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Abstract: Due to the lack of fault data in the daily work of rotating machinery components, existing
data-driven fault diagnosis procedures cannot accurately diagnose fault classes and are difficult
to apply to most components. At the same time, the complex and variable working conditions
of components pose a challenge to the feature extraction capability of the models. Therefore, a
transferable pipeline is constructed to solve the fault diagnosis of multiple components in the
presence of imbalanced data. Firstly, synchrosqueezed wavelet transforms (SWT) are improved to
highlight the time-frequency feature of the signal and reduce the time-frequency differences between
different signals. Secondly, we proposed a novel hierarchical window transformer model that obeys
a dynamic seesaw (HWT-SS), which compensates for imbalanced samples while fully extracting key
features of the samples. Finally, a transfer diagnosis between components provides a new approach
to solving fault diagnosis with imbalanced data among multiple components. The comparison
with the benchmark models in four datasets proves that the proposed model has the advantages
of strong feature extraction capability and low influence from imbalanced data. The transfer tests
between datasets and the visual interpretation of the model prove that the transfer diagnosis between
components can further improve the diagnostic capability of the model for extremely imbalanced data.

Keywords: rotating machinery; fault diagnosis; transformer; transfer learning

1. Introduction

Rotating machines (RM) are widely used in intelligent equipment such as computer-
ized numerical control (CNC) machines, aircraft engines, wind turbines, etc. Economic
losses and the closure of some facilities are the results when RM fails or stops. More
specifically, most RM failures are caused by typical components such as bearings, gears,
motors, etc. These components operate in a complex environment and have different fault
classes. Therefore, timely and accurate fault diagnosis for these typical components can
reduce unnecessary malfunctions and downtime, which is essential for improving the
reliability and safety of RM.

In general, the main methods of fault diagnosis consist of model-driven methods and
data-driven methods. The model-driven method is needed to analyze the fault mechanism
based on experience and prior knowledge [1]. In contrast, with the widespread develop-
ment of deep learning (DL) in multiple research fields [2,3], extensive research has been
conducted on data-driven fault diagnosis combined with signal processing technology,
which can achieve end-to-end fault diagnosis without requiring extensive expertise [4,5].
Furthermore, fault diagnosis based on contactless sensing data has begun to be studied.
Li et al. [6] provided a new contactless health monitoring and fault diagnosis method by
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collecting visual data on vibration through event-based cameras for the first time. How-
ever, data-driven methods as presented by DL require huge amounts of labeled data and
balanced sample data between different classes. However, it is difficult to collect adequate
and balanced data because RM is usually in normal operation in modern manufactur-
ing [7]. Imbalanced samples can cause the model to excessively learn features from healthy
samples. resulting in “underreporting”, which will reduce the accuracy and reliability of
the model and cause losses to the production safety of the enterprise. Therefore, it is of
practical importance to explore the methods of fault diagnosis of RM in the presence of
imbalanced data.

Numerous methods and strategies have been developed for dealing with the im-
balanced data from RM, generally divided into model-based and data-based methods.
Model-based methods learn features from the imbalanced samples by constructing an
algorithm model. Li et al. [8] constructed a cost-sensitive multi-decision tree algorithm,
which increases the fault cost of learning samples from minority classes and makes the
model more sensitive to minority class data. Sun et al. [9] proposed an automatic im-
balance diagnosis method based on a Bayesian optimizer that optimizes the parameters
of oversampling models and classifier models through a hierarchical parameter space,
achieving diagnostic tasks under various imbalance ratios. Currently, designing a model
structure to enhance its feature extraction ability is a more intelligent method. Wang [10]
proposed a normalized softmax loss with adaptive angle margin to supervise neural net-
works learning imbalanced data. However, it is difficult to formulate the cost strategy
and improve the model’s ability to learn features. Data-based methods mainly refer to
resampling techniques, including under-sampling methods (USM) for multi-class samples
and over-sampling methods (OSM) for the few class samples, all designed to balance the
class distribution [11]. Tang et al. [12] used extreme gradient boosting feature selection and
improved whale optimization random forest to diagnose the fault of a wind turbine gearbox
by under-sampling the normal data. Although the influence of imbalanced data on the
model is eliminated to some extent by USM, some feature information from the normal data
was lost in the process. In contrast, OSM is more commonly used because it expands the
samples of a few classes based on the existing data. Zhang et al. [13] proposed a weighted
minority OSM and used an improved deep auto-encoder (AE) as the backbone of feature
extraction, which can avoid generating incorrect or unnecessary samples. Wei et al. [14]
used k-nearest neighbors to filter out noisy points from OSM-generated samples and made
a transition from multiple binary class imbalances to multiple class imbalances for RM. In
traditional OSM, such as the synthetic minority over-sampling technique (SMOTE) [15],
the pseudo-samples generated by OSM have poor generalization and some noisy points.
Although the above-mentioned improved OSM overcomes the traditional problems, there
is still the problem that the sampling distribution features cannot be learned automatically.
Moreover, the generative adversarial network (GAN) [16] has been widely used for imbal-
anced data because it can compensate for imbalanced data by generating pseudo-samples.
Mao et al. [17] used the spectrum data of the bearing vibration signal to generate samples
with few classes using GAN and a stacked denoising model AE to perform fault diagnosis.
Zhao et al. [18] improved the accuracy and diversity of the generated data by using an
improved GAN, which combined AE and an online sample filter, and then introduced an
additional classifier to train 2D images transformed by wavelet transform from the bearing
vibration signal. Zareapoor et al. [19] proposed the minority oversampling generative
adversarial network (MoGAN), which not only produces high-quality patterns with few
classes but also enables the discrimination of pseudo-patterns. The samples generated
by GAN and its derivatives have the same distribution as the original samples, but this
method is still limited by the quality of the original samples.

