Feature segmentation and fusion are
achieved using the Split and Concat operations, respectively. Similar to the C3 module, the
bottleneck modules in the backbone network use shortcut connections, while those in the
neck network do not.

According to Figure 6, the size of the input feature map is h× w× cin. After passing
through the CBS, the output size is h × w × cout. The output feature map is split into
two sub-feature maps through the Split operation, and one sub-feature map is processed
through n bottleneck modules. Meanwhile, each sub-feature map output by the bottleneck
module is concatenated with a sub-feature map previously split by the Split operation.
Finally, a CBS module is used to output a feature map with the same size as the input.

Figure 6. Structure diagram of C2f.

In the network architecture, the C2f module does not use shortcut connections by
default, while the C3 module uses shortcut connections by default. Compared with the C3
module, the C2f module is of lighter weight and uses fewer parameters and computational
resources while maintaining high accuracy and speed. Its function is to extract feature
maps in the backbone and achieve feature fusion and channel separation through the CSP
structure, improving the quality and efficiency of the feature maps, enhancing the receptive
field and multiscale ability of the feature maps, and obtaining more global and higher-level
semantic features.

3.4. Lightweight Universal Upsampling Operator
3.4.1. Nearest-Neighbor Interpolation

The purpose of an upsampling module is to expand a low-resolution image or feature
map into a high-resolution image or feature map, which can be displayed on higher-
resolution display devices or improve the performance of subsequent tasks. An upsampling
module can be used as an intermediate layer in a convolutional network to expand the
size of the feature map and facilitate tensor concatenation. There are various methods for
implementing upsampling, such as nearest-neighbor interpolation, bilinear interpolation,
bicubic interpolation, trilinear interpolation, deconvolution, and transpose convolution [27].
Upsampling modules are commonly used in tasks such as image segmentation, super-
resolution, and style transfer. Almost all upsampling methods use interpolation, i.e.,
inserting new elements between pixel points using appropriate interpolation algorithms
based on existing image pixels.

In YOLOv5, nearest-neighbor interpolation is used as the default upsampling algo-
rithm. Nearest-neighbor interpolation is the simplest interpolation algorithm, which sets
the grayscale value of the transformed pixel to the grayscale value of the input pixel that is
closest to it. Nearest-neighbor interpolation is implemented through coordinate transforma-

Sensors 2023, 23, 7443 10 of 23

tion, mapping each pixel point in the target image to the original image and then taking the
grayscale value of the original image pixel nearest to the target image pixel as the grayscale
value of the target image pixel, as shown in Figure 7. When an image is enlarged, each
missing pixel is generated directly using the nearest existing color, which means copying
the neighboring pixels. However, this method produces obvious jaggedness. Jaggedness,
commonly referred to as “jagged artifacts”, is a common phenomenon in image processing
and computer graphics. They typically occur when resizing images or performing pixel-
level resampling. The primary cause of this distortion is insufficient image resolution or
inadequate smoothing of image details during image upscaling or resizing. When an image
contains sharp transitions or edges between regions, low-quality interpolation methods,
such as nearest-neighbor interpolation, can lead to abrupt changes in pixel values. This can
result in pronounced jagged edges between edges and regions.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 22

interpolation methods, such as nearest-neighbor interpolation, can lead to abrupt changes
in pixel values. This can result in pronounced jagged edges between edges and regions.

2×2

4×4

Figure 7. Nearest-neighbor interpolation.

3.4.2. CARAFE
CARAFE stands for content-aware reassembly of features [28], which is a lightweight

and universal upsampling operator that can guide the upsampling process based on the
semantic information of the input feature map. Its main strategy is to use a small convo-
lutional network to generate an adaptive upsampling kernel and then to calculate the dot
product of the kernel with the corresponding neighboring pixels in the input feature map
to obtain the upsampled feature map. Compared with traditional upsampling operators
such as nearest-neighbor or bilinear interpolation, CARAFE has a larger receptive field
and better semantic adaptability while introducing very few parameters and not substan-
tially increasing the computational cost.

The network structure of CARAFE consists of two parts, as shown in Figure 8. One
part is the kernel prediction module, which is used to generate weights for the kernel used
in the reassembly calculation. The other part is the content-aware reassembly module,
which is used to reassemble the features with the calculated weights.

In Figure 8, a feature map X of size 𝐶 × 𝐻 × 𝑊 is upsampled σ times using CARAFE.
For each position 𝑙 = (𝑖, 𝑗), a kernel is predicted for recombination. First, the channel com-
pression module compresses the channel to 𝐶 to reduce subsequent computation and
enable the use of larger kernels during upsampling. Then, based on the size of the com-
pressed feature map, a convolutional layer of size 𝑘 is used to generate the kernel
for feature recombination, where using a larger 𝑘 expands the receptive field,
while the channel dimensions become 𝜎 × 𝑘 . The new feature map is then recombined
into the feature map of size 𝑘 × 𝜎𝐻 × 𝜎𝑊, and the softmax function is applied to nor-
malize all channels at each position.

' ((,)l l encoderW N X kμ= (5)

'' ((,),)l l up lX N X k Wφ= (6)

For any position in the output X’, there is a corresponding source position 𝑙 = (𝑖, 𝑗)
in the input X, where 𝑖 = , j = . We let 𝑁(𝑋 , 𝑘) be a 𝑘 × 𝑘 subregion of X
centered at position 𝑙. The predicted kernel module 𝜇 predicts the position kernel 𝑊
for each position 𝑙′ based on a subregion of 𝑋 , as shown in Equation (5). In Equation (6),
the perception recombination module ∅ recombines the subregion of 𝑋 with the posi-
tion kernel 𝑊 to obtain 𝑋 ′.

