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Abstract: Driving behaviour analysis has drawn much attention in recent years due to the dramatic
increase in the number of traffic accidents and casualties, and based on many studies, there is a
relationship between the driving environment or behaviour and the driver’s state. To the best
of our knowledge, these studies mostly investigate relationships between one vital sign and the
driving circumstances either inside or outside the cabin. Hence, our paper provides an analysis
of the correlation between the driver state (vital signs, eye state, and head pose) and both the
vehicle maneuver actions (caused by the driver) and external events (carried out by other vehicles or
pedestrians), including the proximity to other vehicles. Our methodology employs several models
developed in our previous work to estimate respiratory rate, heart rate, blood pressure, oxygen
saturation, head pose, eye state from in-cabin videos, and the distance to the nearest vehicle from
out-cabin videos. Additionally, new models have been developed using Convolutional Neural
Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) to classify the external events
from out-cabin videos, as well as a Decision Tree classifier to detect the driver’s maneuver using
accelerometer and gyroscope sensor data. The dataset used includes synchronized in-cabin/out-cabin
videos and sensor data, allowing for the estimation of the driver state, proximity to other vehicles and
detection of external events, and driver maneuvers. Therefore, the correlation matrix was calculated
between all variables to be analysed. The results indicate that there is a weak correlation connecting
both the maneuver action and the overtaking external event on one side and the heart rate and the
blood pressure (systolic and diastolic) on the other side. In addition, the findings suggest a correlation
between the yaw angle of the head and the overtaking event and a negative correlation between the
systolic blood pressure and the distance to the nearest vehicle. Our findings align with our initial
hypotheses, particularly concerning the impact of performing a maneuver or experiencing a cautious
event, such as overtaking, on heart rate and blood pressure due to the agitation and tension resulting
from such events. These results can be the key to implementing a sophisticated safety system aimed
at maintaining the driver’s stable state when aggressive external events or maneuvers occur.

Keywords: correlation analysis; vital signs; machine learning; driving behaviour; driver maneuvers;
external events

1. Introduction

Given the fundamental role that driving plays in modern society, the importance of
ensuring safety on the roads cannot be overstated [1]. Despite extensive efforts to reduce
the number of fatalities resulting from car accidents, the magnitude of the problem remains
deeply worrying [2]. In order to combat this trend, governments and stakeholders must
prioritize the implementation of measures designed to reduce the risks of accidents and
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associated injuries and fatalities [3]. One critical aspect that deserves close consideration
is the role that external factors and deliberate decisions to alter driving styles can play in
impacting drivers’ emotional and physical states, potentially leading to greater risk [4].
Proactive measures must be taken to ensure that drivers maintain safe driving practices
and remain mindful of the ways in which external factors can affect their driving behaviour
and other vital signs. To this end, many studies have been undertaken to observe and
investigate the influence of external factors and driving behaviour on vital signs such as
heart rate and blood pressure [2,5,6]. However, these investigations have often been limited
by their narrow focus on events either inside or outside the vehicle, as well as by the use of
cumbersome devices to observe a single vital sign in most cases.

Accordingly, our paper outlines a comprehensive investigation into how the factors
related to external events, the driver’s maneuvers, and the distance from the nearest vehicle
impact the drivers’ state—including vital signs such as heart rate, blood pressure, oxygen
saturation, and respiratory rate—as well as their eye state, indicated by whether the eyes
are open or closed, and head pose, specified by yaw, pitch, and roll angles.

In order to detect the driver’s maneuvers, the smartphone sensors were leveraged,
specifically the gyroscope and accelerometer, and a decision tree classifier was used to
determine whether the driver was performing a maneuver or not. An external events classi-
fication model was also trained, incorporating Convolutional Neural Networks (CNN) [7]
and Bidirectional Long Short-Term Memory (BiLSTM) [8], to classify the actions of other
drivers in the vicinity of the vehicle. Furthermore, several contact-less approaches were em-
ployed to obtain the driver’s vital signs, eye state, and head pose along with the proximity
to other vehicles using deep learning-based models from our previous work that require
videos taken by a smartphone camera to process the external view or the face and other
parts of the body to estimate the aforementioned variables. The contributions of this paper
can be summarized as follows:

1. Implementing an end-to-end study that utilizes a combination of sophisticated tech-
niques to integrate and analyse disparate data streams to provide new insights into
driver behaviour, external events, and potential hazards on the road.

2. Employing contact-less technologies to bring forth a more holistic view of the corre-
lation between a driver’s state (including vital signs, eye state, and head pose) and
external events, driver maneuvers, and other critical factors.

3. Generating actionable insights that can be used to promote safer driving behaviours
and reduce accidents on the road.

This rest of the paper is as follows: Section 2 represents our motivation to run this
study. Section 3 contains a review of the existing methods to detect the driver’s maneuvers
or behaviour. Section 4 includes a description of the presented approach to perform
correlation analysis of the relationship between the external events, vehicle maneuvers and
driver’s state. Section 5 includes a description of the datasets used for external events and
maneuvers classification followed by the results of these classification procedures and the
correlation analysis between the driver’s parameters and both maneuvers and external
events. Section 6 outlines the study and the obtained results, including the future plans
and limitations.