Recently, deep transfer learning (DTL) has been used in the fault diagnosis of RM to
overcome the overdependence on the original samples [20], which is realized by transferring
the knowledge from the source domain (SD) to the target domain (TD). In general, DTL
can be divided into three patterns: instance-based transfer, feature-based transfer, and
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parameter-based transfer (PTL) [21]. The first two methods assume that the samples or
learned features of SD and TD have a similar distribution. Liu et al. [22] proposed selective
multiple instance transfer learning, which measures the correlation between tasks in the
source and target domains by investigating the similarity of features between two tasks.
This method solves the problem of knowledge security transfer in multi-instance learning.
Wang et al. [23] constructed a domain-adaptive transfer learning network by minimizing
the maximum mean discrepancy between source and target domains to reduce marginal
distribution bias. For the above methods, it is difficult to develop an algorithm with
generalization ability to reduce the feature differences between different domains. In
comparison, PTL has a wider range of applications and ensures user data privacy and
security. In the PTL strategy, the feature extraction backbone of DL is applied to SD for
training to obtain the pre-training backbone, and then the pre-training backbone containing
the trained weight parameters is applied to TD. Data sharing is not involved in the process
of knowledge transfer. Zhang et al. [24] proposed federated transfer learning based on
prior distribution, which achieves local fault diagnosis for multiple users by uploading
local models and downloading global models. Chen et al. [25] used a one-dimensional
convolutional neural network (CNN) as the feature extraction backbone to implement
parameter transfer to bearing and motor datasets. Wen et al. [26] used the image of the
bearing vibration signal from the time domain as input to train the pre-training model of
ResNet-50 from ImageNet [27]. Although CNN and its numerous variants have achieved
great success in PTL, the important features cannot be considered due to the limitations
of convolutional layers and uniform feature consideration. With the success of the vanilla
transformer [28] in natural language processing (NLP) and computer vision (CV), it began
to be used in DTL as an excellent backbone for feature extraction. Pei et al. [29] used a
vanilla transformer as a feature extraction backbone and CNN as a classifier to improve
fault diagnosis from multiple classes to a few classes on bearing and gearbox datasets,
respectively. In the current study, the vanilla transformer is more successful in fault
diagnosis with balanced data. Ding [30] combines time-frequency signal analysis with
vanilla transformers to achieve fault diagnosis of bearing datasets by mining important
features in time-frequency maps. Tang [31] uses a vision transformer (ViT) [32] to perform
preliminary diagnosis on time-frequency maps of different frequency bands and fuse sub-
results through the soft voting method to obtain the final diagnostic decision. Moreover,
PTL fault diagnosis is more likely to be performed between different operating states of the
same RM component, which is not possible for different RM components due to the large
distance between domains.

The above methods are mainly used for a specific RM component, and there is no sin-
gle method applicable to most RM components. Therefore, this work explores a paradigm
that can apply fault diagnosis to multiple RM components based on imbalanced data. On
the one hand, synchrosqueezed wavelet transforms (SWT) [33] are further improved in this
work to compress the frequency scale of samples and obtain time-frequency characteristics
of different samples under complex working conditions. On the other hand, a hierarchical
window transformer pipeline obeying a dynamic seesaw (HWT-SS) has been designed to
improve the feature extraction capability for imbalanced samples. The proposed methods
are verified on two bearing datasets, one gearbox dataset, and one motor dataset to demon-
strate their excellent performance. At the same time, the model realizes the visualization
of attention by the weighted sum of key features by Grad-CAM [34], which improves the
interpretability of the model. The main contributions of this work are as follows:

(1) The improved SWT performs scale compression in the frequency dimension and
normalizes the amplitude energy of the frequency. Thus, the difference between
different components is reduced, and the most important features are represented
more intensively in the time-frequency plane.

(2) A novel transformer-based pipeline (HWT-SS) uses the hierarchical window trans-
former (HWT) as a backbone. The seesaw loss function is applied to realize the
dynamic equilibrium of different classes of samples in the training process.
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(3) Cross-component transfer learning experiments (THWT-SS) on four datasets with mul-
tiple imbalanced ratio samples can effectively improve the accuracy and robustness
of RM fault diagnosis with imbalanced data.

The remaining paper is organized as follows. Section 2 describes the background
theory of the transformer backbone. The details of the proposed method are summarized
in Section 3. Section 4 presents the experimental details of the proposed method using four
datasets. Finally, the conclusions are presented in Section 5.

2. Primary Theories of Transformer Backbone

Currently, transformers and their variants are usually integrated into research tasks
as the backbone of feature extraction. Moreover, the Swin transformer proposed by
Liu et al. [35] has shown better performance than ViT on many visual tasks. The ba-
sic framework for feature extraction proposed in this work was inspired by the Swin
transformer. In this section, we briefly review the basic theories of the Swin transformer in
the context of this work.

2.1. Multi-Head Self-Attention

Self-attention (SA) is the heart of the transformer, which refers to the attention values
of one vector over other vectors. Specifically, the input matrix vector X of the transformer
is embedded to obtain queries Q, keys K , and values V vectors by three initialized weight
matrices Wq, Wk and Wv. The implementation formula is shown in Equation (1):

Q = Embedding(X)Wq

K = Embedding(X)Wk

V = Embedding(X)Wv
(1)

The attention weight between vectors is determined by scaling and softmax operations
according to the dot product of the query vector and key vector. Then, a new vector
containing the attention relationship with other time series vectors can be obtained by
applying the attention weight to the value vector. The corresponding matrix calculation
is shown in Equation (2), where

√
dk is the scaling factor and dk is the dimension of the

keys vector.

ZAttention(Qi, Ki, Vi) = so f tmax(
QiKT

i√
dk

)Vi (2)

Multi-head self-attention (MSA) was introduced to obtain better attention values
between vectors, which means that the input vector X is embedded in n subspaces. Each
subspace H performs an SA computation, and the results are combined by the trainable
matrix WO, The implementation formula is shown in Equation (3):

ZMultiHead = Concat
(

ZH1
Attention, ZH2

Attention, · · ·, ZHn
Attention

)
WO (3)

2.2. Encoder Block

The encoder block is the basic module of HWT, which is composed of several function
blocks. The structure of the encoder block includes a patch merging block and a stackable
MSA block, as shown in Figure 1. Two types of MSA modules make up the attention
mechanism block: Windows-based MSA (W-MSA) and shifted windows-based MSA (SW-
MSA). Each MSA module is followed by a multi-layer perceptron (MLP) module, and the
layer normalization (LN) and the residual connector are applied in each module.
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in different color boxes in patch merging block, the red lined boxes in W-MSA module is the win-
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feature recombination.

