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Abstract: The rapid growth of the Internet of Things (IoT) and big data has raised security concerns.
Protecting IoT big data from attacks is crucial. Detecting real-time network attacks efficiently is chal-
lenging, especially in the resource-limited IoT setting. To enhance IoT security, intrusion detection
systems using traffic features have emerged. However, these face difficulties due to varied traffic
feature formats, hindering fast and accurate detection model training. To tackle accuracy issues
caused by irrelevant features, a new model, LVW-MECO (LVW enhanced with multiple evaluation
criteria), is introduced. It uses the LVW (Las Vegas Wrapper) algorithm with multiple evaluation
criteria to identify pertinent features from IoT network data, boosting intrusion detection preci-
sion. Experimental results confirm its efficacy in addressing IoT security problems. LVW-MECO
enhances intrusion detection performance and safeguards IoT data integrity, promoting a more secure
IoT environment.
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1. Introduction

IoT big data assumes a pivotal role within the evolving IoT landscape, emerging as
a novel network resulting from advancements in Internet technology, catering to diverse
user needs. Through the connectivity of myriad objects and entities via sensors such
as RFID, GPS, laser scanners, and infrared sensors, the IoT grants them Internet access
via predefined network communication protocols. This integration seeks to establish an
intelligent network that interconnects and facilitates communication among all entities,
seamlessly amalgamating monitoring, identification, management, and localization into a
cohesive system. Embedded computing devices serve as the bedrock of IoT, bridging the
physical environment with the Internet [1]. Nevertheless, with the widespread adoption
and exponential growth of IoT devices, concerns about information security have surged
dramatically. Instances of network disruptions and the compromise of sensitive data
have become increasingly frequent, with various viruses and attacks posing substantial
threats to individuals, businesses, and society at large, leading to considerable economic
losses and potential hazards. Consequently, network security has become a pressing
and paramount concern requiring immediate attention [2]. Intrusion detection technology
emerges as a critical security mechanism, enabling the identification of illicit activities before
attackers infiltrate the network. Intrusion detection systems effectively furnish defensive
capabilities to shield networks from attacks [3,4]. By employing intrusion detection systems,
potential threats can be proactively detected, thus fortifying the overall security of the IoT
environment. It is essential to recognize the pivotal role of IoT Big Data in shaping the
IoT landscape. The ensuing security challenges underscore the necessity of integrating
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robust intrusion detection technologies to mitigate risks and guarantee the integrity and
confidentiality of IoT systems and the generated data.

Machine learning methods, an interdisciplinary field encompassing computer theory,
probability theory, and statistics, have found extensive utility in network intrusion detec-
tion. Most classification learning techniques presuppose balanced quantities of training
samples for each class. However, owing to substantial dissimilarities in the frequencies
of diverse network attacks and other factors, network intrusion data frequently manifest
class imbalance, where sample counts diverge significantly across classes. This class im-
balance quandary can result in suboptimal classification performance for minority class
samples. Consequently, the primary objective of this paper is to address the class im-
balance predicament, thereby enhancing the recall of the minority class within network
intrusion detection [5]. Additionally, network intrusion data exhibit high dimensionality,
wherein only a subset of features holds relevance for sample classification, with others
being redundant or inconsequential. The presence of redundant and irrelevant features in
high-dimensional data can give rise to reduced accuracy, detection rates, and elevated false
alarm rates within network intrusion detection models. To surmount this challenge, the
paper introduces the LVW-MECO feature selection algorithm. The primary contributions
and innovations of this study are delineated as follows:

• This paper introduces the HSACEC hybrid sampling algorithm designed to acquire a
balanced dataset, effectively tackling the issue of excessive discarding of majority class
samples inherent in conventional undersampling methods. Such methods rely solely
on the average classification error rate within clusters, particularly when there exists
a substantial imbalance between the count of majority class samples and minority
class samples.

• An improved LVW algorithm, called the M-LVW feature selection algorithm, is pro-
posed in this study. This algorithm takes the evaluation criterion of the feature subset
as an input parameter, which represents a performance evaluation metric of the clas-
sifier. The parameter can be set based on specific requirements. Subsequently, this
paper extends the M-LVW algorithm to feature selection in the OVO framework and
introduces the LVW-MECO algorithm. Firstly, the LVW-MECO algorithm applies the
M-LVW algorithm to each individual base classifier in the OVO scheme. It conducts
wrapper-based feature selection using the accuracy of the base classifier as the evalua-
tion criterion for the feature subset, aiming to identify distinct feature subsets for each
base classifier.

• This paper integrates the LVW-MECO algorithm with the BP neural network to es-
tablish an LVW-MECO intrusion detection model (LVW-MECO-IDM) for network
intrusion detection. Experimental evaluations were conducted on the publicly avail-
able IoT-23 network intrusion detection dataset to validate the superiority of the
LVW-MECO algorithm. The results demonstrate that the LVW-MECO-IDM, which
utilizes the LVW-MECO algorithm, can effectively improve the accuracy and detection
rate, and reduce false alarm rates.

The remaining structure of this paper is as follows: Section 2 provides a comprehensive
review of the research status of intrusion detection techniques based on feature selection.
Section 3 covers the relevant knowledge and technologies. Section 4 addresses the problem
of decreased accuracy in network intrusion detection caused by redundant and irrelevant
features. It proposes the LVW-MECO feature selection algorithm and the HSACEC hybrid
sampling algorithm. Section 5 focuses on the analysis of experimental results. Through
experiments, the superiority of the LVW-MECO algorithm is validated. Section 6 provides
the conclusion and outlook.

