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Abstract: Modern, commonly used cryptosystems based on encryption keys require that the length
of the stream of encrypted data is approximately the length of the key or longer. In practice, this
approach unnecessarily complicates strong encryption of very short messages commonly used for
example in ultra-low-power and resource-constrained wireless network sensor nodes based on
microcontrollers (MCUs). In such cases, the data payload can be as short as a few bits of data while
the typical length of the key is several hundred bits or more. The article proposes an idea of employing
a complex of two algorithms, initially applied for data compression, acting as a standard-length
encryption key algorithm to increase the transmission security of very short data sequences, even as
short as one or a few bytes. In this article, we present and evaluate an approach that uses LZW and
Huffman coding to achieve data transmission obfuscation and a basic level of security.

Keywords: short encryption key; information security; Huffman coding; LZW; entropy; privacy;
compression

1. Introduction

When data are transmitted over the network, various measures are required to pro-
tect its many aspects, including confidentiality [1], integrity [2], availability [3], non-
ambiguity [4] and, where applicable, also validity [5], accountability [6] and reliability [7].

Data security is generally ensured through the use of cryptography. We currently have
a rich collection of cryptographic algorithms available. Traditional encryption algorithms
operate on the input data, i.e., the plaintext, and the secret on which generating the encryp-
tion key is based. However, the implementation of the algorithms heavily depends on the
hardware on which they are run, namely operating memory, processor clock speed, and
transmission speed, as well as the form of power supply and, in some cases, the capacity
of the power supply battery [8]. These basic resources are usually not a barrier in the
case of personal computers, servers, graphics cards or tablets, and smartphones. All of
them have enough computing power to execute the encryption method and obtain an
encrypted form of the message. However, in this article, we are considering the systems
in the domain of resource-constrained MCU-based connected embedded devices and IoT
nodes. In such systems, the hardware peripheral support, computing power, memory,
communication bandwidth, and energy resources are significantly limited. Examples of
such platforms include the following MCUs: RP2024, which is used in a very popular
Raspberry Pi Pico platform, or the STM32 series from ST Microelectronics, which are com-
monly used in industrial electronics. In general, many of the low-end and mid-end MCUs
have no hardware-supported encryption peripherals. In these cases, it may be difficult or
inefficient to use popular and widely available algorithms such as AES or 3DES. For such
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platforms, the hardware resource demands to obtain the result—the ciphertext—would be
unacceptable. Moreover, performing the algorithm itself would reduce the expected time
of their battery operation time due to the greater demand for energy. Importantly, some
devices send messages of length from single bits up to bytes. Thus, using an algorithm with
a key length of, for example, 256 bits is against the principle of a key size similar to the size
of an encrypted block. This is a case of simple devices with a primitive structure that send a
small volume of data for further processing (e.g., one-way transmission, only sending data
like temperature or pressure value). In order to effectively achieve the goal and ensure the
required security aspects, they must be equipped with dedicated, non-standard expensive
solutions that significantly increase the use of available resources—mainly battery energy.
Designing the new cryptographic algorithms for this specific group of devices is a very
demanding challenge. In this paper, we propose a new method for short data encryption
based on the non-standard application of two compression algorithms, namely the Huff-
man algorithm and LZW. These compression algorithms are widely used for shortening
the data length without losing data meaning (information contents). However, so far, these
algorithms were not applied for data obfuscation. We propose to secure some parameters
and data structures for these algorithms to act as an equivalence of an encryption key. As
the length of the compressed data is not limited (neither the lower nor the upper value),
we may encrypt very short data (in theory—even a single bit) with an encryption strength
comparable to the classical cryptographic algorithms. We also propose some mechanisms,
based on random noise to obfuscate the slowly evolving sensor values (such as a tempera-
ture value) so that the subsequent transmissions differ significantly. Due to the compression
factor, the added noise is not increasing the overall data length.

It is important to point out that the described solution does not aim at replacing any
existing algorithm which is in use for typical data and key lengths. Our solution is, however,
devoted to the application area which typical encryption solutions cannot address or for
which classic algorithms are inefficient or just inconvenient to use.

The organization of the article is as follows. We start with a brief summary of the
current state of the art in Section 2. Then, in Section 3, we present the overview of the
proposed solution. Section 4 is devoted to theoretical issues concerning compression
algorithms and their application in the subject of data encryption. Section 5 presents the
technology-agnostic example of an implementation procedure necessary to be undertaken
using the algorithms used in the described solution. For clarity, the procedure is presented
using a set of sample data. The practical evaluation of the proposed procedure is described
in Section 6. Results of the implementation are obtained from an example implementation
in real hardware. That section also discusses selected security aspects. Finally, Section 7
contains a discussion of the achieved results and the usefulness of the solution.

2. Related Work

Specifying and describing individual steps and subsequent iterations of a crypto-
graphic algorithm should be widely known, as they should all be designed according to
the Kerckhoffs principle [9]. This principle says that a cryptographic system should be
secure even when all the details of its operation—except for the decryption key—are known.
The encryption/decryption key is the decisive parameter, having an influence on how
easy it is to obtain the plaintext from the ciphertext in whole or in part. If the encryption
and decryption keys are the same, we speak about symmetric cryptography; otherwise,
asymmetric solutions apply. An example of a symmetric algorithm is, e.g., 3DES [10] or
AES [11], where the recommended key length is up to 256 bits. In turn, with regard to the
typical asymmetric RSA algorithm [12], a key length of 1024–4096 bits is recommended.
Authentication is ensured by, for example, the HMAC mechanism [13], where the typical
key length should be 224–512 bits when using the SHA-2 algorithm [14]. As we see, in the
case of small sensors, the encryption key length is usually substantially much longer than
the encrypted data, forcing a transmission of unnecessary information or even ultimately
preventing the practical applications for limited hardware.
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Also, widely used block ciphers [15] may not be useful in the described situations.
Padding a very short message to the full block size would contribute to the unnecessary
transmission of redundant data. Moreover, such an approach is inefficient in systems
with limited caching capacity and in cases where chunks of data need to be processed
as they are received. In the scope of this article, only one bit, one byte, or another small
chunk of data is encrypted at a given time. In such use cases, the stream ciphers [16]
will also not prove efficient due to the length of the payload. Moreover, a pseudorandom
number generator (PRNG) [17] will be required to ensure their correct operation. The
PRNG provides necessary random values on an ongoing basis. It is always the element of
stream ciphers that is their weakest and the first aspect to be broken due to, e.g., repetition
cycles. In addition, specific situations in which each bit is encrypted separately require
additional synchronization mechanisms.