2. Motivation

Many papers worked on studying the impact of the driver behaviour and external
factors outside the vehicle on the driver’s vital signs such as blood pressure and heart
rate. One of these studies [2] performed analysis of the relationship between driving
aggressiveness and heart rate, and observed that the heart rate of participants engaged in
aggressive behaviour was on average 2.5% to 3% higher compared to those who remained
calm. Another paper [5] showed by experiments that the heart rate increases when asso-
ciating driving with other activities or cognitive workload that requires much attention,
observation, and mental effort. In addition, the authors of [6] analysed in their work the
impact of exposure to traffic congestion on the blood pressure of the driver, and they
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noticed that longer exposure time was associated with higher systolic and diastolic blood
pressure levels since traffic congestion might trigger an inconvenient atmosphere which can
be associated with anger, stress, or frustration that cause an increase in the blood pressure
levels. These findings suggest that a driver’s behaviour and the external factors during
driving can have a notable impact on physiological indicators. Therefore, these studies
and findings were the motivation to analyse the relationship among the vital signs and the
maneuvers performed by the driver and the external events performed by other drivers
or pedestrians. This idea came after implementing contact-less approaches to estimate
the vital signs (heart rate, blood pressure, oxygen saturation, and respiratory rate) [9–12]
and the head pose of the subject [13] by processing his/her facial video, which provided
for an opportunity to employ an end-to-end study of the relationship between the driver
parameters and his/her maneuvers along with the external events happening outside the
vehicle. Our dataset provides synchronized videos for inside and outside the cabin col-
lected from several drivers with data obtained from gyroscope and accelerometer sensors
in the driver’s smartphone. Therefore, training new models to detect the maneuvers and
external events was the only step left to begin our analysis and investigation.

3. Related Work

Smartphone sensors can be utilized for various purposes, such as keeping track of
human physical activity [14], identifying transportation modes [15], and categorizing driv-
ing actions [16]. These sensors can also be employed to recognize specific risky situations
during a trip, such as driving under the influence or aggressive driving. However, many
studies worked on the tasks of event detection and identifying the driver’s current be-
haviour with phone sensors by extracting specific features from sensor data and using
machine learning models to create the final classifier [17]. Therefore, several studies that
implemented machine learning (including deep learning) methods to achieve a classifier
or detector for the driver maneuvers or behaviour during his/her trip are discussed in
this section.

The authors of [18] utilized the accelerometer sensor of a smartphone installed inside
a vehicle to detect the driver’s maneuver and assess the kinematic condition of the vehicle.
Their classification method integrated four vehicle state classes (stopped, driving, parking,
and parked) and utilized three classifiers: Random Forests (RF), Support Vector Machines
(SVM), and Fuzzy Rule-based Classifiers (FRC).

The authors of the paper [19] used smartphone and OBD-II data to detect driver
behaviour. To gather data regarding throttle, speed, and revolutions per minute (RPM),
an OBD-II adaptor was employed, while acceleration and gravity data were collected by
a smartphone securely fixed inside the car. This method included two steps to identify
risky driving behaviour. By applying a time window to the signals that were gathered
and a recurrence plotting approach to the windowed data, time-dependent input signals
are first transformed into spatially dependent images. The image is then classified into
five categories of driving behaviour in the second step using a CNN, including normal,
aggressive, distracted, drowsy, and drunk driving.

The authors of [16] developed a simulation using a car kinematic model to train an
SVM classifier. They then tested the trained model on driving data obtained by using
smartphone sensors. To overcome the issue of unpredictable phone orientations within a
vehicle, the suggested method utilized Principal Component Analysis (PCA) on gyroscope
data to calibrate the gyroscope rotation matrix. The analysed driving maneuvers comprised
stopping, acceleration, deceleration, and left and right turns.

Other researchers [20] employed a cloud-based approach to classify various driver
actions, including overtaking, stopping, stopping at traffic lights, and maintaining a safe
distance. They processed the standard signals that are usually measured in a car, such
as the speed, the engine revolutions (RPM), the angle of the steering wheel, the position
of pedals, and others, without additional intelligent sensors. The classification process
utilizing synthetic data was carried out using a fuzzy rule-based method.
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The authors of [21] employed an interesting approach for detecting maneuvers using
GPS, accelerometers, and gyroscopes. They employed a range of neural network models,
including Feed Forward Neural Network (FFNN), Convolutional Neural Networks (CNNs),
LSTM-Recurrent Neural Networks (LSTM-RNNs), and a stacked ensemble of the best
models (Stacked Neural Network SNN) for classification. To improve the accuracy of their
models, they also performed several preprocessing steps, including normalizing the phone
orientation, using the Kalman filter to remove noise, and transforming the data to make
them suitable for neural network training.

Table 1 includes an outline of the above-mentioned approaches including the imple-
mented algorithms and methods, as well as the data type used to detect the preformed
maneuver or the driver’s behaviour.

Table 1. Summary of the existing approaches with used methods and data type.

