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Abstract: In maritime settings, effective communication between vessels and land infrastructure
is crucial, but existing technologies often prove impractical for energy-sensitive IoT applications,
like deploying sensors at sea. In this study, we explore the viability of a low-power, cost-effective
wireless communication solution for maritime sensing data. Specifically, we conduct an experimental
assessment of the Azorean Long Range Wide Area Network (LoRaWAN) coverage. Our tests involve
positioning the gateway at the island’s highest point and installing end nodes on medium-sized
fishing vessels. Through measurements of received signal strength indicator (RSSI), signal-to-noise
ratio (SNR), and lines of sight (LOS), we showcase the potential of LoRaWAN transmissions to
achieve communication distances exceeding 130 km in a LOS-free scenario over the ocean. These
findings highlight the promising capabilities of LoRaWAN for reliable and long-range maritime
communication of sensing data.

Keywords: maritime communications; LoRa; LoRaWAN; low power wide area network (LP-WAN);
Internet of Things (IoT)

1. Introduction

The Internet of Things (IoT) can be described as a network of machines, sensors,
actuators, and physical devices that can interact with each other and their environment,
collecting information and transferring data to the network without any human interference,
connecting the physical and digital worlds [1]. The IoT has proliferated in recent years,
finding applications in various industries, such as energy, health, logistics, security, and
agro-industry [2]. The maritime sector also exploits IoT [3], focusing mainly on logistics [2].
However, IoT applications can also be applied to maritime and marine activities such as
aquaculture, offshore platforms, ocean exploration, fishing vessels and generic maritime
monitoring [4–6]. Additionally, it may also be applied to fishing gear and touristic activities.
In these contexts, reliable low-power machine-to-machine communication presents one of
the biggest challenges.

Recently, significant advances have been made regarding wireless communications,
specifically with the introduction of the sixth generation (6G). This type of communication,
more specifically the fourth and fifth generation, 4G and 5G, respectively, has shown excel-
lent results in terrestrial IoT applications. However, when the communication environment
is maritime, there are many challenges [7] rooted in this type of environment, namely large
distances with a low density of users. In the case of wireless communications (4G and 5G),
base stations are not installed in the sea, which, allied to their relatively short radius of
coverage, restricts their usage to onshore and coastal scenarios. In this case, communication
cannot be established between vessels or vessels and land, and therefore, the application of
IoT in the maritime/marine environments will remain limited to uses within a ship.
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A set of technologies that are used or expected to be used in maritime communications
was identified by [8,9]. Satellites like Argos, Iridium, or Iridium NEST are considered a
pillar of maritime communications, mainly used for long-range communication scenarios.
However, this technology is associated with high costs and bandwidth limitations. Most
medium and short-range ship-to-ship or ship-to-shore communication technologies use the
radio frequency (RF) band, more specifically, medium frequency (MF), high frequency (HF),
very high frequency (VHF), and ultra-high frequency (UHF) bands. However, although
these technologies can reach long propagation distances, they only provide small data rates,
limiting their applicability to basic scenarios. In addition to using the RF band, the infrared
band is also used. This, together with optical sensors, creates a solution known as free
space optics (FSO), capable of providing connectivity to maritime communication networks.
However, the FSO signals can be affected by weather and sea conditions, eventually creating
variations in the optical signals or the plane of the receiver (vessel). Mobile communications
(GSM) or WiMAX technology are also used in maritime scenarios. Recently, a solution
based on unmanned aerial vehicles (UAVs) was proposed to improve the coverage of
terrestrial-satellite communication networks [10]. Although the technologies mentioned
above are used in maritime communications, their power requirements can only be met
with access to an electric grid or a powerful energy source. With these technologies, the
power needed for the communications module is often several orders of magnitude larger
than that of the sensors. Less energy-intensive communications would allow sensing the
environment more autonomously and for longer periods. For example, sensors could
measure and communicate for long periods with a small battery.