3. Overview of the Proposed Solution

In order to solve the problem, the authors of the article propose a new approach
enabling short data encryption with a longer key. In this case, the innovative concept is
based on Huffman coding [18,19] in combination with LZW [20,21], which will ensure
the desired level of security for a dedicated group of devices. The LZW algorithm, based
on the detection of correlations between successive characters, generates a dictionary
with codes representing symbols and their concatenations. Then, based on the dictionary
data, the Huffman algorithm implementation procedure is started, during which a code is
determined for each index coded in the first stage, with a length inversely proportional
to the frequency of its occurrence. This means that symbols and their concatenations,
represented in the form of indexes often found in the message, are ultimately represented
by much shorter codes. The result is not only a significant reduction in redundancy, a
reduction in the number of transmitted packets, and the space needed to save data, but also
a binary tree used for data compression. Because we assume that an encoded representation
of the binary tree is used as an equivalent to an encryption key, it is possible to encode
messages of any length, including ones that are shorter than the key.

4. Materials and Methods

In the domain of digital representation, it may happen that the information to be
stored or transmitted has redundant, often repetitive, chunks of data. It usually results
in reserving more bits or blocks of data than are actually needed to represent the data
unambiguously. This is the reason for the undesirable phenomenon of data redundancy,
which can be eliminated or reduced by compressing the data. Compression [22] makes it
possible to encode information in a way that will contribute to saving resources, including
the required operating memory or occupied disk space, and will also allow the same
information to be sent in a much smaller number of packets and in a shorter time.

In this article, we consider the lossless type of compression in which the compressed
data can be restored to its exact, original form.

4.1. The LZW Algorithm

The LZ77 algorithm was dedicated to solutions where we assume that repeating
symbols occur within a short codeword distance. The improved LZ78 algorithm alleviates
that limitation. In this case, compression is as straightforward as substituting symbol
strings with indexes in the dictionary that stores them. Lossless compression is achieved
by substituting a reoccurring sequence with a reference to the position of its copy held in
the dictionary. The reference is a tuple (i, l, c), where o ≥ 0 is the offset position of the copy
in the dictionary (in our case counted backward from the end of the dictionary), l ≤ 0 is the
length of the sequence and c is the next character after the reoccurring sequence in word M.
The dictionary can be provided externally and can be expanded as needed. The data that
have already been processed can be removed from the dictionary. The place of the triple
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from the LZ77 algorithm is replaced by the pair (i, c), where i is the best-fit index and c is a
character or a symbol ending the match.

The result of further work on the LZ78 is the LZW algorithm proposed in 1984. The
principle of its operation is very similar to those previously mentioned, with the difference
that instead of the pair (i, c), only the p position of the longest match is encoded. Notably,
the obligatory step is to include all the symbols of the alphabet in the dictionary. This
requirement is due to the impossibility of encoding a symbol when encountered when it is
not in the dictionary. In this way, the dictionary is ultimately represented by concatenating
the encoded dictionary element and the s symbol following it. An additional, undoubted
advantage is also the lack of a need to remember and transmit the dictionary. Instead,
the dictionary can be reproduced by another node based on the encoded form of the
message. The universality of the LZW algorithm should also be mentioned because its
implementation is unrelated to any compressed data conditions. The compression method
depends on the source, i.e., the message. It means that the algorithm is not only dynamic
but also adaptive. The advantage of LZW over the two previously mentioned algorithms
manifests itself in the form of a shorter output, as only the index of the found word is
given. This does not mean, however, that the LZ77 and LZ78 will not be used in other
dedicated solutions designed for a specific purpose. The result obtained with their help
may be completely sufficient within a specified application area; therefore, when specifying
functional requirements, it is also worth considering them.

4.2. Huffman Algorithm

One way to encode characters is to use fixed-length codes, where the length of each
encoded symbol will always be the same. No matter how often an element occurs in relation
to other elements, the lengths of all codes will be identical. In addition, equal weights
guarantee very good results when the number of characters is small. A greater degree of
compression is achieved with variable-length codes implemented using binary trees. To
visualize this, let us consider, for example, the alphabet A = {a, b, c}. There is no need to
reserve a byte of memory to represent any symbol because 2 bits is enough. Therefore let us
assume the following mapping: a—11, b—00, c—01. To encode the text abbccbba, consisting
of 8 symbols, 64 bits should be reserved in the standard solution. Using fixed-length codes
makes it possible to shorten the transmission to 16 bits, which is a compression result of
seventy-five percent.

It can be seen that it is much better to assign short codes to frequently occurring
symbols. This marked the beginning of an alternative to the described case. In the presented
algorithm, the first step is to count the occurrences of each symbol in the input data. This
means that each character has a counter associated with how many times the symbol occurs
in the message. The most common characters are represented by short codes. On the other
hand, longer codes are associated with less frequent symbols. Therefore, the length of the
code is inversely proportional to the frequency of the symbol.