In detail, the patch merging block with the down-sampling function reduces the
feature size and increases the feature dimension of the embedded feature maps ZE by
merging the corresponding positional features of each adjacent sliding block in the original
feature maps, as shown in Equation (4):

Zl−1 = LN
(

Un f old
(

ZE
))

(4)

where the Un f old function is like Conv2D without convolution operation.
Then the feature maps Zl−1 are input to the W-MSA module, which arranges the

windows so that the feature maps are segmented evenly without overlapping and applies
MSA to each window. The computational complexity is reduced by W-MSA compared to
global MSA. The MLP module after W-MSA can improve the convergence of the model
and prevent overfitting by Gaussian error linear units (GELU) activation [36] and the
dropout layer. Two full connection layers (FC) are used to ensure that the input and output
dimensions of the MLP are consistent, and the expression formula of the MLP is expressed
as Equation (5):

ZMLP = Dropout(FC2(GELU(FC1(ZLN)))) (5)

the successive W-MSA and the MLP can be expressed as Equation (6):

Ẑl = W −MSA
(

LN
(

Zl−1
))

+ Zl−1

Zl = MLP
(

LN
(

Ẑl
))

+ Ẑl
(6)

Finally, the feature maps Zl are input to SW-MSA and re-spliced through the shifted
windows so that the connections between the adjacent windows of W-MSA are obtained
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by MSA. SW-MSA and the following MLP are computed as in Equation (7). The entire
attention mechanism module can be connected in series N to extract more features.

Ẑl+1 = SW −MSA
(

LN
(

Zl
))

+ Zl

Zl+1 = MLP
(

LN
(

Ẑl+1
))

+ Ẑl+1
(7)

3. The Proposed Methods

The improved SWT and HWT-SS are creatively proposed in this work for the imbal-
anced data of various RM components, which are described in this section.

3.1. Improved Synchrosqueezed Wavelet Transforms

Time-frequency analysis is widely used to deal with non-stationary signals from RM
under complex working conditions. The continuous wavelet transform (CWT) is one of the
most typical methods of time-frequency analysis, in which wavelet windows with variable
shapes are obtained by introducing a time scale factor a and a translation factor b based on
the parent wavelet. Moreover, SWT [33] reorders and compresses the wavelet coefficients in
the frequency direction based on CWT, which focuses more on the time-frequency plane. In
this way, the synchronized transformation Ts(wl , b) in a successive bin can be determined
by
[
wl − 1

2 ∆w, wl +
1
2 ∆w

]
at the center frequency wl . The specific calculation formula is

shown in Equation (8):

Ts(wl , b) = (∆w)−1 ∑
ak :|w(ak ,b)−wl |≤∆w/2

Ws(ak, b)a−3/2
k (∆a)k (8)

where Ws(ak, b) represents the wavelet coefficients calculated by discrete time-scale ak,
(∆a)k = ak − ak−1 , ∆w = wl − wl−1.

Data differences between multiple domains can be reduced by using the same data pre-
processing method. Therefore, the logarithmic scaling factor and the standardization of the
synchrosqueezed transformation based on the Morlet parent wavelet proposed in this paper
allow further domain matching of multiple RM data. Specifically, the logarithmic scaling
factor is applied to the center frequency wl of the SWT to achieve scaling compression in
the frequency direction. Z-score normalization is applied to normalize the value of the
synchronized transform Ts, which can be formulated in Equation (9):

T̂s(ŵl , b) = (ST∆w)−1

log2

 ∑
ak :|w(ak ,b)−wl |≤∆w/2

Ws(ak, b)a−3/2
k (∆a)k

− µT

 (9)

where µT , ST are the mean and variance of all discrete wavelet coefficients.
From Figure 2, it can be seen that the improved SWT further compresses time-

frequency features T̂s(ŵl , b) compared to the standard SWT, which not only highlights
the fault features of the signal but also reduces inter-domain differences for subsequent
cross-domain diagnosis.

3.2. Hierarchical Window Transformer Pipeline Obeying Dynamic Seesaw

To further improve the feature-learning capability of the diagnostic model, a novel
transformer-based pipeline consisting of several modules connected in series is proposed,
as shown in Figure 3. The main functions of each module are as follows:

(1) Embedding layer converts time-frequency images into feature maps that can be input
into the model.

(2) Transformer encoder layer (TEL) extracts features through hierarchical encoding modules.
(3) Generalized mean pooling avoids excessive feature loss by automatically updating

parameter pk during training.
(4) Seesaw loss function can reduce the impact of data imbalances during model training.
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More detailed details of each module are introduced in subsequent sections.

3.2.1. Embedding Layer

Time-frequency images must be embedded in patches that can be applied to the
transformer encoder layer via the embedded layer. First, the patch partition is applied
to segment RGB images into non-overlapping patches. The characteristic feature of each
patch is the splitting of the pixel’s RGB values from the original image. The shape of the
time-frequency images used as input is XE ∈ RH×W×3, where H, W denotes the size of the
time-frequency images and 3 is the number of dimensions. Convolution with a kernel size
of s× s and a step size of s is applied to segment the image into patches, and the shape
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of the patches becomes ZE ∈ R H
s ×

W
s ×3s2

. Then the patches can be converted to arbitrary
dimensions C by the patch embedding layer, which is achieved by linear mapping. Finally,
the output tensors are normalized by LN. The embedded layer can be formulated by
Equation (10):

ZE = LN
(

FC
(

Conv2D

(
XE
)))

(10)

3.2.2. Transformer Encoder Layer

TEL consists of three types of encoder block stacks with different numbers of stackable
MSA blocks that learn features from the embedding sequence patches. The structure of
each encoder block is described in detail in Section 2. In the feedforward encoder block,
the linear mapping between the encoder blocks is used to bisect the feature dimension,
which is expressed by the formula shown in Equation (11). As the depth of the encoder
block stack increases, the receptive field of the original feature map becomes larger through
hierarchical feature extraction.