2. Related Work

Feature selection is a crucial step in machine learning as it helps in selecting the most
important features for subsequent tasks. Effective feature selection aids in dimensionality
reduction, improves prediction accuracy, and enhances the interpretability of results. Many
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researchers have focused on studying feature selection in the context of network intrusion
detection. In reference [6], a multi-agent reinforcement learning framework is proposed to
address the feature selection problem. Specifically, they redefine feature selection using a
reinforcement learning [7] framework, treating each feature as an agent. Furthermore, three
methods, namely statistical description, autoencoders, and graph convolutional networks
(GCN), are used to obtain the environmental state, which is then transformed into a fixed-
length representation as an input for reinforcement learning. Reference [8] presents a
multi-objective feature selection method based on the NSGA-II (Non-dominated Sorting
Genetic Algorithm). This method utilizes the Jaccard coefficient as a measure of variable
information asymmetry for feature selection. A neural network classifier is then built,
leading to an improvement in classification accuracy. In reference [9], a feature selection
algorithm based on the squid optimization algorithm is proposed, using a weighted sum
of false alarm rate and detection rate as the fitness function. The algorithm is combined
with a decision tree algorithm to construct a network intrusion detection model [10], which
achieves favorable classification performance.

Reference [11] proposes a feature selection algorithm that combines K-means [12]
clustering accuracy, used as a loss function for selecting feature subsets, with a local search
algorithm. This algorithm is integrated with a multilayer perceptron to construct a network
intrusion detection model, which improves the detection accuracy of the network intrusion
detection model. Reference [13] employs a deep learning belief network to identify impor-
tant features, followed by the adoption of a support vector machine algorithm to establish
a classifier, enhancing the performance of network intrusion detection. Reference [14]
conducts feature selection based on correlation and information gain, and then builds a
network intrusion detection classifier using an artificial neural network. Reference [15]
presents a novel network intrusion detection model that combines a logistic regression
algorithm with a genetic algorithm-based feature search for feature selection. Reference [16]
introduces four novel feature quality metrics and utilizes these metrics to dynamically
select useful features during the combination process. The literature [17] proposes a novel
machine learning [18] feature selection method, called Unsupervised Discriminative Projec-
tion for Feature Selection (UDPFS) to select discriminative features by conducting fuzziness
learning and sparse learning, simultaneously. In the literature [19], the Multiple Feature
Extraction Extreme Learning Machine (MFE-ELM) algorithm is employed for cloud com-
puting, adding a multi-feature extraction process to cloud servers and using the MFE-ELM
algorithm deployed on cloud nodes to detect and discover network intrusions on the cloud
nodes. The literature [20] proposes a new Unsupervised Adaptive Feature Selection with
Binary Hashing (UAFS-BH) model, which learns binary hash codes as weakly supervised
multi-labels and simultaneously exploits the learned labels to guide feature selection. The
literature [21] proposes a fully parallelizable feature selection technique intended for the
K-means algorithm. The proposal is based on a novel feature relevance measure that is
closely related to the K-means error of a given clustering.

3. Preliminary
3.1. Intrusion Detection Mechanism

Network intrusion refers to network activities that pose a threat to the integrity,
confidentiality, and availability of network system resources. With the rapid development
of IoT, data security of systems [22] has constantly faced threats from network attacks, and
network intrusion detection is an integral part of network security. A network intrusion
detection system consists of the following three modules [23]:

• IoT Information Collection Module: It collects intrusion data and performs statistical
analysis based on the feature space of network intrusion detection.

• Network Intrusion Detection Module: This module uses the data collected by the
information collection module to train intrusion detection algorithms. It then uses
the model to detect whether the network data are normal. If it is abnormal, it further
identifies the type of attack to which the network data belongs.
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• Response Module: This module responds accordingly to the detection results. If an
attack is detected, it takes appropriate interception and handling measures.

Network intrusion detection methods can mainly be classified into two categories:
misuse-based network intrusion detection methods and anomaly-based network intrusion
detection methods [24]. Classification algorithms are applied in network intrusion detection
to distinguish between abnormal data and normal data. This approach can be used in both
misuse-based and anomaly-based network intrusion detection.

3.1.1. Intrusion Detection Based on Misuse

Intrusion detection methods based on misuse typically rely on a database containing
various network attack behaviors to determine whether a detected behavior matches a
known attack pattern. Once a matching attack type is identified, the intrusion detection
system reports the anomaly, enabling the intrusion prevention system to take appropriate
actions promptly. This is the most commonly used detection method, as it is easy to
implement in existing network topologies and demonstrates high accuracy in detecting
known attacks [25].

However, this detection method can only identify known attack types included in the
database. In other words, its drawback lies in its inability to recognize unknown attack
types, leading to a relatively high false-negative rate.

3.1.2. Anomaly-Based Network Intrusion Detection

Unlike misuse-based network intrusion detection methods, anomaly-based network
intrusion detection methods establish models of normal network behavior and detect
intrusion behaviors based on whether the detected data significantly deviates from the
normal behavior model. The main advantage of anomaly-based network intrusion detection
lies in its ability to detect previously unseen novel attacks. Additionally, anomaly-based
network intrusion detection methods perform detection tasks faster than misuse-based
methods [26].