The input to the algorithm is a set of symbols of size n and weights W = (w1, w2, . . . , wn)
that are usually proportional to the probabilities wi = weight(ai), i ∈ {1, 2, . . . , n}. As a
result of the implementation of the algorithm, a binary code with the minimum expected
length of the code word is obtained, i.e., the equivalent of a tree with the minimum weighted
length of the path from the root C(W) = (c1, c2, . . . , cn). This means that the code is a tuple
of binary codewords, where c + i represents the code for ai, for i ∈ {1, 2, . . . , n} [23,24].
For the data generated this way, the next step is to create a binary tree built from the
leaves to the root and label all edges with the values 0 (left) and 1 (right). This way, it
becomes possible to unambiguously interpret a message fragment at any stage of data
processing stage.

4.3. Combination of LZW and Huffman Algorithms

In the presented solution, we have decided to use a combination of Huffman and
LZW algorithms. The first of these is oriented to detect and compress data with a focus on
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the frequency of occurrence of individual symbols. Unfortunately, when used alone, the
algorithm does not allow the detection of correlations between successive characters. This
is provided by the LZW algorithm. This way, the initial redundancy is reduced to a much
lower level.

The proposed solution includes not only data compression and protection but also
additional authentication. Linking the message with the node’s identifier and encoding it
as a whole allows for the introduction of additional verification mechanisms. In this way,
we obtain unambiguous confirmation of who is sending the data, proven by the ability to
encode the data correctly. If the data sender knew the key, they were able to carry this out,
so they are who they claim to be. For the purpose of authentication, a mapping structure
can be stored in the database (directory) in which the association of the key with the address
will be stored. As a result, detecting the sender’s address determines the decoding key
from the set, which is part of the authentication process. When we replace the identifier
with any right (e.g., a read or write permission), we obtain the possibility of authorization.
A necessary step in the case of the described implementation is the need to agree on the
format of the message or packet in advance.

The implementation of the two presented algorithms is popular, e.g., it takes place in a
Linux/UNIX system when the compress method is called. This combination was also used in
classic operating systems, in the PKZIP program, and in the WinZip application. Therefore,
it seems justified to use these two algorithms in the domain of resource-constrained systems
to ensure compression as well as protection.

4.4. Application of the Algorithms

Encryption algorithms require additional data to ensure proper operation, e.g., confi-
dentiality and data integrity. In addition to input, encryption algorithms typically require
a key to be provided. For data security, the length of the key must be close to the size of
the block of plaintext that is being encrypted. The classic approach to the case is shown in
Figure 1. This way, if we need to encrypt a shorter data block, we need to pad that information
with random data up to the minimum block length supported by the encryption algorithm.

Figure 1. Typical application of an encryption block.

The data transmission should be minimized in systems that use very low power
transmission and resource-constrained hardware. Examples of such systems are low-power
IoT devices or wireless sensor networks in which a single sensor is required to operate
for up to a few years on a single battery. Such systems often transmit very little amounts
of data sparsely in time. In such cases, padding very short messages to align their length
with the key will be inefficient. Therefore, there is a gap in the subject of data security in
the domain of resource-constrained sensors, and the presented solution intends to fulfill
that gap.

The data protection proposal presented in the article uses a combination of two data
compression algorithms with different characteristics. The first of the algorithms, LZW, is a
kind of dictionary compression algorithm. It allows us to detect strings in the text that are
often repeated in the input data. Each detected and already encoded part of the message in
each subsequent iteration is extended by the next symbol that ends the longest match. In
this way, after processing the input data, a dictionary is obtained containing a mapping of
a string of several, even a dozen or so, characters for the index identifying it. On the basis
of frequently repeated symbols (indices), the frequency of their presence in the message is
determined. This allows frequent indices to be assigned shorter codes than less frequent
indices, based on the Huffman coding method. As a result, after applying a combination
of these algorithms, a binary tree is generated. The edges of that tree are then marked
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with labels. It enables unambiguous interpretation of the value (leaf) during encoding or
decoding. In our case, it can be perceived as an encryption and decryption of the message.
The size of the tree, i.e., the final number of leaves (encoded indexes), is determined on the
basis of the contents of the LZW dictionary. If such a dictionary is kept secret, this means
that the binary tree is also a secret, being an equivalence of an encryption key in this case.
Therefore, we propose a new data protection scheme, presented in Figure 2.

Figure 2. The proposed encryption scheme uses a binary tree as the method of representation of
data compression.

5. Sample Application Procedure

This section presents the procedure to be taken in order to properly implement the
algorithms. The first necessary step is to determine the relationships among the symbols,
based on the processed set of symbols. The occurrence of repetitive strings in successive
iterations expands the resources of the dictionary, in which encoded values are stored
under successive indexes. They are created as a result of a concatenation of the longest,
identical match of the currently processed fragment with the one already saved, with the
symbol that ends this match. In this way, a dictionary is generated, by means of which an
increasingly long string of characters is represented by an index (LZW algorithm). In the
second step, the dictionary data are evaluated against the index frequency. On the basis of
this size, their weights are determined, which ultimately determines the location of the leaf.
The most frequently appearing indexes will obtain the shortest codes, while for those to
which references are less frequent, the path leading from the root to the leaf will be longer
(Huffman’s algorithm).

5.1. Analysis of an Example of Huffman Algorithm Application

The effect obtained by running the Huffman algorithm for the input data is the
assignment of short codes to the most frequently occurring characters in the plaintext
message. This means that characters appearing less often receive longer codes, so the
length of the code is inversely proportional to the frequency of the symbol in the message.
For the purposes of presenting the theoretical background necessary to explain the issue,
let us assume that alphabet A is built of four symbols, i.e., A = {s1, s2, s3, s4}. Each symbol
is associated with its weight, i.e., the frequency expressing the probability of its occurrence,
i.e., w = (w1, w2, w3, w4). The first step of the Huffman algorithm is to create a list of tree
nodes. The nodes will eventually take the form of leaves in the binary tree to store the
encoded character and its frequency (probability of occurrence) in the text. This list is
organized in ascending order by weight (Figure 3).