In the YOLOv5 network architecture, the introduction of CARAFE enables the dy-
namic generation of different upsampling kernels at different positions of the input

Figure 7. Nearest-neighbor interpolation.

3.4.2. CARAFE

CARAFE stands for content-aware reassembly of features [28], which is a lightweight
and universal upsampling operator that can guide the upsampling process based on
the semantic information of the input feature map. Its main strategy is to use a small
convolutional network to generate an adaptive upsampling kernel and then to calculate
the dot product of the kernel with the corresponding neighboring pixels in the input
feature map to obtain the upsampled feature map. Compared with traditional upsampling
operators such as nearest-neighbor or bilinear interpolation, CARAFE has a larger receptive
field and better semantic adaptability while introducing very few parameters and not
substantially increasing the computational cost.

The network structure of CARAFE consists of two parts, as shown in Figure 8. One
part is the kernel prediction module, which is used to generate weights for the kernel used
in the reassembly calculation. The other part is the content-aware reassembly module,
which is used to reassemble the features with the calculated weights.

In Figure 8, a feature map X of size C× H ×W is upsampled σ times using CARAFE.
For each position l = (i, j), a kernel is predicted for recombination. First, the channel
compression module compresses the channel to Cm to reduce subsequent computation
and enable the use of larger kernels during upsampling. Then, based on the size of the
compressed feature map, a convolutional layer of size kencoder is used to generate the kernel
for feature recombination, where using a larger kencoder expands the receptive field, while
the channel dimensions become σ2 × k2

up. The new feature map is then recombined into
the feature map of size k2

up × σH × σW, and the softmax function is applied to normalize
all channels at each position.

Wl′ = µ(N(Xl , kencoder) (5)

Xl ′ = φ(N(Xl , kup), Wl′) (6)

Sensors 2023, 23, 7443 11 of 23

For any position in the output X’, there is a corresponding source position l = (i, j)
in the input X, where i =

(
i′
σ

)
, j =

(
j′
σ

)
. We let N

(
Xl , kup

)
be a kup × kup subregion of

X centered at position l. The predicted kernel module µ predicts the position kernel Wl′
for each position l′ based on a subregion of Xl , as shown in Equation (5). In Equation (6),
the perception recombination module ∅ recombines the subregion of Xl with the position
kernel Wl′ to obtain Xl ′.

In the YOLOv5 network architecture, the introduction of CARAFE enables the dynamic
generation of different upsampling kernels at different positions of the input feature map,
adapting to targets of different scales and shapes in various instances and scenarios. The
resulting upscaled feature map, obtained by calculating the inner product with the local
neighborhood of the input feature map, possesses higher resolution and richer detail
information, thereby enhancing the ability to recognize and locate different targets in
object detection tasks. At the same time, with the introduction of only a small number of
parameters and a low computational cost, compared to other upsampling methods, such
as nearest-neighbor interpolation and deconvolution, the model has a smaller size and
faster running speed, thereby meeting the real-time and efficiency requirements of object
detection tasks.

Figure 8. CARAFE schematic diagram.

3.5. Loss Function

A loss function is a function used to calculate the difference between predicted values
and true values. The smaller the value of the loss function is, the closer the predicted output
is to the expected output [29]. In this study, the applied loss function is divided into three
parts: classification loss, localization loss, and confidence loss. The classification loss is used
to determine whether the anchor box and corresponding annotated classification are correct
and represents the probability of belonging to a certain category. The localization loss is
used to predict the error between the predicted box and the annotated box. The confidence
loss is used to calculate the network’s confidence. It represents the probability of there
being an object and typically has a value between 0 and 1, with larger values indicating a

Sensors 2023, 23, 7443 12 of 23

higher probability of there being an object. The overall loss function is a weighted sum of
these three loss functions, as expressed in Equation (7):

LOSS = wboxLbox + wobjLobj + wclsLcls (7)

where wbox, wobj, and wcls are weighting coefficients.
The localization loss Lbox is defined using CIOU as [30]

Lbox = CIOU = 1− IOU +
ρ2(A, B)

c2 + αν (8)

where IOU is the intersection over union between the predicted box and the ground-truth
box, with a larger value indicating a closer match; ρ represents the Euclidean distance
between the center-point coordinates of the ground-truth box A and the predicted box
B; c represents the diagonal distance of the minimum bounding box enclosing both the
predicted box and ground-truth box; α is a weighting coefficient; and ν is used to measure
the consistency between the aspect ratios of A and B.

IOU is defined as
IOU =

A ∩ B
A ∪ B

(9)

where A is the ground-truth bounding box, B is the predicted bounding box, A ∩ B repre-
sents the intersection of A and B, and A ∪ B represents the union of A and B.

α and ν are defined as follows:

α =
ν

1− IOU + ν
(10)

ν =
4

π2

(
arctan

wB

hB − arctan
w
h

)2

(11)

The binary cross-entropy with the logit loss is used for both the classification and
confidence losses in this study, which is defined as follows:

Lcls = Lobj = −
1
n

n

∑
i=1

(yi × ln xi + (1− yi)× ln(1− xi)) (12)

where n represents the number of input samples, yi represents the target values, and xi
represents the predicted output values.