However, in reality, such deviations can represent either intrusive behavior or normal
behavior that should be added to the model. Therefore, the drawback of anomaly-based
network intrusion detection is a high false-positive rate.

3.1.3. Edge Computing-Based Intrusion Detection

Edge computing-based intrusion detection in IoT [27–29] is a method that involves
traffic monitoring and anomaly detection at the edge nodes of IoT devices [30]. Traditional
IoT traffic monitoring typically involves sending all device data to the cloud for processing
and analysis, which can lead to high latency, significant network bandwidth consumption,
as well as privacy and security concerns [31]. By performing anomaly detection on the
edge nodes of the IoT, the amount of data transmitted to the cloud can be reduced, thereby
reducing latency and improving response speed.

However, edge devices often have limited computing resources, such as processing
power, storage capacity, and memory size. This limitation restricts the ability to perform
complex traffic analysis and anomaly detection algorithms on edge nodes [32].

3.2. Feature Selection Methods

Feature selection involves two stages: a feature subset search and an evaluation of the
feature subset. Based on these two stages, feature selection algorithms can be classified.

3.2.1. Feature Selection Based Search Strategy

Given a feature set with n features, the feature subset has 2n − 1 subsets, which form
the feature space for searching the optimal feature subset. The search methods used in
feature selection algorithms are known as search strategies [33]. Currently, based on the
various search strategies used in feature selection algorithms, they can be classified into
three categories: feature selection methods based on a global optimal search strategy, feature
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selection methods based on a sequential search strategy, and feature selection methods
based on a random search strategy, as shown in Figure 1.
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3.2.2. Feature Selection Based on Sequential Search Strategy

Feature selection methods based on a sequential search strategy can be categorized
into the following four types based on the differences in the starting point and search
direction:

• Feature selection methods based on individual best feature search strategy: In this
category of algorithms, the criterion values are first calculated for each feature used
individually. Based on these criterion values, the features are sorted, and the top l
features are selected as the output feature subset.

• Feature selection methods based on sequential forward search strategy: These al-
gorithms use a “bottom-up” search approach. Initially, the target feature subset is
initialized as an empty set. In each step, the feature that optimizes the evaluation
criterion the most is added to the target feature subset. The search ends when the
termination condition is met, and the obtained target feature subset is considered the
selection result.

• Feature selection methods based on sequential backward search strategy: These algo-
rithms use a “top-down” search approach. The target feature subset is initialized with
all the features, and in each step, an irrelevant feature is removed until the termination
condition is satisfied.

• Feature selection methods based on bidirectional search strategy: These algorithms
simultaneously add relevant features and remove irrelevant features in each step.

Feature selection methods based on sequential search strategy have low time
complexity [34] and are widely used in practical applications. However, a drawback
of this approach is that once a feature is selected or removed during the search process, it
cannot be undone, which can lead to obtaining local optima.

3.2.3. Feature Selection Based on Random Search Strategy

This feature selection method utilizes a random search strategy, which has the potential
to escape local optima and find approximate optimal solutions. Therefore, in general,
feature subsets selected by feature selection methods based on a random search strategy
tend to outperform those based on a sequential search strategy.
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4. Algorithm Design
4.1. LVW Algorithm

The LVW algorithm belongs to wrapper-based feature selection methods. It uses a
random strategy for the subset search, and the evaluation criterion for the feature subset is
the classification error rate of a classifier.

The LVW algorithm is described in Algorithm 1. In the 5th row of the table, the return
value of the ‘xx’ function represents the error rate of the classifier h on the feature subset
CrossValidation

(
h
(
F′, D

))
obtained using cross-validation on the dataset D. If this error

rate is lower than the error rate of the current best feature subset F∗, or if the error rates are
the same but F′ contains fewer features, then F′ is considered the new best feature subset.
The algorithm terminates and outputs the best feature subset F∗ when there have been no
improvements in the feature subset for T consecutive iterations.

Algorithm 1: LVW feature selection algorithm

Input: Given a dataset D, feature set F, classifier algorithm h, and stop condition control
parameter T. Process:
1. Initialize: err = ∞; d = |F|; F∗ = F; t = 0
2. while t < T do
3. Randomly generate a feature subset F′

4. d′ =
∣∣F′∣∣

5. err′ = CrossValidation
(
h
(
F′, D

)
, e
)

6.
if (err′ < err) OR(

(err′ == err) AND
(
d′ < d

))
then

7. F∗ = F′; t = 0; err = err′; d = d′

8. else
9. t = t + 1
10. end if
11. end while
Output: feature subset F∗

4.2. OVO Decomposition Strategy

The OVO decomposition strategy is designed for multi-class classification tasks by
splitting them into multiple binary classification sub-tasks. The idea is to pair each two
classes out of N classes and design a binary classifier, resulting in a total of N(N − 1)/2
binary classifiers. Then, a certain aggregation strategy is used to combine all the binary
classifiers into a multi-class classifier. This way, the complex multi-class classification task
is broken down into several easier-to-recognize binary classification sub-tasks. The binary
classifiers in OVO are also known as base classifiers. To identify the class of unknown
samples, the OVO method generally involves the following two steps:

1. Each binary classifier returns a pair of confidences lij, lji ∈ [0, 1] for an unknown
sample, indicating the probability of the unknown sample being classified as class Ci
relative to class Cj. Moreover, lji = 1− lij. If the classifier provides only one confidence
ll, the other confidence can be calculated based on lij. All the confidences returned by
the binary classifiers are combined to form a scoring matrix L :

L =


− l12 · · · l1N
l21 − · · · l2N
...