Zl−1
i = LN

(
FC
(

Zl+1
i−1

))
i = 1, 2, 3 (11)

3.2.3. Generalized Mean Pooling

In general, the pooling layer is connected after the convolution operation of the CNN
to aggregate the features and reduce the dimensions to avoid overfitting. The multidi-
mensional feature maps that pass through the TEL also require a pooling operation. The
two most typical pooling layers are max-pooling and average-pooling, where the collected
features are lost to some extent. Therefore, the generalized mean pooling (GeM) [37] used
in this work is a pooling operation with a learnable parameter pk pk and the formula shown
in Equation (12) is differentiable in backpropagation:

ZG
k =

 1∣∣XG
k

∣∣ ∑
x∈XG

k

xpk

 1
pk

(12)

which is generalized to average pooling and max pooling when pk = 1 and pk → ∞
respectively.

The feature maps XG ∈ RH×W×K passing through the TEL are taken as input, whose
XG

k denotes the k-th feature map of XG and x denotes the feature vectors of each feature
map. The clamp function is applied as an activation to ensure x is greater than 0 and avoid
the disappearance of the gradient. It replaces the rectified linear unit (ReLU) activation and
is described in Equation (13):

xout =


εmin xi ≤ εmin
xi, εmin xi < εmax

εmax xi > εmax

(13)

where εmin takes an infinite decimal number close to zero and εmax takes null. In this way, a
ZG

k indicates XG
k processed by GeM, and the feature maps can be represented as vectors[

ZG
1 , · · ·, ZG

K
]T .

3.2.4. Seesaw Loss Classifier

The classifier maps the learned features to the one-hot coding of the real labels. To
achieve PTL between different domains, the classifier’s class number is set to the mutable pa-
rameter N. The feature vectors are linearly mapped to the predicted logits z = [z1, · · · , zN ],
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and the probability pi that zi belongs to the class i encoded by one-hot is determined by
softmax activation, given by Equation (14):

pi =
ezi

∑N
j=1 ezj

(14)

In addition, an appropriate loss function is used to reduce the difference between
the predicted and real labels. The cross-entropy (CE) loss function is commonly used.
Considering the imbalanced data, this paper introduces the mitigation factor Mij and the
compensation factor Cij into CE to build the seesaw loss function, the implementation
formula is as shown in Equation (15):

L(z) = −
N
∑

i=1
yilog( p̂i)

p̂i =
ezi

∑N
j 6=i MijCije

zj+ezi

(15)

where yi, p̂i are the true probability and the modified prediction probability of the class ii,
respectively. The mitigation factor Mij can be formulated by Equation (16), which refers to
mitigating the negative gradient effects of the positive class i on the negative class j by a

factor of
( nj

ni

)γ
, the instance numbers ni, nj are accumulated at each training iteration and

γ is a hyperparameter that can adjust the degree of mitigation.

Mij =

{
1, ni ≤ nj( nj

ni

)γ
, ni > nj

(16)

However, the positive class i is incorrectly classified as a negative class j if the mitiga-
tion factor Mij is over-adjusted. Therefore, the compensation factor Cij is used to improve
the penalty for misclassifying the sample, as shown in Equation (17), which works when the
prediction probability pj of the negative class j is greater than that of the pi of positive class i,

Cij =

 1, pj ≤ pi( pj
pi

)λ
, pj > pi

(17)

where λ is a hyper-parameter that controls the adjustment scale. The process of implement-
ing the Seesaw loss function is shown in Figure 4.
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The detailed steps of the HWT-SS training process can be seen in Algorithm 1.

Algorithm 1. Training of HWT-SS.
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4. Experimental Study

The fault diagnosis performance of the model is verified and further analyzed in
this section on four different datasets of RM components, including two types of bearing
datasets, one gearbox dataset, and one motor dataset. There are two cases in which the
performance of fault diagnosis is discussed:

(1) Comparing with several classical DL models to check and analyze the performance of
the HWT-SS in the presence of imbalanced data.

(2) Performing THWT-SS between different datasets to verify and analyze the perfor-
mance of PTL in cross-component fault diagnosis under imbalanced data. The frame-
work is shown in Figure 5.

4.1. Datasets Description

Numerous validation tests were performed on four types of datasets, including the
Case Western Reserve University (CWRU) bearing dataset [38], the Southeast University
(SEU) gearbox dataset [39], the Shenzhen Technology University motor (SZTU-M) dataset,
and the bearing (SZTU-B) dataset collected from the electromechanical fault test platform
(PT650). The details of these datasets are described in this section.
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4.1.1. CWRU Bearing Dataset

The CWRU bearing dataset is one of the most commonly used datasets in performance
verification of bearing fault diagnosis, which includes ball faults (BF), outer-race faults
(ORF), and inner-race faults (IRF) caused by electro-discharge machining (EDM). These
defects, ranging from 0.007 inches to 0.028 inches in diameter, were recorded from drive-
end bearings SKF6205 with a sampling frequency of 12 kHz and 48 kHz, and fan-end
bearings SKF6203 with a sampling frequency of 12 kHz, operating at constant motor speeds
of 1720–1723 rpm for motor loads of 0–3 horsepower (hp). In addition, the healthy bearing
test data for the normal condition (NC) is collected as a special bearing fault condition
so that the CWRU dataset with ten bearing fault classes for four working conditions can
be used.

4.1.2. SEU Gearbox Dataset

SEU gearbox datasets are collected by the drivetrain dynamic simulator (DDS). The
structure of DDS consists of a motor, a planetary gearbox, a parallel gearbox, and a brake.
The gearbox dataset contains four types of faults and one state of condition, including
chipping, miss, root, surface faults, and NC. Six channels of vibration signals are collected
to describe each gear state under two types of rotational speed loads, including 20 Hz-0 V
and 30 Hz-2 V. Therefore, the gear dataset of two working conditions with five gear fault
classes can be used.