Figure 3. The list of nodes sorted ascending by their weights (w1 . . . w4).

The first two nodes with the lowest weights are merged, and a new node will be
created. We store the sum of weights, i.e., the probabilities of symbol occurrences in it.
Such a node does not represent a specific symbol and it is not a leaf; therefore, it should be
treated as an internal node. The node created in this way is then inserted into the list of
nodes while considering the ascending order of weights (Figure 4).
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Figure 4. The list of nodes after merging the two lowest-weight nodes.

The operation is repeated. Two nodes with the lowest weights are selected, which
will then be merged. In this case, we take the node obtained as a result of the merge in the
previous step and also the one with the symbol s3 and the weight w3 (Figure 5).

Figure 5. The list of nodes after merging the subsequent two nodes.

At this stage of the algorithm, there is one node that needs to be merged (s4), so the
operation should be performed one last time. Whether s4 is on the left or right depends on
the symbol weight value. According to the obligatory rule, nodes with a lower frequency
value are on the left. When the finished tree is generated, all edges should be labeled. The
rule is to mark the left edge with the value 0 and the right edge with 1. The result is shown
in Figure 6.

Figure 6. The resulting Huffman tree with edges labeled with binary values.
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The generated tree and given labels enable the reading of codes representing specific
symbols; here, s1 = 100, s2 = 101, s3 = 11, and s4 = 0. For example, if a message
K is represented as K = s3s4s1s2s3s4s3, then the encoded message will be represented
as 11010010111101011.

5.2. Analysis of an Example of LZW Algorithm Application

The LZW algorithm provides lossless compression and uses dynamic dictionaries. As
mentioned earlier, as a result of the implementation of the method, subsequent inputs are
encoded using the pair (i, C). The value of i is the index of the beginning of the best match,
and C is the symbol that ends it. After each match, a string is added to the dictionary, which
is a concatenation of the matched string and the character immediately after it. This means
that subsequent dictionary entries are inserted as a result of combining the best match of
the currently processed text and the character that immediately follows it. According to
Terry Welch’s work [20], there is no need to encode the two elements of the pair achieved in
the initial initialization of the dictionary. This is related to placing all the symbols that make
up the alphabet in the dictionary at the beginning of the encoding. When the currently
processed fragment is not present in the dictionary, the best match found is concatenated
with the symbol that ends it. The text obtained in this way is inserted into the dictionary
under a new, subsequent index, while the symbol ending the match becomes the first one
from which the next match will take place.

Let us have an alphabet consisting of four symbols: A = {s1, s2, s3, s4}. The dictionary
is initially empty, so there is a need to save them under subsequent indexes: s1 at index 0,
s2 at index 1, s3 at index 2, and s4 at index 3.

Let us assume that the message to be sent is s2s3s2s1s2s3s2s4. The first symbol in the
message, s2, is found at index 1. There is no coded fragment s2s3 in the dictionary, so a
single symbol is the best match. A new index, index 4, is inserted into the dictionary, which
will represent the phrase s2s3. The symbol that completes the match becomes the first one
from which the search for the next best match begins. The symbol s3 is in the dictionary,
but s3s2 has not yet been encoded. This means creating a new record in the dictionary with
index 5, which points to the text fragment s3s2. The presented procedure is repeated until
all the symbols constituting the input data are processed. For a sample set of symbols, the
target result is shown in Table 1.

Table 1. An example of the LZW dictionary for the sample input values.

Index Input Output

0 s1 -
1 s2 -
2 s3 -
3 s4 -
4 s2s3 1
5 s3s2 2
6 s2s1 1
7 s1s2 0
8 s2s3s2 4
9 s2s4 1

After the LZW encoding stage is completed, it is possible to read the encoded form of
the message. In this case, the message s2s3s2s1s2s3s2s4 will take the following form: 121041.

It is worth noting that the coding process started with completing the dictionary. Once
the regularities or repetitions that occur based on the text have been recorded, then the
degree of compression is much higher. For example, if a fragment identical to the presented
input data s2s3s2s1s2s3s2s4 was already encoded in the dictionary, then only one index
would be enough to represent it, e.g., 23.
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After the encoding process is completed, sending the result does not require attaching
a dictionary to the message. Based on the encoded content and the initial form of the
dictionary, the recipient can rebuild it and obtain a definitive version of the message.

5.3. Huffman and LZW Algorithms Combined

In the previous chapters, the typical application of LZW and Huffman algorithms
was assumed, i.e., the individual building of data structures for the purpose of encoding
one specific input data. In contrast to the traditional approach, in the proposed solution,
we use the LZW and Huffman algorithms for theoretically arbitrary input data. For this
reason, the data structures of these algorithms should include not only selected but all
possible words from a given alphabet. On the other hand, it should be taken into account
that some words (symbol combinations in the input) appear more often, so it is worth
optimizing these structures for them. Therefore, a compromise has been adopted in the
following solution. In the first step, structures are created for arbitrary combinations of
alphabet symbols with a maximum length of N symbols. The number N is selected in
terms of the capabilities of the microcontrollers in which the algorithm will be run. For
N = 2 and an alphabet consisting of characters that allow writing any number (14 symbols
described below), the final table of the implementation of the combination of algorithms
has about 700 elements. The length of this table grows exponentially with the increase in
the number N and the length of the alphabet; therefore, assuming N = 2 seems to be the
optimal solution in practice.

Random occurrence counters in the input string are recorded for all generated words
(clusters of symbols). This approach allows generating a random assignment of the proba-
bility of a given word, and thus, random data structures that become the equivalent of a
randomly selected key of the encryption algorithm.