...
lN1 lN1 · · · −

 (1)

2. Finally, a certain aggregation strategy is adopted to integrate the outputs of all base
classifiers and obtain the predicted class for the unknown sample. Several commonly
used aggregation strategies in OVO are as follows:
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• Voting strategy (VOTE) [35]: This method uses a voting strategy to obtain the final
class label by selecting the class with the most votes from all base classifiers. The
predicted class label is the output result:

H = argmax
i=1,...,N

∑
1≤j≤N,j 6=i

gij (2)

In the equation, if gij is 1, it indicates that the base classifier predicts the unknown
sample as class i. If it is 0, it means it does not predict it as class i, and there is:

gij =

{
1, lij > lji
0, other

(3)

• Learning Valued Preference for Classification (LVPC) [36]: This method introduces a
conflict level, absolute preference, and unknown degree into the recognition process
of the final class. Its decision rule is as follows:

H = argmax
i=1,...,N

∑
1≤j≤N,j 6=i

cij +
1
2

pij +
ni

ni + nj
Iij (4)

• In the equation, cij and cji represent the absolute preferences for class i and class j,
respectively. pij represents the level of conflict, ni represents the number of samples for
class i in the training set, and Iij represents the unknown degree. The corresponding
calculation methods are shown as follows:

cij = lij −min
{

lij, lji
}

(5)

pij = min
{

lij, lji
}

(6)

Iij = 1−max
{

lij, lji
}

(7)

• Preference Relations Solved by Non-dominance Criterion (ND) [37]: This method
incorporates normalized fuzzy preference relations into the scoring table. The final
output class is determined by selecting the class that is maximally non-dominated,
and the decision rule is as follows:

H = argmax
i=1,...,N

{
1− max

1≤j≤N,j 6=i
l′ij

}
(8)

In the equation, l′ij is the normalized scoring table, and the calculation methods for l′ij
and Lij are as follows:

l′ij =

{
Lij − Lji, Lij > Lji

0, other
(9)

Lij =
lij

lij + lji
(10)

4.3. The Proposed LVW-MECO Algorithm
4.3.1. M-LVW Algorithm

LVW algorithm [38] uses the error rate of classifiers as the evaluation criterion for
feature subset selection. It is unable to adapt to different practical needs by setting different
performance evaluation metrics for classifiers and optimizing the feature subset selection
based on those metrics. To address this issue, this chapter proposes an improved version
of the LVW algorithm called the M-LVW algorithm, as shown in Algorithm 2. With this
improvement, the M-LVW algorithm takes the evaluation criterion for feature subsets as an
input parameter. This parameter represents a certain performance evaluation metric of the
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classifier and can be set according to the specific requirements. For example, the evaluation
criterion for feature subsets can be set as accuracy, error rate, F1 score, or other metrics
based on practical needs.

precision =
samples_correctly

Total_samples
(11)

Error_rate = 1− precision (12)

F1 =
2× TP

Sample_count + TP− TN
(13)

In the equation, TP represents the number of correctly classified positive samples, and
TN represents the number of correctly classified negative samples.

In Algorithm 2, the CrossValidation
(
h
(
F′, D

)
, e
)

function returns the value of the
performance evaluation metric e for the classifier h on dataset D using 10-fold cross-
validation. It calculates the value of the performance evaluation metric e for the classifier h
on the feature subset F′. The evaluation metric e can be error rate, accuracy, F1 score, or
other metrics.

The M-LVW algorithm is a wrapper-based feature selection method optimized for the
final classifier h. This algorithm utilizes a random strategy for the feature subset search and
employs a certain performance evaluation metric e of the classifier, such as the error rate,
accuracy, or F1 score, as the evaluation criterion for feature subsets. The M-LVW algorithm
generates a random feature subset F′ and measures the performance of the classifier using
the evaluation metric e. If the performance of the classifier on the feature subset F′ is
better than the current best feature subset F∗, or if the performance is comparable but the
number of features in F′ is fewer, then F′ is assigned to F∗ and becomes the current best
feature subset. The algorithm terminates when it fails to find a better feature subset for
T consecutive iterations and outputs the optimal feature subset F∗ that achieves the best
performance evaluation metric e for the classifier. The flowchart of the M-LVW algorithm
is shown in Algorithm 2.