4.1.3. SZTU Motor Dataset and Bearing Dataset

The motor dataset and the bearing dataset from Shenzhen Technology University
(SZTU) are collected in our laboratory, as shown in Figure 6. The bearing and motor
fault simulation experiment is conducted using the PT600, which consists of a three-phase
asynchronous motor, two bearing pedestals, a planetary gearbox, a frequency converter,
and a magnetic particle brake. The magnetic particle brake provides a torque load of 0–50
N·m and the speed of the motor can be adjusted via the frequency converter in a range of
0–1750 rpm.
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The motor dataset is collected by exchanging the motors with different fault types on
the PT600. The specific motor types and their descriptions are summarized in Table 1. The
working conditions are designed for variable speed and load, as shown in Table 2. Two
triaxial accelerometers are installed on the drive end and fan end of the motor to acquire
the vibration signal of the motor at a sampling rate of 51.2 kHz. The bearing dataset is
collected by replacing bearing pedestals with various faults near the drive end of the motor.
The models of the faulty bearings are UCPH206, and their more detailed description is
shown in Table 3. The experiment is performed under two speed conditions with the four
loads described in Table 4. Two triaxial accelerometers are installed on the top and side of
the faulty bearing pedestal to collect vibration signals with a sampling rate of 40.96 kHz.

Table 1. Motor type description.

Motor Type Description

NRM Normal motor Healthy motor without defects

RUM Rotor imbalanced motor The imbalanced is caused by adding 14 g of
imbalanced mass to both ends of the rotor

RMM Rotor misalignment motor Precession in the jack bolt of the motor end
cover by 0.5 mm

BRM Bending rotor motor Bending amount at both ends of the rotor
shaft is 0.4 mm

FBM Faulty bearing motor
The inner ring of the inner bearing and the
outer ring of the outer bearing have cracks,
the width is 0.35 mm and the depth is 3 mm

BBM Broken bar motor 4 rotor bars are cut from 28 rotor bars

WFM Stator winding fault motor The stator winding has a
short-circuit condition

SPM Single phase fault motor One of the three-phase windings is
disconnected
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Table 2. Motor dataset conditions.

Condition Speed (rpm) Load (N·m)

1 1722 33
2 1490 17
3 1740 17
4 875 33

Table 3. Bearing type description.

Bearing Type Description

NRB Normal bearing Healthy bearing without defects

FBI Inner ring fault bearing The inner ring has a crack 0.35 mm wide
and 2 mm deep

FBO Out ring fault bearing The out ring has a crack 0.35 mm wide and
2 mm deep

FBB Ball fault bearing The ball is drilled with a hole with a
diameter of 0.5 mm and a depth of 2 mm

FBC Compound fault bearing There are 0.35 mm wide and 2 mm deep
cracks on the inner and outer rings

FBR Retainer fault bearing Broken bearing retainer

Table 4. Bearing dataset conditions.

Condition Speed (rpm) Load (N·m)

1 1200 0
2 1190 17
3 1174 33
4 1158 50

4.2. Experimental Setup

All working conditions in each dataset are mixed to verify the diagnostic effect of
the proposed methods for complex working conditions. From each class of each dataset,
500 samples were randomly selected and divided into a training set, a validation set, and
a test set in a ratio of 0.6:0.2:0.2. Since the sampling rate and data acquisition time are
different, the sampling format of the datasets must be unified, considering the complete
fault information. The length of each sample is set according to the sampling rate and speed
of each dataset so that sample points of more than two rotation periods can be obtained.
The specific descriptions of the four datasets used can be found in Table 5.

Table 5. Description of the four datasets.

Dataset Class Class Number Condition Sample Length

Ds
1 CWRU

NC, IRF7, IRF14, IRF21,
ORF7, ORF14, ORF21, BF7,

BF14, BF21
10 12 kHz

(Drive-end)-0&1&2&3 hp 1024

Ds
2 SEU NC, Chipped, Miss,

Root, Surface 5 20 Hz-0 V&30 Hz-2 V 1024

Ds
3 SZTU-M NRM, RUM, RMM, BRM,

FBM, BBM, WFM, SPM 8 1&3 3420

Ds
4 SZTU-B NRB, FBI, FBO, FBB,

FBC, FBR 6 1&2&3&4 4800



Sensors 2023, 23, 7431 14 of 27

According to the PTL, the SD datasets Ds
i (i = 1, 2, 3, 4) are original datasets with

balanced samples, and the TD datasets Dtk
j (j = 1, 2, 3, 4, k = 1, 2, 3) include imbalanced

training samples created by randomly selecting fault samples in three imbalanced ratios
(2:1, 10:1, 50:1), and balanced validation and test samples that are the same as the source
domain. The imbalanced ratio refers to the ratio of NC samples to fault samples in each
dataset. Further details are described in Table 6.

Table 6. Description of sample quantity in the SD and the TD of four datasets.

Dataset

Source
Domain

Training Target Domain
Normal/Fault

Validation/Test Target Domain
Normal/Fault

Ds
j Dt1

j (2:1) Dt2
j (10:1) Dt3

j (50:1) Dt1
j (2:1) Dt2

j (10:1) Dt3
j (50:1)

CWRU 500 × 10 300 × 1/150 × 9 300 × 1/30 × 9 300 × 1/6 × 9 100 × 10/100 × 10
SEU 500 × 5 300 × 1/150 × 4 300 × 1/30 × 4 300 × 1/6 × 4 100 × 5/100 × 5

SZTU-M 500 × 8 300 × 1/150 × 7 300 × 1/30 × 7 300 × 1/6 × 7 100 × 8/100 × 8
SZTU-B 500 × 6 300 × 1/150 × 5 300 × 1/30 × 5 300 × 1/6 × 5 100 × 6/100 × 6

Two experimental cases are conducted. Case 1: In four datasets with different data
ratios, ResNet and VGG are used as benchmark models to compare with the proposed
HWT-SS. Meanwhile, HWT using the CE loss function (HWT-CE) is used to verify the
performance of the Seesaw loss function. Case 2: Application of PTL between different
datasets. Ds

i → Dtk
j represents that the weight parameters are learned by pre-training in

the Ds
i and then applied to the Dtk

j while further training.
To ensure the fairness of all comparison experiments, the training parameters of the

model must be standardized before training. In addition, Adam with decoupled weight
decay (AdamW) [40] is used as an optimizer to prevent overfitting. All one-dimensional
vibration signal samples are converted into images by improved SWT processing before
training. The training hyperparameters and network structure parameters of the proposed
HWT-SS are described in Table 7. The details of the benchmark models are described in
Table 8. Meanwhile, all experiments were conducted in the same computing environment,
including AMD Ryzen 7-5800, NVIDIA GeForce RTX 3070Ti with 8 GB of memory, CUDA
11.3, and the Pytorch 1.10.1 framework.