Paper Used Methods Used Data

Cervantes-Villanueva et al. [18]

Random Forests (RF),
Support Vector Machines
(SVM), Fuzzy Rule-based

Classifiers (FRC)

Accelerometer sensor data

Shahverdy et al. [19]

Convolutional Neural
Networks (CNN) after

converting time-dependent
input signals into spatially

dependent images

Throttle, speed, and
revolutions per minute (RPM)
using an OBD-II adaptor, as

well as acceleration and
gravity data were collected

by a smartphone

Woo et al. [16]

Support Vector Machines
(SVM), in addition to using

Principal Component
Analysis (PCA) for

calibration purposes

Gyroscope sensor data

Andonovski et al. [20] Fuzzy rule-based method

Speed, revolutions per
minute (RPM), steering angle,
pedal position, etc., without
additional intelligent sensors

Ramah et al. [21]

Feed Forward Neural
Network (FFNN),

Convolutional Neural
Networks (CNNs),

LSTM-Recurrent Neural
Networks (LSTM-RNNs),

and Stacked Neural Network
(SNN)

GPS, accelerometer, and
gyroscope data

To summarize, it is noticeable that the aforementioned articles managed to achieve
maneuvers classification using data collected by smartphone-embedded sensors, however,
they had some drawbacks such as the requirement of other data (e.g., OBD-II data) and
high computational cost (using filters and deep learning algorithms). Therefore, this paper
introduces a method that provides a low cost and time efficient approach by using only the
data readings from gyroscope and accelerometer sensors embedded in a smartphone to
detect the maneuvers performed by the driver using ensemble learning algorithms, since
it has proved itself in the field of achieving classification with good and high accuracy
especially when dealing with small or unbalanced datasets. This maneuvers classifier is
used for further experiments to study the effect of the occurrence of maneuvers on the
driver’s vital signs as explained further in Section 4.5.
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4. The Proposed Approach

This section includes the details of our approach consisting of three main methods
(in-cabin video analysis, out-cabin video analysis, and maneuver classification) which leads
us to the core of our work to investigate the relationship between the external events and
the driver’s state, study the correlation between his/her vital signs and the performed
maneuvers, as well as analyse the correspondence between driver’s vital signs and the
distance from the closest vehicle.

4.1. Methods for In-Cabin Video Analysis

This subsection briefly describes our previously developed methods used for analysing
the driver parameters including vital signs (blood pressure, respiratory rate, heart rate, and
oxygen saturation [9–12]) as well as the driver head pose [13].

For estimating the respiratory rate, a detection of the chest keypoint at each frame
of the driver’s video is first performed, then using an optical flow-based algorithm, the
displacement between the frames is calculated, after that, post-processing techniques on
the obtained chest movement signal are applied, such as filtering and denoising, and finally
the number of real peaks in this signal is counted [11].

For estimating the heart rate, the face and facial landmarks using 3DDFA_V2 frame-
work [22] are extracted, then a pretrained model based on the 3D variant of EfficientNet-B1
is used, followed by a simple classifier consisting of a linear layer [9].

As for estimating the blood pressure, 3DDFA_V2 is used again to detect the face and
extract the left and the right cheeks, each of which was fed into pretrained model (CNN)
followed by a long short-term memory (LSTM) model to make final estimations for systolic
and diastolic blood pressure using fully connected layers [10].

Regarding the estimation of the oxygen saturation, a similar to the blood pressure
prediction approach is used by replacing the LSTM with XGBoost Regressor, since ensemble
learning is a better option due to the biased nature of the oxygen saturation values to be
concentrated between 90–100% [12].

The estimation of the head pose (Euler angles: roll, pitch, and yaw angles) is achieved
using the method described in [13]. To estimate the head pose, the face first is detected
using YOLO tiny. After detecting the face, a 3D face reconstruction is used to fit facial
landmarks even if they are not visible to the camera, then the facial landmarks are detected
and the Euler angles are calculated by finding the transition and rotation between the
landmarks in successive frames.

The eye state is estimated using trained model [23]. The model takes the face detected
by FaceBoxes [24] as an input and outputs whether the eye is opened or closed.

4.2. Method for Out-Cabin Video Analysis

This subsection concisely describes our proposed monocular depth estimation
method [25,26]. We have collected data from more than 10,000 videos recorded by our
Drive Safely system [23] over a period of more than five years, capturing various scenes,
lighting, and weather conditions. Four different state-of-the-art methods were used to
pseudo-label these data with approximate depth maps. Then, we designed a lightweight
neural network architecture based on the EfficientNet-B0 feature extractor with nested
UNet decoder using a complex loss function based on mean absolute error, cosine similarity
loss, Sobel filter, and virtual normal loss. It allowed us to achieve competitive results to
the state-of-the-art methods for publicly available datasets with 15x faster performance
compared to the AdaBins model on the RTX 3090 GPU card. The model was trained on our
data using pseudo-labeling and estimated the relative distance between the camera and
other vehicles from the predicted relative depth.

4.3. Maneuver Classification Method Based on Sensor Data

This subsection describes the proposed method to classify the maneuvers that the
driver performs while driving based on the data obtained from the gyroscope and ac-
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celerometer sensors embedded in any smartphone, since the estimated maneuvers will be
used to study their relationship with human’s vital signs (respiratory rate, heart rate, blood
pressure, and oxygen saturation).