Lately, Low Power Wide Networks (LPWANs) have been widely used in monitoring
applications in several areas. LoRa is one of the main LPWAN communication technolo-
gies, and its use has been studied for maritime applications, ranging from monitoring
fishing vessels [5] and passengers [8] to water quality monitoring in fish farms and coastal
areas [6,11]. LoRa technology provides large coverage distances, low deployment costs,
and low energy consumption [12]. However, it also has limitations such as low bandwidth,
high vulnerability to interference, and low transmission rate [13].

1.1. Research Questions

Starting with a scenario of oceanic communications, we tested the viability of estab-
lishing a communication network with wide coverage and low cost in the context of the
Azores archipelago. The network aims at real-time machine-to-machine communications
between small fishing vessels (including ones without a battery bank) and the islands,
primarily transmitting timestamped positioning data.

Considering that traditional maritime communication technologies cannot comply
with the energy restrictions that some systems face, as well as the final purpose of the
network, the following research questions are posed:

– RQ1: Which wireless communication solution enables real-time data extraction on
small vessels with limited power?

Hypothesis 1 (H1). Employing LoRaWAN will facilitate the communication of long-range, low-
bandwidth data between small vessels and gateways on an island.

This may lead to the second question:

– RQ2: At what maximum distance can effective LoRaWAN communications be carried
out between the vessels and the gateway for tracking their location?

Hypothesis 2 (H2). By deploying a node (IoT device) on a vessel and installing a gateway on land,
it is feasible to establish data communication between the two entities for a distance of approximately
100 km.
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1.2. Document Structure

This paper is structured as follows. The next section presents a literature review
on LoRa and LoRaWAN. This is followed by the materials and methods section, and
subsequently by the results and discussion. Lastly, concluding remarks are provided in the
final section. The main contributions of this work are:

• A series of measurements on the deployed network which focus on signal quality and
maximum distance of communication.

• Despite packet loss, we establish that communicating the vessel position at five-minute
intervals is sufficient to map the vessel location for practical use cases.

• We investigate the impact of line of sight (LOS) vs. non line of sight (NLOS).
• We gained traction to develop the network further and perform more robust testing.

2. LoRa and LoRaWAN

Long Range (LoRa) low-power networks are becoming increasingly popular [14].
These networks are an effective communication solution owing to their stability and low
cost, and because they do not require licensing, they present a low barrier to implementa-
tion. LoRa also has low power and low bandwidth. While this would be a limitation for
human communications, it is adequate for machine-to-machine communication, particu-
larly sensors, whose usage is growing exponentially. The low power of LoRa is also critical
for the use case of sensors, which, due to low power demand, do not need to be tied to the
grid, operating from batteries, frequently combined with photovoltaic cells.

The low entry barriers of LoRa, namely the low cost associated with the freedom for
implementation, differentiate LoRa networks. Unlike other communication solutions, the
economics of LoRa allows for the distribution of gateways as necessary for adequate coverage,
even where there is a lower density of use due to the lower viability (cost-benefit) threshold.

LoRa is one of the leading Low Power Local Area Networks (LPWAN) communica-
tion technologies being adapted worldwide to connect sensors [15], forming the Internet
of Things (IoT). In the IoT, resources tend to be scarce. IoT devices need less memory,
processing power, and energy requirements, allowing for ubiquitous sensing, which is
unfeasible based on other communication technologies such as Wi-Fi or traditional cellular
networks [1,12].

The LoRaWAN network architecture (illustrated in Figure 1) is based on a star-of-stars
topology, with three types of devices: end device (node) (typically one or more sensors
with a LoRa communication element), LoRa gateway (LoRa communication device that
receives messages from the end devices), and a LoRa network server, which aggregates the
data obtained through the gateways.

The communication between the end devices and the gateways is LoRa-based. LoRa is
composed of two layers: one physical and one logical. The physical layer, LoRa, is Semtech’s
proprietary wireless modulation technique, which uses chirp spread modeling [13]. The
logical layer, LoRaWAN, is a Media Access Control (MAC) layer protocol built on top of
the LoRa (physical) modeling layer, designed primarily for sensor networks. It defines how
devices use the LoRa hardware, e.g., when they transmit and the format of messages [13].
The communication between the gateways and the network server tends to use higher
bandwidth backhauls such as 3–4–5G or ethernet. As shown in Figure 1, the LoRaWAN
network architecture allows for bidirectional communication. In the case of end devices,
communication is performed with a relatively low frequency (e.g., hourly, or daily, not
lower than at two-minute intervals). It is the responsibility of the network server to provide
the acknowledgements and select the best links to forward the downlink messages [16].
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Figure 1. LoRaWAN network architecture [17].