Table 7. Hyperparameters and structure of the proposed HWT-SS.

Hyperparameters and Structure Value

Input size 224 × 224 × 3
Batch size 10

Max epochs 100
GeM pooling pk/εmin 3/1 × 10−6

Seesaw loss γ/λ 0.8/2
Drop rate 0.3

AdamW learning rate/weight-decay 5 × 10−5/0.05
Embedding layer s 4

Number of MSA in encoder block 1 2
Output feature dimension of encoder block 1 192

Number of MSA in encoder block 2 18
Output feature dimension of encoder block 2 384

Number of MSA in encoder block 3 2
Output feature dimension of encoder block 3 768
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Table 8. Hyperparameters and structure of the benchmark models.

Model Hyperparameters and Structure Value

ResNet

Input size 224 × 224 × 3
Batch size 16

Max epochs 100
Structure ResNet18
Drop rate 0.3

Adam learning rate 5 × 10−5

Pooling layer Global average pooling
Loss function Cross-entropy loss

VGG

Input size 224 × 224 × 3
Batch size 16

Max epochs 100
Structure VGG11
Drop rate 0.3

Adam learning rate 5 × 10−5

Pooling layer Global average pooling
Loss function Cross-entropy loss

4.3. Results Analysis and Comparisons
4.3.1. Case 1: Fault Diagnosis of Four Datasets with Different Imbalanced Ratios

We compared HWT-SS with HWT-CE, VGG, and ResNet on four datasets with dif-
ferent imbalances and repeated the training verification five times to show the robust
generalization ability of the model. Figure 7 illustrates the comparison of diagnostic ac-
curacy and standard deviation for the four datasets. From a macroscopic point of view,
the average accuracy and standard deviation of each model at different imbalanced ratios
of the four datasets are shown in Table 9. On the one hand, the accuracy of HWT-SS at
the balanced ratio (1:1) is basically the same as that of HWT-CE, which is 99.95% ± 0.03%
and 99.88% ± 0.09%, respectively. The advantage of the seesaw loss function becomes
more obvious with the increase in the imbalanced ratio, which increases the accuracy
by 0.33%, 2.3%, and 3.75% compared with HWT-CE. At the same time, the stability of
HWT-SS was also improved in terms of standard deviation. On the other hand, the average
accuracy of HWT-SS on different data ratios was improved by 1.32%, 2.47%, 7.86%, and
11.29% compared to ResNet, and the performance benefits of HWT-SS were increased by
2.48%, 4.24%, 11.48% and 14.9% compared to VGG, respectively, due to hierarchical feature
extraction and dynamic compensation of the seesaw loss function for imbalanced data.

Table 9. The average accuracy and standard deviation of the models in four datasets.

1:1 2:1 10:1 50:1

HWT-SS 99.95% ± 0.03% 99.89% ± 0.09% 97.89% ± 0.48% 91.92% ± 0.74%
HWT-CE 99.88% ± 0.08% 99.56% ± 0.30% 95.59% ± 0.81% 88.17% ± 1.53%
ResNet 98.63% ± 0.23% 97.42% ± 0.63% 90.03% ± 1.39% 80.63% ± 1.94%
VGG 97.47% ± 0.45% 95.65% ± 0.84% 86.41% ± 1.39% 77.02% ± 1.39%

To further explore the diagnostic capability of the proposed HWT-SS for imbalanced
data, the low imbalanced ratio of 2:1 and the high imbalanced ratio of 50:1 are highlighted.
The t-distributed stochastic neighborhood embedding (T-SNE) [41] is applied to the last
hidden layer of the model, and the high-dimensional features can be simplified to a two-
dimensional distribution labeled in terms of prediction classes. Taking the CWRU dataset
with the most fault classes as an example, Figure 8 shows the T-SNE visualization results of
each model when the imbalance is 2:1. The analysis results in Figure 8a illustrate that the
feature vectors obtained from HWT-SS have the best intra-class aggregation and inter-class
separability, while the intra-class aggregation of the other three models is poor. At the
same time, we note that the T-SNE visualization of each model leads to different degrees
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of misclassification, which is due to the influence of the NC samples. To further quantify
the misclassification of the different models, the confusion matrixes are used to represent
the prediction accuracy of each class, as shown in Figure 9. At the same time, the NC
precision is calculated to investigate the extent to which fault samples are misclassified as
NC samples, and the formula is presented in Equation (18):

P =
TP

TP + FP
×% (18)

where TP and FP represent the number of true and false NC samples.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 28 
 

 

4.24%, 11.48% and 14.9% compared to VGG, respectively, due to hierarchical feature ex-

traction and dynamic compensation of the seesaw loss function for imbalanced data. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Fault diagnosis results of different models on the (a) CWRU, (b) SEU, (c) SZTU-M, (d) 

SZTU-B datasets with different imbalanced data ratios. 

Table 9. The average accuracy and standard deviation of the models in four datasets. 

 1:1 2:1 10:1 50:1 

HWT-SS 99.95% ± 0.03%  99.89% ± 0.09%  97.89% ± 0.48%  91.92% ± 0.74% 

HWT-CE 99.88% ± 0.08% 99.56% ± 0.30%  95.59% ± 0.81% 88.17% ± 1.53%  

ResNet 98.63% ± 0.23%  97.42% ± 0.63% 90.03% ± 1.39% 80.63% ± 1.94%  

VGG 97.47% ± 0.45% 95.65% ± 0.84% 86.41% ± 1.39%  77.02% ± 1.39%  

To further explore the diagnostic capability of the proposed HWT-SS for imbalanced 

data, the low imbalanced ratio of 2:1 and the high imbalanced ratio of 50:1 are highlighted. 

The t-distributed stochastic neighborhood embedding (T-SNE) [41] is applied to the last 

hidden layer of the model, and the high-dimensional features can be simplified to a two-

dimensional distribution labeled in terms of prediction classes. Taking the CWRU dataset 

with the most fault classes as an example, Figure 8 shows the T-SNE visualization results 

of each model when the imbalance is 2:1. The analysis results in Figure 8a illustrate that 

the feature vectors obtained from HWT-SS have the best intra-class aggregation and inter-

class separability, while the intra-class aggregation of the other three models is poor. At 

the same time, we note that the T-SNE visualization of each model leads to different de-

grees of misclassification, which is due to the influence of the NC samples. To further 

quantify the misclassification of the different models, the confusion matrixes are used to 

represent the prediction accuracy of each class, as shown in Figure 9. At the same time, 

the NC precision is calculated to investigate the extent to which fault samples are misclas-

sified as NC samples, and the formula is presented in Equation (18): 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× % (18) 

where TP and FP represent the number of true and false NC samples. 