4. Experimental Verification
4.1. Bearing Surface Defect Dataset

The bearing rings defect dataset used in this study was collected from the industrial
field and captured by cameras on a factory production line. The captured images had
a resolution of 5472 × 3468, and each image was approximately 19 MB in size. Images
containing defects were manually cropped into windows of size 640 × 640. Defective
images were selected, and the dataset was categorized based on defect type, including
helical marks, forging waste, black spots, dents, and scratches. The dataset we constructed
is shown in Figure 9. Due to differences in the actual numbers of defects in production,
to ensure training rationality and balance among the defect types, the number of defects
was augmented to 5660. The statistical data for each type of defect after augmentation are
shown in Table 2.

Table 2. Extended defect dataset.

Helical Marks Forging Waste Black Spots Dents Scratches

Expansion 1140 1085 1148 1120 1167

Sensors 2023, 23, 7443 13 of 23

Before training the network with the dataset, it was necessary to divide the dataset
into training, validation, and testing sets based on the sample size and training rationality.
In this study, each type of defect sample was divided into training, validation, and testing
sets at a ratio of 6:2:2. The results of the dataset division are shown in Table 3.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 22

𝑐 represents the diagonal distance of the minimum bounding box enclosing both the pre-
dicted box and ground-truth box; 𝛼 is a weighting coefficient; and ν is used to measure
the consistency between the aspect ratios of 𝐴 and 𝐵. 𝐼𝑂𝑈 is defined as

A BIOU
A B

=

(9)

where 𝐴 is the ground-truth bounding box, 𝐵 is the predicted bounding box, 𝐴 ∩ 𝐵 rep-
resents the intersection of 𝐴 and 𝐵, and 𝐴 ∪ 𝐵 represents the union of 𝐴 and 𝐵. 𝛼 and ν are defined as follows:

1 IOU
να

ν
=

− +
(10)

2

2
4 arctan arctan

B

B

w w
h h

ν
π

= −

(11)

The binary cross-entropy with the logit loss is used for both the classification and
confidence losses in this study, which is defined as follows:

() ()()
i 1

1 ln 1 ln 1
n

cls obj i i i iL L y x y x
n =

= = − × + − × −

(12)

where 𝑛 represents the number of input samples, 𝑦 represents the target values, and 𝑥
represents the predicted output values.

4. Experimental Verification
4.1. Bearing Surface Defect Dataset

The bearing rings defect dataset used in this study was collected from the industrial
field and captured by cameras on a factory production line. The captured images had a
resolution of 5472 × 3468, and each image was approximately 19 MB in size. Images con-
taining defects were manually cropped into windows of size 640 × 640. Defective images
were selected, and the dataset was categorized based on defect type, including helical
marks, forging waste, black spots, dents, and scratches. The dataset we constructed is
shown in Figure 9. Due to differences in the actual numbers of defects in production, to
ensure training rationality and balance among the defect types, the number of defects was
augmented to 5660. The statistical data for each type of defect after augmentation are
shown in Table 2.

Figure 9. Dataset of surface defects of various bearing rings.

Table 3. Bearing training, validation, and test set statistics.

Training Validation Test Total

Helical marks 747 197 196 1140
Forging Waste 721 182 182 1085
Black Spots 761 193 194 1148
Dents 753 184 183 1120
Scratches 783 192 192 1167

4.2. Experimental Setup and Data Enhancement
4.2.1. Experimental Setup

The hardware and software versions used in the experiments are shown in Table 4.

Table 4. Hardware environment and software version.

Configuration

Hardware

Operating System: Linux Ubuntu

CPU: Intel(R) Xeon(R) Platinum 8358P

RAM: 30 G

GPU: RTX A5000

Software Python 3.8.13 + Pytorch 1.10
+ CUDA11.1

The training parameters of the network can also affect the performance of the model.
The parameters used in this study are specified in Table 5.

Sensors 2023, 23, 7443 14 of 23

Table 5. Network training parameters.

Training Parameter Value

Batch Size 32
Dynamic Parameters 0.937

Learning Rate 0.01
Cosine Annealing Learning Rate 0.1

Data Augmentation 1.0
Input Size 640 × 640

Epochs 100

4.2.2. Data Augmentation

To enrich the information on the detected targets and improve the robustness of the
network, data augmentation methods were used during the training process. GridMask [31]
randomly generates a grid-shaped occlusion on an image, with a pixel value of 0 inside
the occlusion, while the classification results remain unchanged. However, this method
may reduce the clarity and quality of the image. RandAugment [32] is an automatic data
augmentation method that randomly selects two transformations from a predefined set
and applies them to an image with a random magnitude. However, it may introduce
some transformations that are too strong or unsuitable, such as color distortion or object
deformation, which can reduce the recognizability of the image.

Mosaic data augmentation [33] is a method of combining four images into one by
selecting four images, resizing them to the same size, randomly selecting a cutting point,
cutting each image into four parts, and then combining different parts of different images
into a new image while preserving the labels of the original images. Finally, other data
augmentation operations, such as random rotation, cropping, scaling, and brightness
adjustment, are applied to the new image. The principle of this method is shown in
Figure 10. Mosaic data augmentation can improve the performance of object detection
tasks, especially for small objects and dense scenes, by enriching the dataset of small targets.
It can also increase the diversity and complexity of the training images, thereby improving
the generalization ability of the model.

Figure 10. Mosaic data augmentation.

Sensors 2023, 23, 7443 15 of 23

4.3. Performance Indices

To evaluate the performance of the improved YOLOv5 defect detection model, the
mAP, average precision (AP), and FPS were evaluated [34]. The confusion matrix is shown
in Table 6.

Table 6. Confusion matrix.