For training, Section 5.1.2 dataset was used after being divided into 217 samples for
training and 53 samples for testing. Given the size of the training set, deep neural network-
based learning methods were not used due to the high probability of having overfitted
models. Therefore, several methods of training based on ensemble learning were applied.
The following methods were used: XGBoost classifier, decision trees, random forest, SCV,
and SGDclassifiers. Weights have been added to low frequent classes (aggressive left lane
change and aggressive right lane change) to make sure that the dataset is balance in order
to achieve acceptable accuracy despite the small size of the dataset. These methods were
fed by 24 features (mean, maximum, minimum values, and standard deviation) of the
accelerometer and gyroscope readings on the three axes (ax, ay, az, gx, gy, and gz) of each
consecutive three seconds, and for each training process, we tried different parameters such
as the number of the estimators (num of estimators), maximum depth (max depth), number
of features considered (max features), and others. The table includes the best parameters
for each method when achieving the highest accuracy (Equation (1)) using this specific
method. However, the best method among the others was chosen to proceed with our
experiments.

Accuracy = (TP + TN)/(TP + TN + FP + FN), (1)

where TP presents True positive, TN donates True negative, while FP and FN are False
positive and False negative, respectively.

4.4. Investigating the Relationship between the External Events and the Driver State

This subsection describes our developed model for external events classification in
addition to the overall scheme of calculating the correlation between the external events
and the driver state.

4.4.1. Correlation Analysis between External Events and the Driver Parameters

The main goal of this section is to investigate if there is any relation between the
external events detected by our developed method explained in Section 4.4.2 and the driver
state (eye state) and the driver head pose (Euler angles: roll, pitch, yaw) [13] from one
side and the driver vital signs from the other side. Figure 1 shows the overall scheme to
calculate the correlation matrix.

As shown in the figure, our proposed model was trained on the Meteor dataset [27].
Synchronized videos for inside and outside the cabin collected from several drivers [28]
were used to check the relation between the driver state and the detected event. For
the inside videos, we used the eye state detection model and the head pose estimation
model [13] to estimate the driver state, as well as the respiratory rate, heart rate, blood
pressure, and oxygen saturation estimation models to estimate the driver vital signs. For the
outside videos, the pretrained model was used to predict outside events such as overtaking
and changing lanes. Then, the information from the models was merged to calculate the
correlation matrix based on Pearson’s correlation coefficient (Equation (2)).

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
(2)

where r is the correlation coefficient, xi and yi present values of the x-variable and y-
variable, respectively, x̄ shows the mean of the values of the x-variable, and ȳ is the mean
of the values of the y-variable.
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Figure 1. Proposed method for Correlation Analysis.

4.4.2. External Events Classification Model

This subsection covers the proposed method for detecting external events occurring in
front of the vehicle such as overtaking, cutting, changing lane, and yielding. For detecting
the external events, we considered the problem as event classification with an artificial “no
event” class. We proposed to use the Resnet50d feature extractor followed by Bidirectional
LSTM (BiLSTM) to capture both spatial and temporal features, then three fully connected
layers were used as a classifier.

Resnet50d is a modification of the ResNet architecture that utilizes an average pooling
tweak for down-sampling so no information is ignored. The motivation is that in the
unmodified ResNet, the 1 × 1 convolution for the down-sampling block ignores 3/4 of
the input feature maps. The Resnet50d feature extractor consists of five layers followed
by a global feature pooling layer. The first layer consists of three convolution blocks (two
convolution blocks + batch normalization + rectified linear unit (ReLU)) followed by max
pooling. The second layer consists of three bottlenecks, and each bottleneck in turn consists
of three convolution blocks. The third layer consists of four bottlenecks, while the fourth
layer consists of six bottlenecks, and the last layer consists of three bottlenecks.

The input of the model is 10 successive frames after applying resizing to (512 × 512) and
normalization, and the output is either no event or one of the following events: overtaking,
yielding, cutting, or lane changing. Figure 2 shows the proposed method for outside event
classification. For training the neural network cross entropy (Equation (3)) was used as
the loss function, Adam optimizer to update the weights, and the ReduceLROnPlateau as
the scheduler to reduce the initial learning rate (initially chosen to be 1 ×10−3) when the
accuracy stopped improving.

CrossEntropy = −
C

∑
i=1

ti log(si) (3)

where ti is the ground truth, si is the score for each class i, while i is the class index, and C
indicates the number of classes.
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Figure 2. Proposed method for outside event classification.

4.5. Correlation Analysis between Vital Signs and Maneuvers

The workflow of estimating the correlation between the vital signs of the driver and
the maneuvers of the vehicle is shown in Figure 3. First of all, video recordings of the
driver from the cab of the vehicle are processed by heart rate, blood pressure, and oxygen
saturation models in order to obtain vital signs. The event detection model described in
Section 4.3 requires gyroscope and accelerometer data for the previous three seconds, so
to obtain the necessary values, vital signs are also averaged over the last three seconds.
Further, the data obtained from all models are stored in a CSV file to check the correlation
(Equation (2)) between heart rate, blood pressure (systolic and diastolic), and blood oxygen
saturation with the maneuver. It should be noted that no conditions were set regarding
the speed of the car, since the heart rate, blood pressure, and oxygen saturation models
require recording only the face area, which is not related to other circumstances, such as
speed, acceleration, etc. In addition, a high or a moderate speed is necessary to perform
the maneuvers, so the speed range included in the dataset used varies as needed, without
affecting the values of heart rate, blood pressure, and oxygen saturation.