LoRa is well documented in the literature [12,18]. While the physics of LoRa trans-
mission seems well suited for communication over the ocean, which is naturally free of
permanent obstacles, the truth is that there are not many trials and tests where these char-
acteristics have been tested and validated [19–21]. And to our knowledge, no trials have
been conducted on an archipelago.

We set up a LoRaWAN network for Terceira Island in the Azores, Portugal. It covers
over 90% of the island and all targeted areas. Since, with the current use, we are far from
consuming the available duty cycle, we aim at using it for different applications over the
ocean. If reliable service could be extended to approximately 100 km from the shore, then
the usability of the network would increase by several orders of magnitude.

Compared to the existing literature, our test results encourage and augment the
potential for using the network to easily cover use cases previously unfeasible or complex
and expensive to support, such as small fishing vessels or fishing buoys.

3. Materials and Methods
3.1. Equipment

The experimental setup included a LoRaWAN network composed of a gateway, a
network server, and an end device equipped with GPS tracking. Wanesy Management
Center, a cloud-based SaaS provided by Kerlink (Torigne Fuillard, France), was used as the
network server and the device management platform.

The gateway consisted of a Kerlink Wirnet iStation (Figure 2a), a LoRaWAN EU868
certified Outdoor Gateway with 8 RX channels of 125 kHz and multi Spreading Factor, 1 RX
channel of 500 kHz and mono Spreading Factor, and 1 RX channel with FSK modulation,
for a total of 10 RX channels with a sensitivity of −141 dBm. It also has 1 TX channel
configured with a power of 14 dBm, an SoC composed of a Cortex A9 ARM CPU and
256 MB of DDRAM, 8 GB eMMC flash storage, and the backhaul is secured by worldwide
4G module with 3G/2G and Ethernet (RJ45) fallback.

The gateway is coupled to a Kerlink ACCIOT-KAN01 antenna (Figure 2b) with vertical
polarization, 865 MHz +/− 5 MHz frequency range, 50 Ohms impedance, and a max gain
of 6 dBi. Antennas with lower gain (1–2 dBi) are used more frequently, but since the goal
was to assess the distance covered on the sea, we used an antenna with higher gain that is
still free of license and does not require a special power source.

The end device (Figure 2c) consisted of a Yabby from Digital Matter, a small battery-
powered device that is LoRaWAN EU868 certified with GPS tracking. The device has a
uBlox EVA-M8 GPS receiver with 72 channels and −167 dBm sensitivity. It also includes
a 3-axis accelerometer for motion detection. The device was configured with a downlink
spreading factor (SF) 12.
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3.2. Scenario

At the time of writing, four LoRaWAN gateways are installed on Terceira Island, with
the setup described above covering approximately 90% of the island’s territory. Table 1
shows the model, location, and altitude of each gateway. This, in turn, is far from being at
maximum capacity.

Table 1. LoRaWAN gateways on Terceira Island.