Real
Prediction

Positive Negative

True TP FN
False FP TN

The matrix terms are defined formally as follows:
True Positive (TP): The model correctly predicted a positive-class (defect) sample

as positive.
False Positive (FP): The model incorrectly predicted a negative-class (non-defect)

sample as positive.
False Negative (FN): The model incorrectly predicted a positive-class (defect) sample

as negative.
True Negative (TN): The model correctly predicted a negative-class (non-defect) sam-

ple as negative.
The number of images that the object detection network can detect per second is

represented by FPS. The larger FPS is, the more images the object detection network can
process per second and the faster the processing speed.

The calculation formulas for accuracy and recall rate are as follows:

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

AP and mAP are defined as follows:

AP =
∫ 1

0
P(R)dR (15)

mAP =
∑c

n=0 AP(C)
C

(16)

The AP is the area under the precision-recall (P-R) curve. The mAP represents the
average AP value for each category and is used to measure the detection performance of
the network model for all categories.

4.4. Hyperparametric Study

Different training parameters can affect the performance of a deep learning model,
including the input image size, number of training epochs, batch size, learning rate, and
optimizer. In this study, the parameters used for training were those listed under exp1
in Table 7. To determine whether these parameters were optimal, multiple experiments
were conducted by adjusting them, and the performance of the improved YOLOv5 on
the bearing surface defect dataset was evaluated. The experimental results are shown in
Table 7.

Sensors 2023, 23, 7443 16 of 23

Table 7. Parameter adjustment and results.

Number Image Size Epochs Batch Size Learning Rate Optimizer mAP

exp1 640 100 32 0.01 SGD 97.3%
exp2 320 100 32 0.01 SGD 95.2%
exp3 640 100 16 0.01 SGD 96.5%
exp4 640 100 32 0.1 SGD 96.0%
exp5 640 100 32 0.01 Adam 90.4%
exp6 640 100 8 0.01 Adam 89.9%
exp7 640 100 16 0.1 SGD 95.6%
exp8 640 100 8 0.01 SGD 96.1%
exp9 640 100 64 0.01 SGD 96.1%

During the experiments, it was observed that the change in the loss function became
stable when the number of training epochs approached 100. Therefore, in this study,
the number of training epochs was set to 100. Moreover, as shown in Table 7, exp1
had the highest mAP value among the tested parameter settings, which validated the
rationality of the parameter settings used in this study. In contrast, exp6 had the lowest
mAP value, indicating that the choices of batch size and optimizer significantly impacted
the experimental results.

4.5. Ablation Experiment

This study made three improvements to YOLOv5. To verify the effectiveness of
each improvement and the combined effectiveness of each pair of improvements, ablation
experiments were conducted, and the results are shown in Table 8. The ‘3’ indicates the
presence of improvement.

Table 8. Results of ablation experiments.

C2f CARAFE SPD mAP FPS Parameters

YOLOV5S 95.8% 106 7,023,610
C2F 3 96.5% 111 6,932,122
CARAFE 3 96.2% 98 7,157,666
SPD 3 96.5% 105 8,693,666
C2F + CARAFE 3 3 96.9% 103 7,073,610
C2F + SPD 3 3 96.6% 111 8,559,610
CARAFE + SPD 3 3 96.7% 101 9,604,770
OURS 3 3 3 97.3% 100 9,470,714

As shown in Table 8, the mAP of YOLOv5 is 95.8%, and the mAP of adding the C2f
module is 96.5%. At the same time, the parameter quantity has been reduced by 91,488,
FPS increased by 5, the C2f module compared to the C3 module in terms of decreasing
parameter count while significantly enhancing the speed of bearing surface defect detection.
With the addition of the CARAFE module, the mAP was 96.2%; With the addition of the
SPD module, the mAP was 96.5%. When both the C2f and CARAFE modules were used, the
mAP increased to 96.9%, indicating that the combination of these two improvements also
helps improve the detection of bearing surface defects. The mAP further increased to 97.3%
when all three modules were combined, which not only improved the feature extraction
performance of the backbone network but also enhanced the quality and accuracy of
upsampling and reduced the number of parameters. By fusing more semantic information
into the pyramid layer during the feature fusion stage, more feature details and structural
information were retained, which improved the detection capability for low-resolution
images and small objects.

Sensors 2023, 23, 7443 17 of 23

4.6. Experimental Results and Comparison
4.6.1. Experimental Results on the Bearing Surface Defect Dataset

To further validate the effectiveness of the improved YOLOv5 defect detection model,
this study compared it with object detection methods such as SSD, Faster-RCNN, YOLOv3,
YOLOv5, YOLOv6, and YOLOv7. The training loss, validation loss, and mAP curves
during training are shown in Figures 11 and 12, and the comparison results for each model
are shown in Figure 13. The experimental results are summarized in Table 9.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 22

(a) (b) (c)

Figure 11. Training loss and validation loss. (a) Localization loss; (b) confidence loss; and (c) classi-
fication loss.

Figure 12. mAP curve.

Table 9. Comparison of related methods on the bearing dataset.

 Helical
Marks

Forging
Waste

Black
Spots Dents Scratches mAP FPS

SSD 94.3% 93.5% 92.8% 76.6% 91.8% 89.8% 71
Faster-RCNN 78.5% 93.6% 86.5% 69.2% 90.2% 83.6% 30
YOLOv3 97.5% 88.3% 89.8% 94.8% 87.7% 91.6% 110
YOLOv5 99.5% 96.2% 92.8% 96.7% 93.9% 95.8% 106
YOLOv6n 97.4% 93.8% 90.9% 94.3% 94.6% 94.2% 120
Yolov7 98.1% 89.5% 88.7% 92.3% 87.1% 91.1% 128
Ours 99.4% 96.5% 96.7% 98.9% 95.0% 97.3% 100

In this study, five images were randomly selected for testing on various models, and
the results are shown in Figure 13. Different models had different detection performances
on the bearing defect dataset. Among them, the SSD model fails to detect dents defects.
The Faster-RCNN model fails to detect helix marks and dents defects, validating the low
precision of the Faster-RCNN model. Obviously, our model has better detection perfor-
mance compared with other detection models.