Figure 3. Workflow for assessing the correlation between vital signs and maneuvers.

The workflow shown in Figure 3 contains three averaging units that process the results
of the vital signs models. The purpose of using these averaging units is to synchronize the
vital signs with the detected maneuvers, because sequences of gyroscope and accelerometer
data based on the previous three seconds to detect the maneuver are used. So each unit
averages consecutive values that describe three consecutive seconds of the obtained vital
signs. Thus, averaging allows to obtain synchronized data consisting of the heart rate,
the systolic and the diastolic blood pressure, the oxygen saturation of the blood, and the
presence of maneuvers that are stored in a CSV (Comma-separated values) file. This file is
used later to check for the correlation between vital signs and the occurrence of a maneuver.
It should be mentioned that the output of the maneuvers detection model is the class of the
maneuver, but it was converted into 1 to indicate that there is a maneuver being performed
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and 0 otherwise, because the occurrence of the maneuver provides more significance than
the class and it affects the vital signs whatever the maneuver class is.

4.6. Correlation Analysis between Vital Signs and Distance

The workflow shown in Figure 4 describes the analysis of the correlation (Equation (2))
between the respiratory rate, the heart rate, the blood pressure (systolic and diastolic), and
the oxygen saturation with the distance between the current car and the nearest car in front
of it.

Figure 4. Workflow for correlation assessing between vital signs and distance to the vehicle in front.

Previously developed models were used to obtain heart rate, blood pressure, oxygen
saturation, and respiratory rate, as well as the model for estimating the distance to the
vehicle in front for each frame of the out-cabin video. Since the operations of these models
are not synchronized, it is necessary to perform an additional averaging operation. Thus, the
estimation of the distance to the forward vehicle calculated for each frame are additionally
processed by the averaging unit to match the data of the heart rate, the blood pressure, and
the oxygen saturation calculated for each second. The processing results are saved in a CSV
file. This file is analysed for the presence of a correlation between the distance and these
vital signs.

On the other hand, since the respiratory rate estimation model calculates the respi-
ratory rate once per minute, it was proposed to apply averaging of the data stored in
the above-mentioned file to obtain the values of the vital signs (heart rate, systolic blood
pressure, diastolic blood pressure, and oxygen saturation) and the distance to the vehicle in
front for each minute synchronized with the respiratory rate. The result is also stored in a
CSV file for subsequent verification of the correlation between these features.

In addition to the models that calculate heart rate, blood pressure, and oxygen satura-
tion, it can be noticed that the workflow mentioned in this subsection also includes a model
to predict the respiratory rate. However, this model is capable of estimating the respiratory
rate once per minute and requires a vehicle speed of no more than 3 km/h [11], so that the
signal extracted from the video is not distorted or noisy. This model is used only in this
analysis, due to the fact that the videos used in the analysis of the correlation between vital
signs and maneuvers have high speed during most of the trip, and in general, the video
recordings of the parts of the trips with low speed have short duration (less than 1 min),
which makes the RR estimation inapplicable in the workflow mentioned in Section 4.5.

5. Experiments and Evaluation

This section contains the descriptions of the used datasets in order to accomplish
external events and maneuvers classification, followed by the results obtained regarding



Sensors 2023, 23, 7387 10 of 20

these two tasks to analyse the relationship between the driver’s state and external events,
performed maneuvers, and distance from the nearest vehicle.

5.1. Used Datasets

This section includes the characteristics of the used datasets to achieve the external
events classification and detecting the maneuver which the driver carries out based on the
gyroscope and accelerometer readings collected by smartphone-embedded sensors.

5.1.1. Used Dataset for External Events Classification

We used the METEOR dataset [27], which consists of 1250 one-minute videos. The
dataset contains frame-wise annotations for agents and their behaviours on the road in
diverse traffic scenarios including rainy weather, nighttime driving, driving in rural areas
with unmarked roads, and high-density traffic scenarios. It contains the annotations for the
following events.

1. Overtaking: an agent overtakes another agent with sudden or aggressive movement.
2. Yielding, Cutting: a pedestrian or slow-moving agent tries to cross the road in front of

another agent. If the latter slows down or stops, letting them cross the road, then such
behaviour is labeled as yielding. If not, and the former agent’s action was interrupted,
then the behaviour is labeled as cutting.

3. Lane change: An agent aggressively changes lanes on roads with clear lane markings.

The METEOR dataset was used to train the external events classification model while
synchronized inside-outside videos from the DriverMVTdataset [28] were used to check
the correlation.

5.1.2. Used Dataset for Maneuver Classification

This subsection describes the dataset used to detect maneuvers carried out by the
driver based on sensor readings. The dataset [29] provides a collection of smartphone
sensor measurements for maneuvers occurring while driving a car. A smartphone app is
used to record smartphone sensor data (accelerometer, linear acceleration, magnetometer,
and gyroscope) while the driver performs certain maneuvers while driving. This dataset
covers an experiment involving four car rides of approximately 13 min each and includes a
total of 69 events, divided as follows in Table 2.

Table 2. Dataset characteristics.