If we have a sufficiently long learning string, we can use it to optimize data structures,
specifically the dictionary of the LZW algorithm. The words detected in the training
string are processed according to the basic LZW algorithm, increasing the probability of
occurrence generated in the previous step. The weights of the instances in the training
sequence are selected so that the probability values considered in this way are slightly
higher than the randomly generated ones. This allows some optimization of the length
of encrypted messages while maintaining the randomness of the “encryption key”. The
condition of using the training string for this purpose is its concealment. However, this
string is not interceptable without breaking the algorithm or accessing additional internal
data, so hiding it is a relatively simple task.

We assume that in the sample transmission, we want to hide the transmitted numerical
data. Let us assume that alphabet A consists of symbols that allow one to write a number
in any commonly accepted format, A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,−, .}. In order to hide
values that are repeated in successive transmissions (e.g., for slowly changing temperature
data), we add some noise characters S = {@, #, $, %,, &, ∗, (, ), _,=, !, }. The noise is added
to the representation of each number sent, with 50% extra characters of a random value
and in random positions, and removed when the message is decrypted at the destination.
For example, the number 1.23 is padded with noise, e.g., @1!.23, 1$.(2!3, or similar.

For the maximum length of the input words represented in the dictionary with the
assumed N = 2, we generate and save to the dictionary all possible character combinations,
supplementing them with a randomly selected number of repetitions. Such combinations
take into account both proper alphabet characters and noise.

If we have the training sequence with noise, we use it in the standard form of the LZW
algorithm. We create a tree for all possible combinations of substrings, so we constrain the
length of the substring to make the tree a reasonable size. We randomly select the number
of repetitions (i.e., the probability of occurrence) for each subsequence. After creating
all the combinations, if we have a training string, then for each combination detected in
the training string, we increase the number of repetitions for that combination by 10%.
In this way, we increase the “priority” for those combinations that are more likely—they
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will potentially be encoded with fewer bits, with the accuracy of random selection when
generating the whole at the very beginning. The generated substrings can have a maximum
length of M = 2 · N due to the limited amount of memory in typical microcontrollers. In
the example implementation, increasing the number of repetitions by 10% was assumed
to gain the frequent repetitions of some substrings in order to not falsify the random
order of them as computed in the first stage. For all detected substrings of length greater
than N that have not yet appeared in the dictionary, we assume that they are not directly
represented in the data structures for the LZW algorithm. This causes a division of such
longer substrings to the substrings already represented so as not to overload the restricted
memory of a microcontroller.

The second step is to create a binary tree based on the output data of the LZW algo-
rithm and to implement the Huffman algorithm. When virtually any string of alphabetic
characters can appear in the input, optimization of the Huffman tree for specific symbol
occurrences is not needed. Instead, we can generate this tree based solely on randomized
values for the number of repetitions for each element of the LZW array. We should carry this
out in such a way that the tree is reasonably “fair” for any combination of input symbols,
including noise. For this reason, we modified the classic Huffman algorithm, resigning
from changing the order of nodes of the already generated sub-tree. The algorithm used is
as follows.

1. Move all elements of the LZW array to a temporary repository marking them as “final”
in the Huffman tree. The repository should be organized as an array.

2. Repeat steps 3–4 below until the temporary repository contains only one item.
3. Find the pair of two items in the temporary repository that have the lowest repeat

count values. If several items have the same count value, select the item that is closer
to the top of the table.

4. For each pair found, add the elements of that pair to the final array. In the temporary
repository, generate a new item that is the “parent” of this pair. This parent element,
which is described by the sum of occurrences of both elements, also contains the
identifiers of these elements as “left” and “right” children. Remove both members of
the pair from the temporary repository.

5. The last item from the temporary repository is the root of the Huffman tree. Add it to
the end array and mark it as the start element of that array.

The final array generated by the algorithm is statistically balanced, i.e., all leaves of
the derivation tree differ statistically by at most one depth in the tree. This is due to the
fact that these elements are taken into account at the beginning of the algorithm because
their occurrence counts are relatively small compared to the elements that were created as
pairs in later steps. For the aforementioned 702 elements of the LZW table, the number of
these levels is 11, and the number of vertices is about 1400. This means that each digraph is
encoded using 10 or 11 bits, i.e., about 5 bits are devoted to encoding one character. This
means a compression of about 70%. This result is definitely worse than when matching each
input string separately. However, such a result is satisfactory from the point of view of the
assumed goals, i.e., to obfuscate any input string. Statistically, we obtain even better values
for substrings from the training string with a maximum length of 4. For these substrings,
the effective number of encoding bits is 2–3.

Then, labels have been applied to all edges in the generated tree. The tree is represented
as the final array. The labels will allow unambiguous interpretation when reading as well
as when encoding the message. By navigating from the root to the leaves representing a
particular symbol, we can obtain the encoded form of the message. This works in the same
way as the classic Huffman algorithm. Such an array can be sent in the OTA mode to the
non-volatile memory (e.g., flash) of microcontrollers, once or periodically at selected times.
In this way, we can simplify to a minimum the code needed to use the described approach
in end devices, i.e., network nodes. The generation of the array itself can be performed by
a unit with more computing power, e.g., a computer. On the other hand, microcontrollers
in network nodes use a ready-made representation of the array.



Sensors 2023, 23, 7408 11 of 19

As one may see, the basic changes introduced to the original algorithms are as follows.
For the LZW algorithm, the set of elements is related to any combination of two symbols
from the input, as well as single symbols (all characters in the alphabet). The number of
occurrences of each of the elements is initially a random value. Thus, such a set is not
optimized to encode any given message. On the contrary, the set can represent many
different messages; however, these messages are not in the maximum compression method.
For the Huffman algorithm, instead of processing one message, we consider all the above-
depicted LZW elements to deal with any message. Instead of generating an optimum
Huffman tree for a single message, as with the original solution, we can process any
message (however, in a non-optimal way). As a result, the final compression ratio is not
optimal; however, the system is ready to process any string of input characters with a
reasonable compression ratio.