Figure 11. Training loss and validation loss. (a) Localization loss; (b) confidence loss; and (c) classifi-
cation loss.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 22

(a) (b) (c)

Figure 11. Training loss and validation loss. (a) Localization loss; (b) confidence loss; and (c) classi-
fication loss.

Figure 12. mAP curve.

Table 9. Comparison of related methods on the bearing dataset.

 Helical
Marks

Forging
Waste

Black
Spots Dents Scratches mAP FPS

SSD 94.3% 93.5% 92.8% 76.6% 91.8% 89.8% 71
Faster-RCNN 78.5% 93.6% 86.5% 69.2% 90.2% 83.6% 30
YOLOv3 97.5% 88.3% 89.8% 94.8% 87.7% 91.6% 110
YOLOv5 99.5% 96.2% 92.8% 96.7% 93.9% 95.8% 106
YOLOv6n 97.4% 93.8% 90.9% 94.3% 94.6% 94.2% 120
Yolov7 98.1% 89.5% 88.7% 92.3% 87.1% 91.1% 128
Ours 99.4% 96.5% 96.7% 98.9% 95.0% 97.3% 100

In this study, five images were randomly selected for testing on various models, and
the results are shown in Figure 13. Different models had different detection performances
on the bearing defect dataset. Among them, the SSD model fails to detect dents defects.
The Faster-RCNN model fails to detect helix marks and dents defects, validating the low
precision of the Faster-RCNN model. Obviously, our model has better detection perfor-
mance compared with other detection models.

Figure 12. mAP curve.

Sensors 2023, 23, 7443 18 of 23

Figure 13. Test results on the bearing defect dataset for different models. (a) Helical marks; (b) forging
waste; (c) black spots; (d) dents; and (e) scratches.

Figure 11 shows that the training and validation loss converged quickly within the first
30 training epochs and converged completely when the number of training epochs reached
100. Figure 12 shows that the mAP increased as the number of training epochs increased.

Sensors 2023, 23, 7443 19 of 23

Table 9. Comparison of related methods on the bearing dataset.

Helical Marks Forging Waste Black Spots Dents Scratches mAP FPS

SSD 94.3% 93.5% 92.8% 76.6% 91.8% 89.8% 71
Faster-RCNN 78.5% 93.6% 86.5% 69.2% 90.2% 83.6% 30
YOLOv3 97.5% 88.3% 89.8% 94.8% 87.7% 91.6% 110
YOLOv5 99.5% 96.2% 92.8% 96.7% 93.9% 95.8% 106
YOLOv6n 97.4% 93.8% 90.9% 94.3% 94.6% 94.2% 120
Yolov7 98.1% 89.5% 88.7% 92.3% 87.1% 91.1% 128
Ours 99.4% 96.5% 96.7% 98.9% 95.0% 97.3% 100

Table 9 shows that the improved YOLOv5 defect detection method proposed in
this study outperformed other object detection methods. The mean average precision
of the Faster-RCNN model was the lowest, at 83.6%, which does not meet the detection
requirements. The mean average precision of the YOLOv5 model was 95.8%, while the
mean average precision of the improved YOLOv5 proposed in this study was 97.3%,
representing an overall increase in accuracy of 1.5%. Specifically, the accuracy of detecting
black spots improved by 3.9%, while the accuracy of detecting dents improved by 2.2%,
representing significant improvements. There was a slight decrease in FPS.

In this study, five images were randomly selected for testing on various models, and
the results are shown in Figure 13. Different models had different detection performances
on the bearing defect dataset. Among them, the SSD model fails to detect dents defects.
The Faster-RCNN model fails to detect helix marks and dents defects, validating the
low precision of the Faster-RCNN model. Obviously, our model has better detection
performance compared with other detection models.

4.6.2. Reasons for Misdetection

Three reasons for false detection are as follows:

(1) Issues with manual labeling

Because the bearing surface defect dataset originated from high-quality images collected
from industrial sites, the 5660 images in the dataset had to be manually labeled. The amount
of labeling required was huge, time-consuming, and inevitably prone to labeling errors.

(2) Existence of similar defects among different types of defects

The bearing defect dataset contained a variety of defect types, such as slightly larger
black spot defects that were somewhat similar in shape to forging waste defects. In addition,
concave defects may not be recognized under high brightness, and forging waste defects
may be missed under low brightness. Some types of defects are difficult to accurately
distinguish from others.

(3) Interference in the workshop environment

The bearing defect dataset was collected in an industrial site where the workshop envi-
ronment may have caused interference. The bearings may have had oil stains, dust, and other
factors that affected the accuracy of defect recognition. Some oil stains have shapes that are
similar to some types of defects, which can interfere with accurate defect detection.

False detection and missed detection examples are shown in Figure 14.
Figure 13 (a) represents a missed detection of a dent defect caused by the small size

of the defect, which was relatively rare in the dataset and has a silver-white color that
is difficult to detect under high exposure; (b) on the right side is the normal area of the
bearing, but the prediction result shows a scratch defect; In (c), a forging waste defect was
falsely detected, while in (d), a helical mark defect was falsely detected.