Driving Maneuver Type Number of Samples

Aggressive breaking 12
Aggressive acceleration 12

Aggressive left turn 11
Aggressive right turn 11

Aggressive left lane change 4
Aggressive right lane change 5

Non-aggressive event 14

Total 69

The ground truth CSV file contains the start and end times of the maneuvers, as
well as the maneuver class. To process the dataset, the time series of accelerometer and
gyroscope readings on the three axes (ax, ay, az, gx, gy, gz) were divided into short series
of three seconds long, and then the average value, standard deviation, maximum value
and minimum value for each series were calculated and these features were labeled with
the class of maneuver that occurred in the last second of these three seconds, therefore,
24 features were obtained for each sample, and these features were the input of our classifier.
However, since the dataset is relatively small, this process was applied only for the periods
when the maneuvers occurred, as well as a few samples when nothing happens, labeled as
“no maneuver” to distinguish it from a “non-aggressive maneuver”.
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The resulting dataset has the following number of samples:

• 44 samples for the “non-aggressive” maneuver.
• 39 samples for the “aggressive turn-right” maneuver.
• 58 samples for the event “no maneuver”.
• 37 samples for the “aggressive turn-left” maneuver.
• 10 samples for the “aggressive right lane change” maneuver.
• 10 samples for the “aggressive left lane change” maneuver.
• 28 samples for the “aggressive break” maneuver.
• 44 samples for the “aggressive acceleration” maneuver.

5.2. External Events Classification Results

The METEOR dataset has been split into training dataset and testing dataset, with
the most common split ratio being 80:20. In splitting, it was ensured that the training
and testing datasets have the same distribution of the external events classes. The model
achieved a testing accuracy of 92.56%. Figure 5 shows the confusion matrix of the tested
dataset, and Table 3 shows the model accuracy per class.

Figure 5. The confusion matrix of the tested dataset.

Table 3. The model accuracy per external event.

External Event Accuracy (%)

Lane Changing 84.05
Over Taking 91.42

no external event (no action) 93.98
Cutting 68.57

Yield 82.86

From Table 3, the accuracy for all external factors exceeds 82% except cutting, which is
the case when any slow vehicle or pedestrian is interrupted by another vehicle. The main
reasons for such results are the small number of samples for this class in the training dataset,
and the similarity between the cutting and the yielding events. One way to improve the
results is to merge the cutting and the yielding events into one class (jaywalking). If the
results only for testing without retraining the whole model were combined, the overall
accuracy for this class would be equal to 84.27%.

5.3. Maneuvers Classification Results

This subsection includes the results of the ensemble learning methods to estimate the
maneuvers performed by the driver based on the accelerometer and gyroscope readings.
Table 4 includes a list of the ensemble learning methods used in our study with the best
parameters that led to the highest accuracy.
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Table 4. Results of the ensemble learning methods for the maneuvers classification.

Method Hyper-Parameters Accuracy

XGBoost [30] max depth = 4, num of
estimators = 10 39%

Decision Tree classifier [31] criterion: ‘entropy’, max
depth: 7, max features: 13 77%

Random forest [32] criterion: ‘entropy’, max
depth: 6, max features: 11 47%

Support Vector Classification
(SVC) [33]

max depth = 2, kernel =
‘linear’ 26%

Stochastic Gradient Descent
(SGD) Classifier [34] kernel = ‘huber’, penalty = l2 28%

When analyzing the results, it can be seen that the best accuracy of 77% was obtained
by the decision tree classifier. Hence, decision tree was used for further experiments in our
study to find the correlation among the vital signs and the maneuvers. Figure 6 shows the
confusion matrix for determining the accuracy of the estimation of the decision tree on the
test set.

Figure 6. Confusion matrix for the decision tree classifier.

By analyzing Figure 6, it can be concluded that the proposed model can correctly
identify most classes, including those that do not have a large number of samples in the
training dataset. This means that adding weights to these classes solved the problem of
lack of data, and the constructed model can recognize these classes with good accuracy,
which is important because in real scenarios the range of maneuvers that the model should
recognize (including those presented in the training dataset in insufficient quantity) can
be quite wide. In addition, a conclusion was made about the ability of ensemble learning
to classify events in even rarely occurring classes (including in training samples), which
proves the flexibility of ensemble learning when working with unbalanced datasets. It can
also be concluded that the classification of the presence of a maneuver could be a very
informative sign, since vital signs depend not on the class of the maneuver, but on its
presence, and based on the confusion matrix presented above, it can be seen that the model
is able to distinguish between the presence or absence of a maneuver.
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5.4. Correlation Analysis between Outside Events and Driver Behaviour

Our proposed model was tested on 64 synchronized pairs of videos from our dataset [28]
of an average length of 1 min; one pair captures the driver while the other is capturing the
road. Both videos were processed and the head pose and the eye state as well as outside
events were calculated. Figure 7 shows the correlation matrix between the outside events
and the head pose and the eye state.

Figure 7. Correlation matrix between the outside events and head poses & eye state.