Location Model Coordinates 1 Altitude

Serra do Cume Wirnet iStation 38.70945,
−27.11188 563 m

Altares Wirnet iStation 38.79919,
−27.29119 156 m

Serra de Santa
Bárbara Wirnet iStation 38.73015,

−27.31887 1040 m

Pico das Cruzinhas Wirnet iStation 38.64762,
−27.22546 166 m

1 Latitude, Longitude (WGS84).

In the first step, we tried to understand if the service provided on land could be
reliably extended to at least 100 km from the coast to track fishing vessels. To test the
viability of the service over the ocean, the gateway located in the Serra de Santa Barbara
was selected. Mapping the aggregated density of vessels over long periods can be helpful
for the management of large Marine Protected Areas (MPAs) or the Exclusive Economic
Zone (EEZ). This initial assessment investigates the potential to support use cases that
are not critical and can handle incomplete data due to packet loss and other phenomena.
Depending on the potential demonstrated in future tests, different use cases that extend to
critical might emerge. However, those must be based on a better knowledge of network
performance, including packet loss and the impact of weather conditions, among others.
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The choice of the gateway was based solely on the height above sea level. Figure 3
shows the location of the Serra de Santa Barbara gateway on Terceira Island, as well as the
terrain elevation of the entire island.
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The Azores is an archipelago composed of nine islands, five of which are relatively
close to each other. This makes communication impossible in some cases because the
islands themselves can act as barriers to communication, as shown in Figure 4, where the
theoretical coverage of the gateway is represented at a maximum distance of 150 km.

3.3. Experiment

For this experiment, the end device was installed on a fishing vessel, and the location
was tracked based on GPS (Global Positioning System) location transmitted at five-minute
intervals (when in motion). Considering regular vessel speeds around 5 knots, it takes
a vessel 5 min to move by a distance of 750 m. Since vessels tend to follow relatively
straight lines, occasional missing packets do not imply a significant difference between a
logic spatial inference and the actual route, rendering the output adequate for mapping
aggregated activity zones across long periods. The gateway receives the location data from
the end device as a LoRa message and forwards it to the network server. As it arrives at the
network server, it is pushed to a REST Webhook developed to handle the LoRa messages
from the end device along with the battery voltage, RSSI and SNR network-level metrics.
The tracking device (hardware) did not support logging the packets sent; therefore, tracking
packet loss was impossible at this stage.
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The process of handling payloads from the GPS tracking device involves several steps.
The device sends a message containing encoded location information to a gateway (via
LoRaWAN), which then forwards it to a network server (via the internet). Upon receipt, the
server pushes the news and received signal strength indicator (RSSI) and signal-to-noise
ratio (SNR) metrics to a webhook. The Webhook was responsible for the decoding of the
LoRa payload containing the location and other data and for creating new entries in a table
of a database with the following columns: timestamp; device latitude; device longitude;
gateway id; RSSI; SNR and battery voltage. Gateway locations are stored in another table
in the database and contain each gateway’s id, latitude, longitude, and elevation. The
webhook was built using Node and Express.js, and the payload decoding was processed
using a JS function provided by the device manufacturer. It accepts POST requests to the
uplink endpoint, ‘/up’. To ensure secure data transmission, the connection to the webhook
is established via SSL (Secure Sockets Layer). Additionally, only incoming requests with
a valid API key are accepted, ensuring that only authorized parties can access the data
and preventing unauthorized access or tampering. The decoded location information and
signal metrics are then stored in an online MySQL database for easy access. The payload
handling process described above ensures secure and efficient data transmission from the
LoRaWAN device to the network server and database.

4. Results and Discussion

In this section, we present the results of the tests that aimed to assess the LoRaWAN
service over the ocean. Figure 5 represents the 12,381 points (dataset) collected between
January and December 2022. These points come from devices associated with vessels
with the same frequency of location sampling. Figure 5 illustrates different routes the
vessels travelled, where each point was communicated from the vessel, along with signal
characteristics. The positions recorded are coherent with the trips reported. Some routes
show a discontinuity. These may be associated with an area of variable coverage. Later,
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we will further analyze these discontinuities, considering radio wave patterns and terrain
elevation profiles.
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The superposition of Figure 5 with the map of the Azores archipelago resulted in a
heat map of all readings taken, as shown in Figure 6. Figure 6 better illustrates the areas
mostly used by the vessels and the distances of successful transmissions obtained between
the gateway and the devices (nodes).
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Sub-GHz frequencies (868 MHz Europe) minimize signal attenuation due to obsta-
cles and provide a robust modulation, allowing receivers with very low sensitivities of
−140 dBm. In the case of our implementation, the device used for signal reception has
a sensitivity of −141 dBm. Therefore, for analysis purposes, −140 dBm was the mini-
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mum Received Signal Strength Indicator (RSSI) power value considered to obtain a reli-
able transmission. However, according to the literature, a signal is considered weak for
RSSI <= −120 dB. For the Signal-to-Noise Ratio (SNR), which is the ratio between the
received signal power and the noise power level, the values of considered SNR in LoRa
networks are between −20 dB and +10 dB [20,25].