Algorithm 2: M-LVW feature selection algorithm

Input: Performance evaluation metric e (evaluation criterion for feature subsets) of the classifier;
dataset D; feature set F; classification algorithm h; and stop condition control parameter T
Output: feature subset F∗

Process:
1. Initialize : score = CrossValidation(h(F, D), e); d = |F|; F∗ = F; t = 0
2. If the value of evaluation metric e for the classifier is positively correlated with the performance
of the classifier, then
3. p = True
4. else
5. p = False
6. end if
7. while t < T do
8. Randomly generate feature subset F′

9. d′ =
∣∣F′∣∣

10. score′ = CrossValidation
(
h
(
F′, D

)
, e
)

11.
if ((p == True) AND (score′ > score )) OR
((p == False) AND (score′ < score )) OR
(score′ == score AND d′ < d)then

12. F∗ = F′; t = 0; score = score′; d = d′

13. else
14. t = t + 1
15. end if
16. end while
return feature subset F∗
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4.3.2. LVW-MECO Algorithm

In this section, the M-LVW algorithm is further extended to feature selection in the
OVO setting, proposing an improved LVW feature selection algorithm called the LVW-
MECO algorithm. In this algorithm, each binary classifier is trained with the class that
has a larger number of samples as the positive class and the other class as the negative
class. The binary classifiers in the OVO setting are also referred to as base classifiers. The
LVW-MECO algorithm sets the evaluation criteria for the parameter feature subsets of the
M-LVW algorithm as the accuracy and F1 score of the base classifiers in a sequential manner
for feature selection. The LVW-MECO algorithm consists of the following two stages:

The wrapper-based feature selection stage uses the accuracy of the binary classifiers as
the evaluation criterion for the feature subsets. In the LVW-MECO algorithm, each of the
k base classifiers in the OVO setting are applied with the M-LVW algorithm individually.
The evaluation criterion for the parameter feature subsets of the M-LVW algorithm is set
as the accuracy of the corresponding base classifier. This process selects different feature
subsets Fi for the k binary classifiers.

The stage of finding optimal feature subsets for r binary classifiers with lower F1
values on the validation set. The LVW-MECO algorithm aims to optimize the accuracy of
the multi-classifier composed of binary classifiers on the validation set. It selects better
feature subsets for r binary classifiers with lower F1 values on the validation set. The
specific procedure is as follows: The LVW-MECO algorithm applies the M-LVW algorithm
again to these r binary classifiers one by one. The evaluation criterion for the parameter
feature subsets of the M-LVW algorithm is set as the F1 value of the corresponding base
classifier. Different feature subsets Fi

′ are selected for these r binary classifiers. Then, based
on the accuracy of the multi-classifier composed of binary classifiers on the validation set,
these r binary classifiers select the best feature subset from the two feature subsets Fi and
Fi
′ that they have chosen individually.

The LW-MECO algorithm flow is as follows. Step 1 corresponds to the wrapper-based
feature selection stage using the accuracy of the binary classifiers as the evaluation criterion
for the feature subsets. Steps 2 to 5 correspond to the stage of finding optimal feature
subsets for r binary classifiers with lower F1 values on the validation set. The flowchart of
the LVW-MECO algorithm is shown in Algorithm 3.

Algorithm 3: LVW-MECO feature selection algorithm

Input: Dataset D containing N classes; feature set F; base classifier (binary classifier) algorithm h
in OVO; aggregation strategy s in OVO; stopping condition control parameter T in M-LVW
algorithm; and number of binary classifiers to be optimized r
Initialization: number of binary classifiers k = N(N− 1)/2
Step 1: Apply the M-LVW algorithm to the k binary classifiers in the OVO setting individually
and set the evaluation criterion for the parameter feature subsets as the accuracy of the
corresponding binary classifier. This process selects k different feature subsets F1, F2, . . . , Fk for
the k binary classifiers h1, h2, . . . , hk.
Step 2: By applying the 10-fold cross-validation method, the F1 values corresponding to the k
binary classifiers are calculated. All binary classifiers are then sorted in ascending order based on
their F1 values.
Step 3: For j = 1 to r /*Repeat the following Steps 4–5 sequentially for the r binary classifiers with
lower F1 values.*/
Step 4: M-LVW algorithm is used for the pj binary classifier, and the evaluation criterion of its
parameter feature subset is set as the F1 value of the binary classifier, and the feature subset F′pj

is

selected for the pj binary classifier, and h′pj
is used as the feature set of the binary classifier e.

Step 5: The k binary classifiers of h1, h2, . . . , hk are used to form a multi-classifier H with
aggregation strategy s; h′pj

and other binary classifiers hi, i 6= pj, and a multi-classifier is formed

by aggregation strategy s; then, the accuracy of H and H′ is obtained by using the 10-fold
cross-verification method. If the accuracy of H′ is greater than H, then Fpj

= F′pj
, hpj

= h′pj
.

Output: The subset of features F1, F2, . . . , Fk corresponding to each binary classifier in OVO
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4.3.3. HSACEC Algorithm

In cases where a significant disparity exists between the sample counts of the majority
and minority classes, utilizing a straightforward undersampling approach founded solely
on the mean classification error rate within clusters can result in the exclusion of numerous
majority class samples. To confront this concern, this study combines the cluster-based
undersampling method, reliant on the mean classification error rate within clusters, with the
SMOTE (Synthetic Minority Over-sampling Technique). This amalgamation gives rise to the
HSACEC (Hybrid Sampling Algorithm for Classifying with Error Cost), which facilitates
the attainment of a balanced dataset. This algorithm curtails the quantity of majority
class samples through the utilization of the cluster-based undersampling method and
simultaneously augments the quantity of minority class samples using the SMOTE method.