Figure 7 shows a weak correlation between the yaw angle of the head (the angle of the
driver head when he/she turns the head to the left or to the right) and the overtaking event
(when a vehicle overtakes the ego vehicle) with a correlation coefficient of 0.22. To be sure
that the result was statistically significant, the p-value between the yaw and overtaking
was calculated and it gave 0.0001. The p-value is used to test the null hypothesis (the
null hypothesis of a test is always aimed to predict no effect or no relationship between
variables). If the p-value is less than 0.05, which was achieved in our case, it means that the
results are statistically significant, and the null hypothesis is false. Since the p-value in our
case is 0.0001, it means that our results are statistically significant. To interpret the results,
values shown in Table 5 and mentioned in paper [35] were used.

Table 5. Interpretation of the correlation results.

Coefficient Interval Correlation

0.00–0.19 Very Weak

0.20–0.39 Weak

0.40–0.59 Medium

0.60–0.79 Strong

0.80–1.00 Very Strong

It can be also noticed that there is a very weak correlation between eye state and head
angle. This can be explained by the fact that since the camera is installed in front of the
driver, when he/she is moving the head to certain positions, the eyes may appear closed,
while in fact they are open, which leads to some correlation between head tilt angles and
eye condition.

Additionally, a lack of correlation between the driver’s eye condition or head angles
and events such as yielding, cutting, or changing lanes can be noticed. This is due to the
fact that these events take place entirely in front of the driver. Overtaking, on the other
hand, happens when a vehicle first travels from the rear side and then changes lanes in
front of the ego vehicle.
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5.5. Correlation Analysis between External Events and Driver Vital Signs

For the 64 in-cabin videos from our dataset [28], the driver vital signs (heart rate, blood
pressure, and oxygen saturation) were calculated to investigate the correlation with the
external events. The correlation matrix between the external events and the driver vital
signs was found. Figure 8 shows the correlation matrix between the outside events and the
driver vital signs.

Figure 8. The correlation matrix between the outside events and the driver vital signs.

The obtained matrix shows that there is a moderate negative relationship between
heart rate and blood pressure with correlation coefficients of −0.38 and −0.32 for systolic
and diastolic blood pressure, respectively. A very weak correlation between heart rate
and overtaking (correlation coefficient 0.14) can also be noted, as well as a negative weak
correlation between blood pressure and overtaking (correlation coefficients −0.25 and
−0.18 for systolic and diastolic blood pressure, respectively). Results are interesting, but
it should be noted that these results require further study, as they were obtained only on
the basis of 64 videos with an average length of 1 min for the same person, filmed on three
different roads during periods of low traffic.

5.6. Correlation Results between the Maneuvers and the Vital Signs

For this task, we also used our dataset [28], which contains video recordings of the
driver associated with gyroscope and accelerometer data. Based on the set, a correlation
was calculated between heart rate, blood pressure (systolic and diastolic), oxygen saturation,
and the vehicle maneuver. Two experiments were performed. The first experiment was
focused to check whether there was a correlation between maneuvers and vital signs taken
from the same video recording, so that the conditions of the trip were the same throughout
the entire data. Figure 9 shows the resulting correlation matrix with the p-value of each
correlation coefficient. The following abbreviations are used in the figure: hr: heart rate,
sb: systolic blood pressure, db: diastolic blood pressure, and os: the degree of oxygen
saturation of the blood.
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Figure 9. Correlation matrix between maneuvers and vital signs (Experiment 1).

It can be noted that there is a significant correlation between all vital signs and
the presence of maneuvers. The correlation coefficients between blood pressure and
the maneuvers have a medium negative value, which indicates a moderate relationship
between these signs, and the p-value (<0.05) indicates a significant correlation that can
be explained by human nature: concern and/or concentration causes a decrease in blood
pressure values in general. In addition, there is a weak positive correlation between heart
rate and maneuvers, which is also expected, since a person’s heart can beat faster when
performing any action that requires attention.

In the second experiment, scenes taken from different trips recorded in-the-wild in
the vehicle cabin were included. The speed changes based on outside situation around the
vehicle and the driver performs maneuvers in a natural manner. Also, all possible maneu-
vers in the trip were included in our analysing set to get enough samples of maneuvers so
the set is not biased, which enables us to obtain relatable results (46 and 283 samples with
different maneuvers in the first experiment and the second one, respectively). The result
obtained is shown in Figure 10, and it is close to the result of the first experiment, although
it has smaller coefficient values, which can be explained by an increase in the sample
size. However, the result shows that there is a significant positive correlation between
heart rate and maneuvers, and a significant negative correlation between blood pressure
(both systolic and diastolic) and maneuvers. These results are in line with expectations.
However, the correlations between the maneuvers and the vital signs (hr, sb, and db) are
in the same direction in both experiments with p-value < 0.05, which indicates that the
results are valid regardless the conditions of the trip and emphasizes the significance of
the findings regarding the influence of performing maneuvers during driving on the vital
signs in general.
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Figure 10. Correlation matrix between maneuvers and vital signs (Experiment 2).

5.7. Correlation between the Distance Vehicle in Front and Vital Signs

For this experiment we used our dataset that includes video recordings of the trip
conditions inside and outside the car. However, to analyse the correlation between vital
signs and distance, two correlation matrices were calculated, the first of which describes the
correlation between heart rate, systolic & diastolic blood pressure, oxygen saturation, and
distance based on the values obtained every second. The first matrix is shown in Figure 11.

Figure 11. Correlation matrix between distance and vital signs per second.