Exploring the dataset, we analyzed the relationship between the collected data, namely
the RSSI, the SNR, and the distance between the sender and the receiver. Figure 7 illustrates
the relationship between RSSI and the distance covered by the signals (distance between
the sender (node) and receiver (gateway)). There is an expected decrease in signal strength
with increased distance between the sender and receiver. Shorter distances also have low
RSSI values ([0.40] km); we investigate this below.
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Figure 8 illustrates how the SNR varies as a function of the distance between the sender
and receiver. One may observe that the events are within the limits of LoRa transmissions,
and most have a positive value, many close to +10 dB. This indicates that, generally, the
received signal operates above the noise floor, which suggests quality LoRaWAN trans-
missions across an extensive range of distances. However, disparate SNR values are also
observed, which may be associated with areas of no network coverage (shadowed areas),
obstacles in the line of sight (LOS), or too large a distance between the sender and receiver.
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Figure 9 illustrates the relationship between SNR levels to RSSI and suggests possible
origins of some disparate values. This analysis can be seen in Figure 9. Most readings are
in the range [RSSI >= −120 dB and SNR >= −7 dB]. This indicates that the GW is in a good
location, and the quality of the received signals is also good. For the readings that are in
the ranges [RSSI >= −120 dB and SNR < −7 dB], [RSSI < −120 dB], there may be factors
that have influenced these readings to disperse from the optimal zone. The scatter can be
affected by the high noise floor, the transmitter being too far from the GW, or an obstruction
at the LOS, ultimately causing packet loss or non-decoding of the signal.
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Data subsets were used in a more detailed analysis to clarify some of the disparate
values. Subsets were created considering the range of distances to the gateway and the
density of points within a 3 km radius, i.e., for different distances (from close to far), the
locations with the most samples were chosen to form a subset. The application of the
criteria mentioned above gave rise to the subsets that can be seen in Figure 10.
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Table 2. Information about the subsets.

Subset Point Count Center Coordinates
(Latitude, Longitude)

Mean Distance to
Gw (km) Mean RSSI (dBm) Mean SNR (dB)