Sensors 2023, 23, 7443 20 of 23

Sensors 2023, 23, x FOR PEER REVIEW 19 of 22

addition, concave defects may not be recognized under high brightness, and forging waste
defects may be missed under low brightness. Some types of defects are difficult to accu-
rately distinguish from others.

(3) Interference in the workshop environment
The bearing defect dataset was collected in an industrial site where the workshop

environment may have caused interference. The bearings may have had oil stains, dust,
and other factors that affected the accuracy of defect recognition. Some oil stains have
shapes that are similar to some types of defects, which can interfere with accurate defect
detection.

False detection and missed detection examples are shown in Figure 14.
Figure 13 (a) represents a missed detection of a dent defect caused by the small size

of the defect, which was relatively rare in the dataset and has a silver-white color that is
difficult to detect under high exposure; (b) on the right side is the normal area of the bear-
ing, but the prediction result shows a scratch defect; In (c), a forging waste defect was
falsely detected, while in (d), a helical mark defect was falsely detected.

(a) Dent (b) Scratch

(c) Forging waste (d) Helical marks

Figure 14. False detection and missed detection maps.

4.7. Experimental Results for Fabric Defect Detection
To further evaluate the performance of the improved algorithm proposed in this

study, we conducted comparative experiments on a fabric dataset. Following the experi-
mental method used to detect surface defects on bearings, we first augmented a collected
fabric dataset. Each fabric image was of size 400 × 400, and there were a total of 878 images.
The dataset was expanded to 3317 images by applying horizontal flipping, brightness var-
iation, and other methods. Then, the dataset was divided into training, validation, and
testing sets at a ratio of 6:2:2. A comparison with YOLOv5 is shown in Figure 14, and a
comparison with other algorithms is shown in Table 10.

Table 10. comparison of related methods on the cloth dataset.

 Hole L_line S_line mAP FPS
yolov3 99.5% 96.0% 97.5% 97.7% 116
yolov3-tiny 99.3% 81.5% 97.5% 92.8% 400
yolov5s 99.3% 97.9% 98.9% 98.3% 149
yolov6n 98.0% 95.1% 95.1% 96.3% 124
yolov7-tiny 98.7% 94.6% 98.2% 97.2% 164
yolov7 99.5% 90.8% 90.3% 93.5% 120

Figure 14. False detection and missed detection maps.

4.7. Experimental Results for Fabric Defect Detection

To further evaluate the performance of the improved algorithm proposed in this study,
we conducted comparative experiments on a fabric dataset. Following the experimental
method used to detect surface defects on bearings, we first augmented a collected fabric
dataset. Each fabric image was of size 400 × 400, and there were a total of 878 images. The
dataset was expanded to 3317 images by applying horizontal flipping, brightness variation,
and other methods. Then, the dataset was divided into training, validation, and testing sets
at a ratio of 6:2:2. A comparison with YOLOv5 is shown in Figure 14, and a comparison
with other algorithms is shown in Table 10.

Table 10. Comparison of related methods on the cloth dataset.

Hole L_line S_line mAP FPS

yolov3 99.5% 96.0% 97.5% 97.7% 116
yolov3-tiny 99.3% 81.5% 97.5% 92.8% 400
yolov5s 99.3% 97.9% 98.9% 98.3% 149
yolov6n 98.0% 95.1% 95.1% 96.3% 124
yolov7-tiny 98.7% 94.6% 98.2% 97.2% 164
yolov7 99.5% 90.8% 90.3% 93.5% 120
our 99.5% 98.2% 99.4% 99.0% 124

The results in Figure 15 demonstrate that the improved YOLOv5 algorithm outper-
formed the YOLOv5 model. As shown in Table 9, consistent with the experimental results
on the bearing surface defect dataset, the improved YOLOv5 method consistently showed
the best results, with the mAP of 99%. These results indicate that the proposed improved
YOLOv5 model is effective and practical.

Sensors 2023, 23, 7443 21 of 23

Figure 15. Comparative experimental results on the cloth surface defect dataset.

5. Conclusions

In response to the complex and varied characteristics of the bearing surface image
texture background, uneven brightness, and defects of different sizes and types, this paper
proposes a bearing surface defect detection method based on the improved YOLOv5. To
improve the speed and accuracy of the YOLOv5 backbone network, the C3 module in the
backbone network was replaced with a C2f module, reducing the number of parameters
and computational complexity. To enhance the ability to process low-resolution and small-
bearing images, the SPD module was added to the backbone network and neck network,
and a new CNN module was constructed. To improve the diversity and robustness of the
model and adapt it to different instances and scenarios, the nearest-neighbor upsampling
method was replaced with the lightweight universal upsampling operator (CARAFE).

Extensive experiments were conducted on a bearing defect dataset that we produced,
and the results demonstrated that the detection accuracy of the defect detection method
proposed in this paper reached 97.3%, with an overall average precision improvement of
1.5%, especially for dents and black spot defects improved by 2.2% and 3.9%, respectively,
and that the detection speed can reach 100 FPS. An ablation experiment demonstrated
the effectiveness of the proposed improvements, and a comparison with other algorithms
also demonstrated the superiority of the improved method, meeting industrial inspection
requirements. On a fabric dataset, the proposed method also showed improvement, with
the mAP of 99%.

Sensors 2023, 23, 7443 22 of 23

The YOLO series of network architectures has good openness, making it easy to
introduce new network architectures and modules. In future research, further network
optimization can be carried out for fine cracks on bearing surfaces, as well as interferences
such as dust and oil stains, to improve the performance of the model.