Based on the results presented in Figure 11, it can be concluded that systolic blood
pressure shows a significant, but very weak correlation with the distance to the forward
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vehicle, which indicates a slight change in the values of systolic blood pressure when the
distance between vehicles changes, that is, the distance can affect the driver state.

The correlation between vital signs, including respiratory rate and distance with a
sampling rate equal to one value per minute is shown in Figure 12. Based on the figure, it
cannot be concluded whether there is a significant correlation between distance and any
vital sign, although the calculated coefficients are quite high, but the p-values are higher
than 0.05. This can be explained by the relatively small number of samples, which can lead
to an inaccurate assessment of the significance of the correlation.

Figure 12. Correlation matrix between distance and vital signs per minute.

5.8. Summary of the Correlation between the Vital Signs and Both: External Events and
Driver’s Maneuver

Figure 13 represents a recap of the findings and observations concluded through our
study from Section 5.5 and Figures 10 and 11. It can be observed that the heart rate and the
blood pressure (systolic and diastolic) are in general affected by performing maneuvers.
This can be noticed by the positive correlation coefficient for the heart rate, which shows
that performing a maneuver while driving would raise the rate of heart beats as a sign of
being nervous, worried, or focused, and this explanation applies to the negative correlation
coefficient between the maneuvers and both systolic & diastolic blood pressure. In addition,
based on the results obtained, “overtaking” is the most critical action that has noticeable
and observable impact on the vital signs based on the significant correlations obtained
based on the presented matrix. This correlation is considered reasonable, regarding the
fact that this action has sudden and aggressive scenarios more than the circumstances of
the lane changing and yielding. However, the correlation among the distance and the
vital signs (heart rate and blood pressure) in general was insignificant (except for systolic),
hence, it can be assumed that the distance from the frontal vehicle does not have such a
noteworthy or serious influence on the internal state of the driver.
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Figure 13. Final correlation matrix of the driver vital signs and vehicle behaviour.

6. Conclusions

This paper presents an end-to-end study of the relationship between the driver state
(vital signs, eye state, and head pose) and both the vehicle maneuver actions as well as
external events, including the proximity to other vehicles in synchronized in-cabin/out-
cabin videos. To achieve this study, new models were presented to classify the external
events from videos with a total accuracy of 92.56% on the Meteor dataset by using hybrid
deep learning methods (CNN and BiLSTM). Additionally, the paper introduces an imple-
mentation of maneuvers performed by the driver detection based on accelerometer and
gyroscope sensor data provided by smartphone-embedded sensors using several ensemble
learning to get an accuracy of 77% obtained by a decision tree classifier. However, the
accuracy can be improved by including more samples. By this point, an employment of
our existing models from our previous work was only needed to estimate vital signs (heart
rate, blood pressure, oxygen saturation, respiratory rate), eye state (open or closed), head
pose (roll, pitch, yaw), and the distance to the nearest vehicle, hence, all these variables
were obtained from our dataset that provides synchronized in-cabin/out-cabin videos with
accelerometer and gyroscope sensors reading.

Our investigation of the correlation among these variables indicates that there is a
positive correlation between the heart rate and the maneuver action with a correlation
coefficient of 0.14, and the overtaking external event with a correlation coefficient of 0.14,
which can be explained by the complex interactions between the sympathetic and parasym-
pathetic branches of the autonomic nervous system. Therefore, when a person undergoes a
maneuver or caution event, there is a shift in the autonomic nervous system balance, lead-
ing to altered HRV metrics. This study also demonstrates a negative correlation between
blood pressure (systolic and diastolic) and both the overtaking and the maneuver-action
along with a negative correlation between the systolic blood pressure and the distance to
the nearest vehicle with a correlation coefficient of −0.13. These physiological responses
in blood pressure can be interpreted as a manifestation of feelings such as nervousness,
anxiety, or concentration. In addition, the outcomes suggest a correlation between the yaw
angle of the head and the overtaking event with a correlation coefficient of 0.22, which
seems to be reasonable since external events during driving, such as overtaking, may trigger
involuntary head movements and rotations, affecting the yaw angle of the head due to the
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fact that head orientations are important factors in analyzing the driving environment to
be aware of the hazards. Nonetheless, these results are in line with expectations, which
spotlights the efficiency of our models used to implement this investigation and highlights
the significance of our research and outcomes.

However, these results should be interpreted with caution and further study is re-
quired due to the fact that some of these results were obtained from 64 videos with an
average length of one minute for the same person, captured in low-traffic periods. Another
limitation of this study is the error of the used models. As mentioned in the paper, the
maneuver actions, the external events, the the proximity to other vehicles, the vital signs,
the driver’s eye state, and the head pose were estimated using pre-trained models with
varying error ranges. These errors in estimation also affect the obtained results.

Avenues for future research include collecting more synchronized in-cabin/out-cabin
videos from different drivers during traffic and on different roads and recalculating the
correlation between the external events, distance from the nearest vehicle, and the driver
state. In addition, the performance of the maneuvers detection model can be enhanced by
collecting more samples to expand the dataset. However, these findings and knowledge
can be integrated in the future into a driving monitoring system that would make a
noteworthy influence on the existing driving safety systems by keeping the driver state
under observation and taking into account both external and internal factors affecting
drivers and passengers.
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