The result of applying the Huffman coding algorithm to the data obtained as a result
of the completion of the LZW algorithm is the processed data from the input string. The
encryption key, in this case, is a binary tree, which enables effective processing of input
data of virtually any length without statistically increasing the number of transmitted data
despite the addition of approx. 50% noise, and sometimes even obtaining a slightly shorter
output string than the input.

The algorithm for using the newly generated tree to parse the input string is the following.

1. Set the current input string buffer position to zero.
2. If at least two characters are remaining, starting at the current position to the end of the

input string, form a temporary substring composed of a pair of the next two characters
and advance the position by two; otherwise, form the substring of the last character
in the input string.

3. Find the Huffman + LZW tree node connected to the substring and generate output
based on this node by adding the node-represented set of bits.

4. Continue steps 2–3 until the whole input string is processed, and the current position
in the input buffer points to the string’s end.

5. If the number of output bits is not a multiple of eight, add a certain number of 0 bits
to complement the output.

6. Group each 8-bit part to represent it as a byte.
7. If the output is to be sent by a text channel, convert the bytes to some printable

characters using some well-known algorithms such as Base64; otherwise, send the
output as a binary string.

The algorithm for parsing the received string to restore the original message is
the following.

1. Convert received string to a bit array, using Base64 text-to-binary decoding if necessary.
2. Set the current input position to zero.
3. Set the current tree node to the root.
4. Read the bit value from the current input position. Find a direct child of the current

node based on this bit value. If the selected child is a leaf of the tree, add the set of
two characters (a single character for some nodes) to the output and return to step 3;
otherwise, advance the input position by one and repeat step 4.

5. Execute steps 3–4 until the current input position points to the end of the input string,
or less than 8 bits remain at the input and are all zeros.
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6. Evaluation and Results

The described encryption and compression algorithms have been successfully im-
plemented in practice on two very popular hardware platforms: (1) the STM32L476 with
ARM Cortex-M4 microprocessor on STM32 Nucleo-64 board manufactured by ST Micro-
electronics and obtained from a local distributor in Poland. with its core operating at the
frequency of 48 MHz and (2) using the ESP32 WROOM-D hardware platform running at
240 MHz main clock frequency. The test program was written in C++ and it was compiled
for each platform using the GNU C++ Compiler (g++, version MinGW-W64 v. 12.2.0) from
Arduino IDE and framework. The time and performance measurements have also been
implemented in the test program by using the available built-in timers. The test program
performed the following tasks while measuring the time of each of them:

• Generating an ASCII-encoded data stream or packet which is 1 to 16 bytes (characters) long.
• Applying noise to the stream according to the description in Section 5.3.
• Encoding–encrypting the stream with the proposed combination of Huffman and

LZW algorithms using the previously generated binary tree as a key.
• Decrypting the stream.
• Removing the noise from the stream.
• Formatting a line of output data in CSV format, including the information of measured

times and effects of noise application as well as encryption and decryption, then
printing the information using a hardware serial port.

The test program performed 25,000 tests, as described above, and the packet length
was selected randomly for each sample.

An example of the first lines from the CSV output data is shown in Listing 1.

Listing 1. A sample output from the terminal while running the test program—a header and the first
3 records of raw data are shown; new lines were added for readability.

No; String; Length[B]; String_noised; Length[B];
String_encoded_bin;
String_encoded_hex; Length[B];
Add_noise_time[us]; Encryption_time[us];
Decryption_time[us]; Remove_noise_time[us];
Total_time[us]
0; 390; 3; =390; 4;
101111100110010001110000;
EB4607; 3;
3; 135; 156; 2; 296
1; 2.3583; 6; (!2.3583; 8;
011111000101111110101001101111011110010000000000;
C7F59ADB4E00; 6;
4; 366; 389; 5; 764
2; 2803924.91; 10; #_2803*924.91; 13;
111000001011110111110111110101000100001001000110000110001001010000000000;
0EDB7F4D2464814900; 9;
7; 599; 629; 7; 1242

6.1. Compression Ratio Analysis

The presented solution provides compression as an additional feature; thus, we have
analyzed the compression efficiency of the proposed solution.

Data lengths for the first 40 test sample packets are shown in Figure 7. It can be noticed
that the input data length is in most cases larger than the output data length.

Let us assume the classic definition of the data compression ratio: DCR = USize
CSize , where

USize is the uncompressed data size, and CSize is the compressed data size. As can be
noticed in Figure 7, in some cases, the “compressed” data has an inefficient DCR; however,
many samples of longer packets have a better compression ratio. This is largely dependent
on the packet length. Further analysis of this aspect is shown in Figure 8.
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Figure 7. Comparison of length of packets at three stages of the processing algorithm: input (plain-
text), input with noise, and in the encrypted-compressed form.
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Figure 8. Observed compression ratios for various packet lengths. The compression ratio of 1 is
marked for clarity.

The analysis of the percentage of packets that are efficiently compressed is shown in
Figure 9.
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Figure 9. Distribution of compression efficiency (DCR). The compression ratio of 1 is marked
for clarity.