Author Contributions: Conceptualization, H.X. and J.L.; methodology, H.X.; software, H.X.; valida-
tion, H.X. and J.L.; formal analysis, J.L.; resources, H.P.; writing—original draft preparation, H.X.;
writing—review and editing, J.L.; visualization, H.X.; supervision, H.P.; project administration,
H.P. and J.L.; funding acquisition, H.P. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Key R&D Program of Zhejiang (No. 2023C01062) and
Basic Public Welfare Research Program of Zhejiang Province (No. LGF22F030001, No. LGG19F03001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during the current study are available from the
corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheng, L.; Zang, H.; Wei, Z.; Zhang, F.; Sun, G. Evaluation of opaque deep-learning solar power forecast models towards

power-grid applications. Renew. Energy 2022, 198, 960–972. [CrossRef]
2. Lyu, C.; Eftekharnejad, S.; Basumallik, S.; Xu, C. Dynamic Feature Selection for Solar Irradiance Forecasting Based on Deep

Reinforcement Learning. IEEE Trans. Ind. Appl. 2022, 59, 533–543. [CrossRef]
3. Wang, K.; Zhang, A.; Sun, H.; Wang, B. Analysis of Recent Deep-Learning-Based Intrusion Detection Methods for In-Vehicle

Network. IEEE Trans. Intell. Transp. Syst. 2022, 24, 1843–1854. [CrossRef]
4. Wang, H.; Han, Z.; Liu, Z.; Wu, Y. Deep reinforcement learning based active pantograph control strategy in high-speed railway.

IEEE Trans. Veh. Technol. 2022, 72, 227–238. [CrossRef]
5. Khan, M.M.; Hossain, S.; Majumder, P.; Akter, S.; Ashique, R.H. A review on machine learning and deep learning for various

antenna design applications. Heliyon 2022, 8, e09317. [CrossRef]
6. Fang, Y.; Xu, J.; Xiao, X.; Zou, Y.; Zhao, X.; Zhou, Y.; Chen, J. A Deep-Learning-Assisted On-Mask Sensor Network for Adaptive

Respiratory Monitoring. Adv. Mater. 2022, 34, 2200252. [CrossRef]
7. Hering, A.; Hansen, L.; Mok, T.C.W.; Chung, A.C.S.; Siebert, H.; Hager, S.; Lange, A.; Kuckertz, S.; Heldmann, S.; Shao, W.;

et al. Learn2Reg: Comprehensive Multi-Task Medical Image Registration Challenge, Dataset and Evaluation in the Era of Deep
Learning. IEEE Trans. Med. Imaging 2022, 42, 697–712. [CrossRef] [PubMed]

8. Pandey, B.; Pandey, D.K.; Mishra, B.P.; Rhmann, W. A comprehensive survey of deep learning in the field of medical imaging and
medical natural language processing: Challenges and research directions. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5083–5099.
[CrossRef]

9. Singh, S.P.; Wang, L.; Gupta, S.; Goli, H.; Padmanabhan, P.; Gulyás, B. 3D deep learning on medical images: A review. Sensors
2020, 20, 5097. [CrossRef]

10. Pandiyan, V.; Drissi-Daoudi, R.; Shevchik, S.; Masinelli, G.; Le-Quang, T.; Loge, R.; Wasmer, K. Deep transfer learning of additive
manufacturing mechanisms across materials in metal-based laser powder bed fusion process. J. Mater. Process. Technol. 2022, 303,
117531. [CrossRef]

11. Zhu, W.; Huo, W.; Wang, S.; Wang, X.; Ren, K.; Tan, S.; Fang, F.; Xie, Z.; Jiang, J. Phase formation prediction of high-entropy alloys:
A deep learning study. J. Mater. Res. Technol. 2022, 18, 800–809. [CrossRef]

12. Papavasileiou, A.; Aivaliotis, P.; Aivaliotis, S.; Makris, S. An optical system for identifying and classifying defects of metal parts.
Int. J. Comput. Integr. Manuf. 2022, 35, 326–340. [CrossRef]

13. Liu, B.; Yang, Y.; Wang, S.; Bai, Y.; Yang, Y.; Zhang, J. An automatic system for bearing surface tiny defect detection based on
multi-angle illuminations. Opt. Int. J. Light Electron Opt. 2020, 208, 164517. [CrossRef]

14. Jiang, Y.; Tang, C.; Zhang, X.; Jiao, W.; Li, G.; Huang, T. A novel rolling bearing defect detection method based on bispectrum
analysis and cloud model-improved EEMD. IEEE Access 2020, 8, 24323–24333. [CrossRef]

15. Li, C.; Sanchez, V.; Zurita, G.; Lozada, M.C.; Cabrera, D. Rolling element bearing defect detection using the generalized
synchrosqueezing transform guided by time–frequency ridge enhancement. ISA Trans. 2016, 60, 274–284. [CrossRef] [PubMed]

16. Wang, J.; He, Q.; Kong, F. A new synthetic detection technique for trackside acoustic identification of railroad roller bearing
defects. Appl. Acoust. 2014, 85, 69–81. [CrossRef]