Red 101 39.620395, −26.90367 106.290 −120.06 −7.37

Green 715 38.204023, −27.701205 67.26 −120.06 0.21

Blue 1654 38.834382, −27.907589 52.08 −113.34 5.25

Yellow 206 39.044477, −27.548558 41.82 −117.99 −1.63

Orange 657 38.800204, −27.459609 14.99 −115.88 1.190

Purple 475 38.458097, −27.347993 30.21 −115.42 1.62

Pink 307 38.910218, −27.337965 20.39 −118.37 −1.05

Brown 433 38.633978, −27.274188 10.63 −108.56 6.17

Gray 10 38.165462, −28.571266 125.62 −120.60 −14.16

Black 208 38.782374, −28.430655 95.75 −119.71 −4.780

White 10 39.257761, −28.666294 130.69 −121.40 −13.40

Cyan 8 38.788358, −28.796452 128.28 −120.63 −12.80

Figure 11 plots the average RSSI value of each subset against its average distance to
the gateway. At first glance, there are unusual RSSI values from the 0 to 40 Km distances,
specifically regarding the orange, pink, and yellow subsets. However, these subsets contain
a mix of high and low values. Also, there are subsets within the areas in question with
normal/expected RSSI values. An analysis of the line-of-sight (LOS) between the sender
and the receiver reveals the possible cause for the disparity of values within subsets.
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Figures 12–14 illustrate the LOS analysis conducted for the orange, pink, and yellow
subsets, respectively. The occurrence of LOS obstruction by the terrain is verified for the
orange and pink subsets. Besides the losses associated with free space path loss, which
are expected, events such as LOS obstruction cause attenuations due to terrain shielding.
In a simulated environment, the attenuations are 32 dB for the orange subset and 11 dB
for the pink subset. The obstruction of the LOS explains the unexpected RSSI values for
these two subsets. Still referring to the LOS analysis, although the terrain does not block
the LOS, the yellow subgroup invades the Fresnel zone. The Fresnel zone is an imaginary
zone with a relative radius between the distance from the transmitter to the receiver and
the transmitting frequency. The Fresnel zone assumes an elliptical shape along the LOS
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between the transmitter and receiver. As a rule, this zone should always be unobstructed;
however, this is not always the case, so it is said that after 40% blockage of the site, there will
be significant losses in the signal. In the case of subset yellow, there is a blockage greater
than 40%, which, in a simulated environment, manifests itself in a signal attenuation of an
order of 4 dB.
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For the remaining Red, Green, Blue, Purple, Brown, Gray, Black, White, and Cyan
subsets, all present LOS and Fresnel zones without obstacles. The RSSI values of these
subsets are considered adequate relative to their distance from the GW. They are also
consistent with the high sensitivity associated with LoRa technology, even if they are very
close to the recommended limit of −120 dB.

In the analysis performed on the SNR values, the Green, Blue, Yellow, Orange, Purple,
Pink, Brown, and Black subsets are representative of a noiseless transmission channel, with
matters within limits previously defined and those associated with LoRa technology. For
the Red, Gray, White, and Cyan subsets, the SNR levels, although within the defined limits,
represent a noisy transmission channel.

Analyzing the subsets’ RSSI and SNR value pairs according to [21], reveals that the
Blue, Orange, Purple, and Brown subsets are in the spectrum where the radio frequency
level is optimal for reliable reception. The Red, Green, Yellow, Pink, and Black subsets
are in the range where the RF levels are not optimal but sufficient. Transmissions have
difficulty reaching the GW and improved link quality would imply reducing the distance
to the gateway, while guaranteeing free LOS. The Gray, White, and Cyan subsets, on the
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other hand, are in the spectrum where the transmitter is too far from the receiver, as can be
seen from the “Average Distance to Gw” values in Table 2.

We used the GPS positions of the vessels collected during the tests to understand the
range of a LoRa and validate the simulated coverage area (Figure 4). This allowed us to
calculate the distance between the end device installed on the vessels and the GW on the
island. The results show that it is possible to communicate at distances greater than 130 km
between the end devices and the GW if unimpeded by obstructions. However, further
testing is needed to verify the reliability of these communications.

5. Conclusions

This work describes the results of assessing the ocean coverage of a LoRaWAN network
on an Azorean Island. The main goal of this study was to verify the feasibility of establishing
a communication network with a wide range, low cost, and based on the IoT concept for
the whole archipelago. For this purpose, a set of tests was performed using the existing
infrastructure, specifically the gateway of Serra de Santa Barbara, located at the highest
point of Terceira Island.

To validate the coverage, a theoretical and experimental study was performed. For
the experimental validation, end devices were placed on a small fishing vessel to test the
effectiveness and range of radio transitions between the open ocean and land for distances
greater than 100 km. The results were promising, evidencing the feasibility of receiving
LoRa transmissions considering end devices installed on mobile platforms moving at sea
in coastal and offshore scenarios and in free LOS and NLOS (non-line of sight) conditions.
However, in NLOS conditions, shadow zones causing signal attenuation were found, as
predicted in the theoretical study. In free LOS conditions, the results were in line with the
theoretical research, and reliable transmissions were achieved at distances greater than
130 km between the end device and GW.

Despite validating the theoretical coverage, the set of tests performed is necessary to
standardize and stabilize the network coverage. Therefore, there is still work to be done in
this direction. As future work considers the stabilization, uniformity of network coverage,
and minimization of shadow areas, such as those that were verified, it is proposed to
implement new GWs. Developing a new test panel including new metrics, such as packet
loss, is suggested for this. Packet loss was not tested due to the hardware limitations of
the nodes. Further analysis will provide greater details regarding the coverage and help
identify ideal locations for new GWs.
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