6.2. Encryption and Decryption Time

The sample implementation performance has been evaluated on two different MCU
platforms separately: on the ESP32 and STM32L series of microcontrollers. The resulting
encryption and decryption times are shown in Figure 10. It can be observed that the
resulting time depends predominantly on the encrypted data length and it is roughly linear
both for the encryption and decryption process. For the tests, the core microprocessors
of the ESP32 platform are clocked at the frequency of 240 MHz and the STM32L’s core
frequency was set to 48 MHz. Both of these frequencies are commonly used values for
these MCUs and are set by default in the Arduino IDE.
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Figure 10. Encryption and decryption times

The process of adding and removing noise is relatively fast and it also depends
roughly linearly on the packet length. For the process of adding noise, the timing is linearly
dependent on the packet length for lengths greater than 8 bytes. The adding and removing
noise results are shown in Figure 11. The processing time has been measured with 2 µs
resolution; therefore, the resulting times are also quantized to 1 µs value. The quantization,
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time resolution, and internal timer operation overhead may also be the reason why “adding
noise time” may seem the same for the shortest packets of 1 to 5 bytes.
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Figure 11. Adding and removing noise times

6.3. MCU Resource Usage

In the sample implementation, we are able to encode the ASCII characters representing
basic numeric symbols. The array that represents the encoding tree is 1403 records long and
each record is 20 bytes long. It results in the flash memory usage of 28,060 B for constant
components required for encoding and decoding.

The RAM usage depends on the maximum length of the data to be encoded or decoded.
We can assume that we need to store three buffers: for input data, noised data, and output
data. The buffers need approximately three times the maximum length of a single packet
or chunk. So, if we assume the maximum length of 16 bytes for a single packet, then the
resulting static allocation will require approximately 50 bytes. Stack variable usage can
be estimated at the level of two sizes of the buffer and some additional space for local
variables and function calls. The overall memory RAM usage for processing 16-byte-long
chunks of data would use about 80 bytes.

7. Discussion

In this section, we discuss the achieved results and analyze potential security consid-
erations, scalability issues, performance, unique features of the proposed solution as well
as differences with currently available encryption algorithms.

7.1. Security Considerations

Here, we discuss the possible ways of reading the correct value of the obfuscated
message without the knowledge of the Huffman + LZW tree. The key parameter is
the number of possibilities that exist for a certain length of the alphabet to generate the
Huffman + LZW tree. It can be computed as follows. Let us assume that there are
P = 26 characters in the alphabet similarly as in the example described in Section 5. This
includes basic characters and noise. Thus, the number of all possible pairs of the alphabet
characters is P1 = P2 = 676. As it is possible to encode also a single character, we have to
add P2 = P more possibilities, resulting in Ln = (P1 + P2)! = 702! combinations. These
combinations may be randomly placed at the Huffman or LZW tree in (Ln)! ways which,
in practice, results in a number of the order of 101500; thus, the probability of guessing the
right tree is extremely low.
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7.1.1. Brute-Force Attack Considerations

A basic approach to a brute-force attack can be the following.

1. Guess the alphabet which is a subset of letters of N elements.
2. Guess the noise which is a subset of letters of M elements.
3. Generate a set of all possible ordered lists of subsets of one- and two-character substrings.
4. For each list from the set:

(a) Generate Huffman + LZW tree using the algorithm from Section 5.3
(b) Try to decode the message using the algorithm from Section 5.3
(c) If failed, take the next element from the list

As one may see, a brute-force attack is not only based on some straightforward
operations such as comparisons. On the contrary, for each loop of this attack, the complete
Huffman + LZW tree must be generated, even to decode an incoming message of just a
few bits.

If we can determine some more probable values of the input data, we may use a
brute-force attack targeted only on selected pairs of characters, and thus selected parts of
the tree. For example, if we know that the sensor transmits a room temperature T, the
“most probable” values are in the range of 20.0 to 30.0 ◦C, so ∆T = 30− 20 = 10 ◦C. Thus,
instead of guessing Ln different nodes, we obtain ∆T · Pa combinations for the pairs of
types which include one digit and one noise character. We obtain the same for the pairs
with one noise character and one digit, and 2 · ∆T combinations for the pairs of two digits.
This gives 540! combinations in total. Again, 540! stands for an extremely huge number of
combinations, so even a partial brute-force attack is hard to perform in a reasonable time.

7.1.2. Features which Make the Brute-Force Attacks More Difficult

One should also note another interesting observation. For typically utilized encryption
algorithms, when we execute them with a wrong key, we obtain an output that is obviously
wrong; for example, such a wrong output can be a random set of characters. Thus, it is
relatively easy to determine if the brute-force attack iteration had been successful. How-
ever, while using the Huffman + LZW tree to decode the input bits, the attacker obtains
something that may be similar to valid output data, but in such a case, it is still difficult to
evaluate the real validity of the data. For example, for the same input, we obtain “22.1” as
a result with one tree, and “17.5” as a result using another tree. Thus, additional semantic
knowledge of the message content is necessary, such as which of the two temperatures
above is more probable. As a consequence, the attacker cannot be sure if the guessed values
are correct, even if the interpretation of the input generates no errors.

7.1.3. Security Improvements

The explanation regarding the improvement of the obfuscation level may be necessary
for the solution based on adding noise characters to the transmitted string or a number in
the case of the example representing, e.g., air temperature or atmospheric pressure as read
by a sensor. Let us analyze only the number of characters added as the noise—two noise
characters for a four-digit-long numeric value. In such a case, we increase the number of
possible combinations of each obfuscated message by (13 · 5!) · 2 = 3120. This computation
includes Pn characters of noise, and a maximum of five places for each noise character
and two noise characters per transmission can be inserted. However, after inserting the
noise, we also provide bit-wise encryption of the noised message. As the number of bits
for each encoded subset of characters depends on the place inside the tree this subset is
registered, the attacker does not know which output bits are the equivalence of which input
characters. Thus, the brute-force method must consider the number of the inserted noise
characters and their neighboring characters. This fact raised the number of combinations
by P, which is the length of the alphabet complemented with noise. Let us assume that a
sensor, from which data are encrypted, is activated every second and it is sending the same
value for a longer period of time. In such a case, we obtain the possible repetition of the
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same encrypted message in more or less a day, but still without increasing the length of
the transmitted message. In such a case, the approximate length of messages will be about
5 bytes. Assuming one packet transmission in each minute, the possible repetition period
can occur within a few months.