99.85%±0.05% 99.62%±0.19% 95.10%±0.75% 88.02%±1.17%

99.60%±0.16% 99.20%±0.37% 93.96%±1.18% 84.80%±1.80%

95.40%±1.00% 93.74%±1.18% 90.38%±1.77% 70.16%±1.66%

91.22%±0.30% 89.82%±0.73% 83.40%±1.24% 64.56%±2.60%

1:1 2:1 10:1 50:1
50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

 HWT-SS

 HWT-CE

 ResNet

 VGG

99.96%±0.08% 99.92%±0.16% 97.24%±0.54% 89.88%±1.17%

99.92%±0.16% 99.84%±0.15% 94.68%±1.17% 85.32%±2.46%

99.84%±0.20% 99.76%±0.23% 86.04%±1.25% 79.56%±1.66%

99.76%±0.15% 97.84%±0.34% 85.12%±1.54% 79.20%±2.76%

1:1 2:1 10:1 50:1
50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

 HWT-SS

 HWT-CE

 ResNet

 VGG

100%±0% 100%±0% 100%±0% 97.28%±0.91%

100%±0% 99.68%±0.22% 99.30%±0.34% 95.10%±0.81%

99.60%±0.30% 98.38%±0.98% 92.10%±1.83% 87.3%±1.48%

99.58%±0.26% 97.75%±0.90% 88.43%±1.39% 84.13%±1.72%

1:1 2:1 10:1 50:1
50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

 HWT-SS

 HWT-CE

 ResNet

 VGG

100%±0% 100%±0% 99.23%±0.61% 91.70%±0.73%

100%±0% 99.53%±0.44% 94.40%±0.56% 87.47%±1.04%

99.67%±0.28% 97.80%±0.95% 91.60%±0.70% 85.50%±0.74%

99.30%±0.19% 97.20%±0.55% 88.67%±1.39% 80.20%±0.67%

1:1 2:1 10:1 50:1
50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

 HWT-SS

 HWT-CE

 Resnet

 VGG

Figure 7. Fault diagnosis results of different models on the (a) CWRU, (b) SEU, (c) SZTU-M, (d) SZTU-
B datasets with different imbalanced data ratios.

As can be seen in Figure 9a, HWT-SS has the lowest misclassification; only three
ORF7 samples are misclassified as NC, and the accuracy of HWT-SS for the NC label is
at most 97.09%. In HWT-CE and ResNet, there are 7 and 38 ORF7 samples misclassified
as NC labels, respectively (see Figure 9b,c), and the NC accuracy is 92.59% and 72.46%,
respectively. VGG performed the worst with 51 and 49 prediction errors for NC and ORF7,
respectively.

In addition, Figure 10 shows the T-SNE visualization of each model in an extremely
imbalanced dataset Dt3

1 where there are only 6 samples for each fault class. The proposed
HWT-SS still has the best inter-class separability and intra-class aggregation, and the class
features of the other three models are blended with each other. The class predictions of the
different models for the dataset Dt3

1 are shown in Figure 11 using the confusion matrix. The
prediction effect of HWT-SS for each class is still better than that of the other three models;
only a small number of prediction faults exist for the IRF14 and OPF7 labels. But with
the increase in the ratio of normal samples to fault samples, the NC precision of HWT-SS
decreases to 66.23%.
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Consequently, HWT-SS has the best performance compared to the other three models,
and the performance advantage is more obvious the larger the imbalanced ratio. However,
the accuracy and stability of HWT-SS have decreased with extremely imbalanced data, so
PTL is used to further improve the diagnostic performance.

4.3.2. Case 2: Cross-Component Fault Diagnosis with PTL

Since the accuracy of HWT-SS is 97.28% even with the extreme imbalance of the SZTU-
M dataset, we set three extremely imbalanced datasets Dt3

1 , Dt3
2 , Dt3

4 other than the SZTU-M
dataset as TD, and four normal datasets Ds

1, Ds
2, Ds

3, Ds
4 as SD for cross-component fault

diagnosis. Thus, nine groups of PTL tests were performed. The accuracy of each test group
and the average accuracy of each TD are shown in Table 10. The following conclusions can
be drawn from the comparative analysis:

(1) It is not difficult to see that different SD datasets have different transfer effects on
the TD. Specifically, Ds

3 → Dt3
1 test has the best result of transfer learning, whose

diagnostic accuracy is 99.06% ± 0.63%. For the number of fault classes, Ds
3 is more

similar to Dt3
1 than other SD datasets.

(2) When the number of fault classes in the different SDs is similar, the transfer learn-
ing effect is better when the sample length of SD is similar to that of TD, which is
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confirmed by the accuracy of Ds
2 → Dt3

1 (95.04% ± 0.61%), which is greater than the
accuracy of Ds

4 → Dt3
1 (93.14% ± 0.79%).
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Table 10. Cross-component fault diagnosis results with PTL.

Ds
1 Ds

2 Ds
3 Ds

4 Average Accuracy

Dt3
1 / 95.04% ± 0.61% 99.06% ± 0.63% 93.14% ± 0.79% 95.75% ± 0.68%

Dt3
2 97.32% ± 0.37% / 96.80% ± 0.49% 91.04% ± 0.98% 95.49% ± 0.61%

Dt3
4 96.47% ± 0.54% 90.23% ± 0.36% 97.92% ± 0.61% / 95.08% ± 0.50%
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Similarly, the above analysis can be confirmed for the Dt3
2 and Dt3

4 tests. Since Ds
1 and

Ds
3 have more fault types, the accuracy of Ds

1 → Dt3
2 and Ds

3 → Dt3
2 is significantly higher

than that of Ds
4 → Dt3

2 , and the accuracy of Ds
1 → Dt3

4 and Ds
3 → Dt3

4 are significantly
higher than that of Ds

2 → Dt3
4 . Due to the SD and the TD of Ds

1 → Dt3
2 and Ds

3 → Dt3
4

transfer tests have similar sample lengths, their accuracy is also the highest in their group
of TD tests. Surprisingly, due to the limitations in the number of fault classes and sample
length in the SD, transfer learning between components of the same type did not achieve
the best result, which can be seen from the accuracy of the bearing component transfer tests
in the Ds

4 → Dt3
2 and Ds

2 → Dt3
4 . When the number of fault classes included in the source

domain is large, TD can learn more feature information from SD. If the sample length
of SD and TD is similar, which means the rotation speed and sampling rate are similar.
Then the state of the components in SD and TD are similar, so the state information can be
transferred and learned better.