17. Tabernik, D.; Šela, S.; Skvarč, J.; Skočaj, D. Segmentation-based deep-learning approach for surface-defect detection. J. Intell.
Manuf. 2019, 31, 759–778. [CrossRef]

https://doi.org/10.1016/j.renene.2022.08.054
https://doi.org/10.1109/TIA.2022.3206731
https://doi.org/10.1109/TITS.2022.3222486
https://doi.org/10.1109/TVT.2022.3205452
https://doi.org/10.1016/j.heliyon.2022.e09317
https://doi.org/10.1002/adma.202200252
https://doi.org/10.1109/TMI.2022.3213983
https://www.ncbi.nlm.nih.gov/pubmed/36264729
https://doi.org/10.1016/j.jksuci.2021.01.007
https://doi.org/10.3390/s20185097
https://doi.org/10.1016/j.jmatprotec.2022.117531
https://doi.org/10.1016/j.jmrt.2022.01.172
https://doi.org/10.1080/0951192X.2021.1992660
https://doi.org/10.1016/j.ijleo.2020.164517
https://doi.org/10.1109/ACCESS.2020.2970813
https://doi.org/10.1016/j.isatra.2015.10.014
https://www.ncbi.nlm.nih.gov/pubmed/26542359
https://doi.org/10.1016/j.apacoust.2014.04.005
https://doi.org/10.1007/s10845-019-01476-x

Sensors 2023, 23, 7443 23 of 23

18. Xu, J.; Zuo, Z.; Wu, D.; Li, B.; Li, X.; Kong, D. Bearing Defect Detection with Unsupervised Neural Networks. Shock. Vib. 2021,
2021, 9544809. [CrossRef]

19. Lei, L.; Sun, S.; Zhang, Y.; Liu, H.; Xie, H. Segmented embedded rapid defect detection method for bearing surface defects.
Machines 2021, 9, 40. [CrossRef]

20. Li, J.; Su, Z.; Geng, J.; Yin, Y. Real-time Detection of Steel Strip Surface Defects Based on Improved YOLO Detection Network.
IFAC-Pap. Online 2018, 51, 76–81. [CrossRef]

21. Fu, X.; Li, K.; Liu, J.; Li, K.; Zeng, Z.; Chen, C. A two-stage attention aware method for train bearing shed oil inspection based on
convolutional neural networks. Neurocomputing 2020, 380, 212–224. [CrossRef]

22. Kumar, A.; Zhou, Y.; Gandhi, C.P.; Kumar, R.; Xiang, J. Bearing defect size assessment using wavelet transform based Deep
Convolutional Neural Network (DCNN). Alex. Eng. J. 2020, 59, 999–1012. [CrossRef]

23. Song, K.K.; Zhao, M.; Liao, X.; Tian, X.; Zhu, Y.; Xiao, J.; Peng, C. An Improved Bearing Defect Detection Algorithm Based on
Yolo. In Proceedings of the 2022 International Symposium on Control Engineering and Robotics (ISCER), Changsha, China, 18–20
February 2022; pp. 184–187.

24. Liu, Z.; Gao, Y.; Du, Q.; Chen, M.; Lv, W. YOLO-Extract: Improved YOLOv5 for Aircraft Object Detection in Remote Sensing
Images. IEEE Access 2023, 11, 1742–1751. [CrossRef]

25. Sunkara, R.; Luo, T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small
objects. In Machine Learning and Knowledge Discovery in Databases; Springer: Cham, Switzerland, 2022; pp. 443–459.

26. Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed
on 3 June 2023).

27. Dumitrescu, D.; Boiangiu, C.A. A study of image upsampling and downsampling filters. Computers 2019, 8, 30. [CrossRef]
28. Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. Carafe: Content-aware reassembly of features. arXiv 2019, arXiv:1905.02188.
29. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for neural networks for image processing. arXiv 2015, arXiv:1511.08861.
30. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression.

Proceedings of the AAAI conference on artificial intelligence. Proc. AAAI Conf. Artif. Intell. 2020, 34, 12993–13000.
31. Chen, P.; Liu, S.; Zhao, H.; Jia, J. Gridmask data augmentation. arXiv 2020, arXiv:2001.04086.
32. Cubuk, E.D.; Zoph, B.; Shlens, J.; Le, Q.V. Randaugment: Practical automated data augmentation with a reduced search space. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19
June 2020; pp. 702–703.

33. Dadboud, F.; Patel, V.; Mehta, V.; Bolic, M.; Mantegh, I. Single-stage uav detection and classification with yolov5: Mosaic data
augmentation and panet. In Proceedings of the 2021 17th IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), Washington, DC, USA, 16–19 November 2021; pp. 1–8.

34. Liang, J. Confusion Matrix: Machine Learning. POGIL Act. Clgh. 2022, 3, 304.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2021/9544809
https://doi.org/10.3390/machines9020040
https://doi.org/10.1016/j.ifacol.2018.09.412
https://doi.org/10.1016/j.neucom.2019.11.002
https://doi.org/10.1016/j.aej.2020.03.034
https://doi.org/10.1109/ACCESS.2023.3233964
https://github.com/ultralytics/ultralytics
https://doi.org/10.3390/computers8020030

	Introduction
	Bearing Defect Detection System
	Bearing Defect Detection Device
	Bearing Defect Type

	Bearing Rings Defect Detection Model Based on the Improved YOLOv5
	Network Structure of the Improved YOLOv5
	Space-to-Depth
	C3 Module and C2f Module
	C3 Module
	C2f Module

	Lightweight Universal Upsampling Operator
	Nearest-Neighbor Interpolation
	CARAFE

	Loss Function

	Experimental Verification
	Bearing Surface Defect Dataset
	Experimental Setup and Data Enhancement
	Experimental Setup
	Data Augmentation

	Performance Indices
	Hyperparametric Study
	Ablation Experiment
	Experimental Results and Comparison
	Experimental Results on the Bearing Surface Defect Dataset
	Reasons for Misdetection

	Experimental Results for Fabric Defect Detection

	Conclusions
	References