Algorithm 4 outlines the workflow of the HSACEC algorithm. The input parameter
“m” approximates the count of balanced samples in the resultant balanced dataset “Q”
for each class. It is advisable to designate “m” as the median of sample numbers within
each class in the original imbalanced dataset. In this study, the class with a sample count
surpassing “m” is designated as the majority class, whereas the class with a sample count
below “m” is labeled as the minority class. Non-majority classes encompass both the
minority class and classes with a sample count equal to “m”. The classifier algorithm “h”
within the HSACEC algorithm pertains to the finalized chosen classifier algorithm.

Algorithm 4: HSACEC hybrid sampling algorithm

Input: Dataset D containing class N; equilibrium sampling number m; classifier algorithm h; and
the number of fractional samples T.
Output: Equilibrium sample set Q

1. Set the oversampling rate for each minority class according to Formulas (3) and (4), use
SMOTE algorithm to synthesize new samples for each minority class, and add them to
dataset D;

2. Calculate the single rated sampling quantity z;
3. The K-means algorithm is used to cluster the sample sets of each category in dataset D,

generate z clusters for each category, and extract the representative points of the clusters from
each cluster; a total of N*z samples were extracted and added to the balanced data set Q to
realize the initialization of the data set Q, and the sampling times t = 1 were counted. Then,
remove the extracted samples from dataset D,D = D−Q;

4. for t = 2, 3, . . . , T/*For each sample, repeat steps 5–15.*/
5. Training classifier h using balanced data set Q;
6. For every majority class in dataset D is class i
7. The K-means algorithm is used to cluster the sample set Si of class i in dataset D and

generate min(m, |Si|) clusters.
8. The samples in sample set Si are classified by classifier h, and the average classification

error rate V(C) of the samples in each cluster of Si is calculated by classifier h.;
9. The V(C) of all clusters is sorted in descending order, the clusters corresponding to the

first min(z, |Si|) with a larger V(C) value are screened out, and the representative points of
these clusters are extracted and added to the balanced dataset Q, and then the extracted
samples are removed from the dataset D, D = D−Q;

10. end for
11. For every non-majority class in dataset D is class j
12. The sample set S of class j in dataset D is clustered by K-means to generate min

(
z,
∣∣Sj
∣∣)

clusters;
13. The representative points of each cluster are extracted and added to the balanced dataset Q,

and the extracted samples are removed from dataset D, D = D−Q;
14. end for
15. end for
16. return: equilibrium sample set Q
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4.4. Network Intrusion Detection Model Based LW-MECO

To improve the accuracy of network intrusion detection models by eliminating redun-
dant and irrelevant features, this chapter applies the LVW-MECO algorithm to construct
a network intrusion detection model. A network intrusion detection model based on
the LVW-MECO algorithm, called the LVW-MECO-IDM model, is proposed. This model
utilizes the OVO decomposition strategy, where the base classifiers are binary classification
BP neural networks. The aggregation strategy is based on voting. Figure 2 illustrates the
network intrusion detection model based on LVW-MECO, which consists of the following
five components:

• Collect network intrusion data.
• Preprocess the raw data. First, convert the categorical features of the data into numeri-

cal values. Then, perform Z-score normalization on the data.
• LVW-MECO-based feature selection. Use the LVW-MECO algorithm to select different

feature subsets for each base classifier in the OVO setting.
• OVO-based multiclass classification. Train each base classifier in the OVO setting

using the training set. Combine the base classifiers into a multiclass classifier using
voting. Use this multiclass classifier to identify intrusion data.

• Output detection results and respond. Based on the results of network intrusion
detection, when intrusion behavior is detected, execute various necessary response
measures such as alarms, network disconnection, and other actions.
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5. Experimental Analysis
5.1. Experimental Data

This experiment utilizes the IoT-23 and KDDCUP99_10% datasets. The KDD Cup
99_10% dataset encompasses five distinct categories: Normal, Dos (Denial-of-service),
Probe (Surveillance or Probe), U2R (User to Root), and R2L (Remote to Local). The latter
four categories fall within the realm of attack types. The quantity of samples within each
category is detailed in Table 1. Each individual sample consists of 41 features, which,
according to their semantic significance, can be categorized into three groups: fundamental
features of network connections, content-related features of connections, and features based
on host and temporal traffic.

Table 1. KDD CUP 99_10% dataset.

Normal Dos Probe R2L U2R Unbalance

Training set uid 391,458 4107 1126 52 7528.04
Test set id.orig_h 229,853 4166 16,189 228 1008.13
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IoT-23 [18] is a large-scale dataset containing both normal and malicious network
traffic in the context of the Internet of Things. It was released by the Stratosphere lab in
2020. The dataset consists of 20 malicious traffic scenarios and 3 normal traffic scenarios. It
provides both raw PCAP files and log files based on flow features processed by the Latest
Zeek development release tool. For this experiment, we utilize the labeled flow feature
log files. The log files contain 18 specific features, excluding the last two columns, which
represent the labels. Please refer to Table 2 for the detailed feature descriptions.

Table 2. Feature names and descriptions.

ID Feature Description

1 uid The unique ID of the stream
2 id.orig_h Source IP address
3 id.orig_p Source port number
4 id.resp_h Destination IP address
5 id.resp_p Destination IP address
6 proto Agreement
7 service Dhcp, dns, http, ssh
8 duration Flow duration
9 orig_bytes Source sends payload bytes
10 resp_bytes Destination sends payload bytes
11 conn_state Connection state
12 local_orig Source status address flag bit
13 local_resp Destination status address flag bit
14 missed_bytes Bytes lost
15 orig_pkts Number of source address packets
16 orig_ip_bytes Bytes of the source IP layer
17 resp_pkts Number of destination packets
18 resp_ip_bytes Bytes of the destination IP layer

5.2. Evaluation Criteria

The performance evaluation indicators of the network intrusion detection model used
in this chapter include accuracy, detection rate (DR), and false alarm rate (FAR).