To further explore the advantages of THWT-SS compared to the models in Case 1,
we also take the CWRU dataset as an example. First, the accuracy and loss curves of the
training process for each model are shown in Figure 12. THWT-SS is stable after 43 epochs,
and its performance can quickly converge to the high accuracy region compared to the
models before 10 epochs. From the T-SNE visualization of three transfer tests in Figure 13,
THWT-SS performs better in intra-class aggregation and inter-class separation of different
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feature classes than Figure 10, where Ds
3 → Dt3

1 obviously performs the best. The class
prediction of each transfer test is shown in Figure 14 using the confusion matrix. The NC
precision increased from 66.23% to 92.59% for the maximum extent, and the accuracy of the
other classes also improved further compared with Figure 11a.
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Figure 13. T-SNE visualization results of (a) Ds
2 → Dt3

1 , (b) Ds
3 → Dt3

1 , (c) Ds
4 → Dt3

1 transfer tests
across the THWT-SS.

In addition, Grad-CAM is used to improve the interpretability of the THWT by
drawing attention to the characteristics of the sample. For a test image, the gradient
information for the target class is propagated back to a feature layer of the model, which
becomes Grad-CAM visualization through weighted summation and ReLU activation.
From the confusion matrixes in Figures 11 and 14, the classes affected by the extremely
imbalanced data in the CWRU dataset are mainly IRF14 and ORF7. Therefore, the Grad-
CAM heatmaps of the NC, IRF14, and ORF7 samples for the last feature layer of the HWT-SS
and the THWT-SS ( Ds

3 → Dt3
1 ) are shown in Figure 15. The red area is the attention of the

sample features compared to the original samples. It is not difficult to see that the focus of
HWT-SS has evolved with the PTL towards a more precise and smaller scale, resulting in
the model being able to better identify different classes.
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We continue to test all imbalanced ratios in the CWRU, SEU, and SZTU-B datasets.
The average accuracy of the transfer tests for each imbalanced ratio is calculated and
compared to other models. From the comparison results shown in Figure 16, it is clear that
THWT-SS has advantages over other models without PTL, which proves the feasibility of
mutual transfer learning between different RM components. As a special case, the proposed
HWT-SS is sufficient to handle various imbalanced ratios in the SZTU-M dataset, reflecting
the advantage of the seesaw loss function in handling imbalanced data.
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Finally, it is necessary to further evaluate the diagnostic performance of the proposed
method compared with the published methods; the comparison results running under
the same CWRU dataset are listed in Table 11. All models were compared under similar
imbalanced ratios: Refs. [42,43] contain 12 fault classes under a single operating condition;
Ref. [44] only has 5 fault classes under a single operating condition; and Ref. [45] has 10 fault
classes under three mixed operating conditions. From the perspective of model diagnostic
accuracy, the proposed THWT-SS achieves the highest accuracy of 100% under the most
complex operating conditions. HWT-SS is only 0.04% worse than Ref. [45], ranking third,
but it has an additional operating condition, which reflects the powerful performance of
the seesaw loss function used in this paper.
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Figure 16. Comparative results of the individual models with different imbalance ratios on (a) CWRU,
(b) SEU, (c) SZTU-M, (d) SZTU-B.

Table 11. Comparison results of different models.

Method Class
Number Condition

Imbalanced
Ratios

(NC:BF:IF:OF)
Accuracy Rank

THWT-SS 10 0&1&2&3 hp 2:1:1:1 100% 1
HWT-SS 10 0&1&2&3 hp 2:1:1:1 99.62% 3
HWT-CE 10 0&1&2&3 hp 2:1:1:1 99.20% 4
ResNet 10 0&1&2&3 hp 2:1:1:1 93.74% 9
VGG 10 0&1&2&3 hp 2:1:1:1 89.82% 8

Ref. [42] 12 1 hp 7:1:3:5 95.36% 6
Ref. [45] 10 1&2&3 hp 10:5:8:2 99.66% 2
Ref. [44] 5 0 hp 2:1:1 94.85% 7
Ref. [43] 12 3 hp 2:1:1:1 96.80% 5

5. Conclusions

In this paper, we proposed a novel THWT-SS to achieve fault diagnosis of RM with
imbalanced data, which is composed of applying PTL to HWT-SS. The proposed THWT-SS
has the following features: (1) We creatively apply the PTL to various RM components
to solve the practical problem of RM and adopt the improved SWT to improve the signal
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feature expression in the time-frequency domain and reduce the feature difference between
different domains. (2) The proposed HWT-SS adopts a hierarchical window transformer
as the feature extraction backbone and dynamic seesaw loss as the loss function, which
improves the feature extraction ability and reduces the impact of imbalanced data.

The advantages of the model are verified using two public and two self-generated
datasets, respectively. First, in Case 1, the average accuracy of HWT-SS was increased by
3.75%, 11.29%, and 14.9% under the extreme imbalance condition compared to HWT-CE,
ResNet, and VGG, respectively. In Case 2, the highest diagnostic accuracy of THWT-SS can
reach more than 99.06% by transferring learning between different component datasets
under an extremely imbalanced ratio condition. The comparisons with benchmark models
and published methods prove that THWT-SS can solve the problem of RM imbalanced data
by cross-component transfer learning. However, the model proposed in this paper still
requires a small number of fault samples to complete fault diagnosis. In future work, we
will further improve the model to solve the more extreme imbalanced problem and further
explore the application of the model in domains other than RM, such as electrical appliances.
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