In our example, we use a restricted alphabet of Pa = 13 characters complemented
by Pn = 13 noise characters, P = 26. Thus, we generated the Huffman + LZW tree
composed of Ln = 702 leaf nodes (1402 nodes in total), resulting in 702! possible represen-
tations of the tree. If we add one single character and another one for noise, we obtain
(P + 2)2 + (P + 2) = 812 leaf nodes of the tree, resulting in 812! tree representations. As it
may be seen, a very small enlargement of the alphabet results in a huge increase in possible
configurations. However, these two numbers (702! and 812!) are so big that there is only a
theoretical difference between them; regardless, a brute-force attack would take a very long
time, even if generating a new tree every second.

7.2. Solution Scalability Discussion

We may also consider the extension of the tree which would represent triples (three-
character-long substrings) rather than pairs of characters. Then, the number of leaf nodes
of the tree is P3 + P3 = 18,278. The maximum tree level is also increased from 11 to 16. The
average compression factor slightly drops down to approximately 65%. However, such an
extended tree would require about 200 KiB of non-volatile memory. This amount of memory
is commonly available in many middle- and high-end microcontrollers, including ESP32,
used by the authors for basic implementation. The ESP32 is equipped with usually between
2 and 8 MB of flash memory. However, for more resource-constrained microcontrollers,
such as the STM32L476, with only 1 MiB of flash memory, such usage of flash memory
could pose some problems. Moreover, the implementation could be impossible for smaller
units, such as the STM32L0 series or for the popular ATmega AVR MCU series from
Microchip. If we go even further and try to represent all four-character-long substrings
with a Huffman + LZW tree, it would be impossible even for the mentioned resource-rich
microcontrollers, such as the larger STM32 units and the ESP32 MCUs. To summarize, the
chosen pair-based representation seems to be optimal for most application areas.

The presented concepts were successfully implemented and tested in the ESP32 series’
mid-end embedded microcontroller. The obtained results are promising and show that
the developers can also incorporate these algorithms into devices equipped with low-
end microcontrollers.

As shown in Section 6.3, the algorithm can be especially useful in resource-constrained
and cost-effective wireless network nodes in which a microcontroller does not offer any
means of hardware cryptography peripherals.

The concept of adding noise to the transmission can be interesting because it provides
a basic level of security for very short and repetitive messages. It is especially useful for
environmental condition sensors, such as digital thermometers. Even the slight amount of
randomization and obfuscation makes the transmitted data less vulnerable to man-in-the-
middle attacks.

As presented in Section 6.1, the data compression ratio depends to some degree on
the length of the packet to be encrypted. We can assume that by efficient compression, we
mean the DCR > 1, while DCR = 1 means no compression, i.e., the same input and output
packet length, and DCR < 1 is inefficient compression, which means that the “compressed”
data could be larger than the plain text. The latter situation happens rarely and only in
cases of the shortest packets, which may add just a few bytes to the original message length.
In general, the proposed algorithm can be considered efficient because, for the streams
of randomly chosen lengths from 1 to 16 bytes, it provides DCR > 1 for 81.9% of the
transmitted messages.
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Discussing the proposed solution with classical encryption algorithms is challenging
due to the difference in the application areas. First of all, the existing symmetric encryption
algorithms require data length at least equal to the key length. Using typical encryption
keys with the size of 2, 4, or even 8 kb, the minimum length of an encoded message has
the size of approximately several hundred bytes. In our case, however, we are considering
messages which are only a few bytes long. We cannot simply generate random bits to
extend the short messages to long-enough ones because that would defeat the purpose of
the presented method. The solution presented in this article concerns specific application
areas. These are the reasons why the comparison with the commercially available solutions
might not be meaningful in practice. The aspect of the application of noise to the slowly
changing and repetitive data is orthogonal to the problem of the utilized encryption and
decryption algorithms. This is also an interesting direction for possible future work on
better adjustment of the noise-to-real data ratio in order to achieve more profitable use of
the compression factor of our proposal.

8. Conclusions

In this paper, we proposed a novel approach for data obfuscation for very short data
packets, even as short as a few bytes. Transfers of such short packets are the foundation for
many sensor and actuator networks of the Internet of Things. These devices are very limited
in battery time, computational power, memory, and radio bandwidth. To date, no efficient
encryption techniques have been proposed for such application areas. Also, adjusting the
classical encryption algorithms based on symmetric keys can be difficult, inconvenient and
inefficient, mainly due to the length of the encryption key and the requirement for data
length not to be shorter than this key. High memory and CPU power requirements are also
worth mentioning.

In contrast, the proposed approach is characterized by minimum CPU and RAM
requirements and reasonable ROM (flash) usage. The data payload can be as short as a
few bits of data, while the typical length of an encryption key is several hundred bits or
more. The article proposes the idea of employing a combination of two algorithms, initially
applied for data compression. The algorithms act as a standard length encryption key
algorithm to increase the transmission security of very short data sequences. Namely, our
approach uses LZW and Huffman coding to achieve data transmission obfuscation. The
Huffman + LZW tree, devoted initially to compression, is used as a secret key. The size of
the tree is a counterpart of the encryption key length. As the tree may be used to process, in
theory, any data packet with no restrictions on its size, we are able to encrypt and decrypt,
with a significant level of security, even concise messages, in a very efficient way, using
minimum resources of a microcontroller.

We implemented and evaluated the approach using two popular microcontrollers:
Espressif ESP32 and STM L476. The test results confirmed the high efficiency and applica-
bility of the solution.
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Abbreviations
The following abbreviations are used in this manuscript:

ASCII American Standard Code for Information Interchange
CSV Comma-separated values
DCR Data compression ratio
LZ77 Lempel-Ziv 1977
LZW Lempel–Ziv–Welch
MCU Microcontroller unit
RAM Random Access Memory
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