Detection_rate =
intrusion_samples_detected

Total_intrusion_samples
(14)

False_alarm_rate =
Misreport_samples

Total_normal_sample
(15)

5.3. Contrast Model

The comparative models used in this experiment include OBPNN, LVW-OBPNN,
F1-LVW-OBPNN, and MFFS-OBPNN models. These comparative models, similar to the
LVW-MECO-IDM model, employ the OVO decomposition strategy and use the BP neural
network as the base classifier algorithm. The BP neural network structure in these models
consists of a single hidden layer. The number of input layer neurons is set to the number
of features selected by the respective feature selection algorithm used in each model. The
number of neurons in the hidden layer and output layer is the same as that in the BP neural
network of the LVW-MECO-IDM model.

The only difference between these comparative models and the LVW-MECO-IDM
model proposed in this chapter lies in the adoption of different feature selection algorithms,
which select different feature subsets for each base classifier. The LVW-MECO-IDM model
utilizes the LVW-MECO feature selection algorithm proposed in this chapter. The feature
selection algorithms used by the four comparative models are described as follows:

• OBPNN model: No feature selection is performed, and this model uses all features.
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• LVW-OBPNN model: Each base classifier adopts the LVW algorithm for feature
selection. The error rate of the base classifier serves as the sole evaluation criterion for
the feature subset, which is equivalent to using the accuracy [38] of the base classifier
as the evaluation criterion for the feature subset. Each base classifier selects a different
feature subset.

• F1-LVW-OBPNN model: Each base classifier adopts an improved version of the LVW
algorithm proposed in reference [39] for feature selection. The evaluation criterion
for the feature subset in the LVW algorithm is changed to the F1 score of the classifier.
Therefore, this model uses the F1 score of the base classifier as the sole evaluation
criterion for the feature subset, resulting in different feature subsets selected by each
base classifier.

• MFFS-OBPNN model: Each base classifier adopts the Multi-filter Feature Selection
Approach (MFFS) algorithm [40] for feature selection. This algorithm ranks features
using filter-based feature selection algorithms based on L1-LR (Logistic Regression),
SVM (Support Vector Machine), and RF (Random Forest). Features with rankings
below a threshold are removed, and similar features are grouped together. The highest-
ranked feature is selected from each cluster, and finally, the features selected by the
three feature selection algorithms are combined.

5.4. Experimental Parameter Setting

The parameter configurations for the LVW-MECO-IDM model are displayed in Table 3,
encompassing chiefly the parameters of the LVW-MECO algorithm and the architecture of
the BP neural network. In the One-vs-One (OVO) methodology, all BP neural networks
adopt a singular hidden layer configuration. For the i-th BP neural network, the count
of input layer neurons corresponds to the number of features contained within the corre-
sponding feature subset Fi, generated by the LVW-MECO algorithm. The hidden layer
comprises 15 neurons, while the output layer comprises 2 neurons.

Table 3. Parameter setting of LW-MECO-IDM model.

Argument Value

Data set IoT-23
OVO’s aggregation strategy s Voting law

Stop condition control parameter T in M-LVW algorithm 100
The number of binary classifiers to be optimized in the LW-MECO algorithm r 4

Structure of the I-BP neural network in OVO |Fi|:15:2

5.5. Analysis of Experimental Results

The feature selection results of the LVW-MECO algorithm in the LVW-MECO-IDM
model are shown in Table 4. From the table, it can be observed that the original dataset
contains a large number of redundant or unimportant features. However, after applying
the LVW-MECO algorithm for feature selection, these redundant and unimportant features
are effectively eliminated.

Table 5 presents the performance comparison results between the LVW-MECO-IDM
model and the four comparative models: OBPNN, LVW-OBPNN, F1-LVW-OBPNN, and
MFFS-OBPNN. Compared to the other four models, the LVW-MECO-IDM model proposed
in this chapter achieves higher recall rates for the Normal, Dos, Probe, R2L, and U2R
categories. In terms of overall performance, the LVW-MECO-IDM model demonstrates
a higher accuracy, detection rate, and lower false positive rate. Since the only difference
between the other four models and the LVW-MECO-IDM model lies in the adopted feature
selection algorithms, it can be observed that the LVW-MECO algorithm used in the LVW-
MECO-IDM model outperforms LVW, the improved LVW algorithm proposed in reference,
and the MFFS feature selection algorithm in terms of the accuracy, detection rate, and false
positive rate.
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Table 4. Feature selection results of the LW-MECO algorithm.

Base
Classifier

Classification
Category Feature Selection Result

h1 Dos, Normal 2, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 27, 29,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41

h2 Dos, Probe 3, 7, 8, 12, 23, 25, 27, 28, 29, 30, 32, 33, 34, 36, 38, 39, 40, 41
h3 Dos, R2L 1, 23, 31, 39, 40
h4 Dos, U2R 3, 8, 10, 12, 14, 17, 23, 25, 26, 28, 31, 32, 34, 35, 40
h5 Normal, Probe 2, 3, 7, 8, 12, 23, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40
h6 Normal, R2L 2, 3, 7, 11, 13, 14, 16, 18, 22, 24, 26, 27, 32, 34, 35, 36, 40
h7 Normal, U2R 2, 3, 10, 11, 12, 14, 17, 18, 23, 24, 25, 26, 31, 32, 33, 35, 36, 38

h8 Probe, R2L 2, 4, 5, 6, 7, 8, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28,
29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41

h9 Probe, U2R 2, 3, 14, 26, 30, 33, 40
h10 R2L, U2R 2, 3, 5, 10, 12, 16, 17, 18, 19, 22, 23, 29, 30, 32, 33, 34, 37, 39, 40, 41

Table 5. Performance comparison of different models.

Model
Recall Rates for All Categories (%) Precision

(%)
Detection

(%)
False Alarm

(%)Normal Dos Probe R2L U2R

OBPNN 97.25 97.56 82.37 12.36 13.34 92.80 91.72 2.75
LVW-OBPNN 99.13 99.11 95.17 22.04 18.60 94.99 93.99 0.87

F1-LVW-OBPNN 98.72 98.85 95.06 23.24 20.36 94.78 93.83 1.28
MFFS-OBPNN 98.12 97.94 93.31 20.64 15.62 93.83 92.79 1.88

LVW-MECO-IDM 99.60 99.84 95.32 28.82 20.53 95.98 95.10 0.40

The presence of numerous redundant and irrelevant features within the dataset dimin-
ishes the accuracy of network intrusion detection models. Both the LVW-OBPNN model
and the F1-LVW-OBPNN model integrate feature selection algorithms. Specifically, the
LVW algorithm employs the base classifier’s error rate as the evaluation criterion for the
feature subset, while the enhanced LVW algorithm employs the base classifier’s F1 score
as the evaluation criterion for the feature subset. These two algorithms utilize a singular
performance evaluation metric of the classifier as the exclusive criterion for evaluating the
feature subset. However, this approach falls short of offering a comprehensive assessment
of the base classifiers’ performance in the context of feature selection.

The LVW-MECO-IDM model utilizes the LVW-MECO feature selection algorithm
proposed in this chapter. The LVW-MECO algorithm employs both accuracy and F1 score
as evaluation metrics to assess the performance of the base classifiers from different per-
spectives for feature selection. This enables the identification of feature subsets that result
in improved accuracy for the multi-classifier ensemble composed of the base classifiers.

On the other hand, the MFFS-OBPNN model adopts the MFFS algorithm, which
is a filter-based feature selection algorithm. The feature selection process of MFFS is
independent of the final classifier to be used. In contrast, the LVW-MECO-IDM model
employs the LVW-MECO algorithm, which is a wrapper-based feature selection algorithm.
This algorithm directly optimizes the performance of the final classifier by using it as
the evaluation criterion for the feature subset. Therefore, the LVW-MECO algorithm can
enhance the performance of the final classifier.

In summary, the network intrusion detection model LVW-MECO-IDM, which utilizes
the LVW-MECO algorithm, effectively improves classification accuracy, detection rate, and
reduces false positives.

From Table 6, it can be observed that after feature selection, the training time of the
models significantly decreases. The proposed LVW-MECO-IDM model has a slightly longer
training time compared to the LVW-OBPNN model. This indicates that the LVW-MECO
feature selection algorithm can to some extent reduce the training time of the classifier.
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The reason behind this is that the LVW-MECO algorithm effectively reduces the feature
dimensionality, leading to improved efficiency in training the classifier.

Table 6. Model training time after feature selection.

Model Training Time/s

OBPNN 180.25
LVW-OBPNN 53.37

F1-LVW-OBPNN 59.26
MFFS-OBPNN 57.35

LVW-MECO-IDM 55.34

6. Conclusions

This paper introduces methodologies aimed at enhancing the precision of network
intrusion detection models through the elimination of redundant and nonessential features.
Initially, a hybrid sampling algorithm named HSACEC is proposed, leveraging the average
classification error rate within clusters. This algorithm effectively resolves the challenge of
discarding a substantial number of majority class samples in scenarios marked by a notable
imbalance between majority and minority class samples. Subsequently, an enhanced LVW
feature selection algorithm (LVW-MECO) grounded in One-Versus-One (OVO) strategy
and multiple evaluation criteria is presented.

The LVW-MECO algorithm is synergistically employed with a BP neural network,
culminating in the construction of the network intrusion detection model termed LVW-
MECO-IDM. Through empirical validation, the superior performance of the LVW-MECO
algorithm is unequivocally demonstrated. The network intrusion detection model, LVW-
MECO-IDM, which embraces the LVW-MECO algorithm, delivers remarkable advance-
ments in classification precision, detection rate, and the mitigation of false positives.

The LVW-MECO algorithm presented in this paper belongs to a feature selection
method that does not alter the original features. While it performs well when handling
independent features, its effectiveness diminishes when dealing with interdependent
features. Therefore, our next research endeavor will be focused on addressing feature
interdependencies. We intend to explore feature extraction methods to tackle this issue,
accompanied by the introduction of quantitative analysis techniques. This approach aims
to more precisely and comprehensively extract deeper analyses and insights from existing
research findings.
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