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Abstract: This paper explores the potential for communication-efficient federated learning (FL) in
modern distributed systems. FL is an emerging distributed machine learning technique that allows for
the distributed training of a single machine learning model across multiple geographically distributed
clients. This paper surveys the various approaches to communication-efficient FL, including model
updates, compression techniques, resource management for the edge and cloud, and client selection.
We also review the various optimization techniques associated with communication-efficient FL, such
as compression schemes and structured updates. Finally, we highlight the current research challenges
and discuss the potential future directions for communication-efficient FL.

Keywords: federated learning; communication efficient; model compression; resource management;
client selection; structured updates

1. Introduction

Federated learning (FL) is a rapidly growing field that enables multiple clients to train
a machine learning model while preserving their data privacy [1]. It has been extensively
used in various fields, including healthcare, finance, and social media, where privacy is
critical [2,3]. In FL, the clients (devices) perform local training on their respective datasets
and then share only the model updates with the server, aggregating the updates to generate
a global model [4]. In contrast to conventional centralized machine learning, federated
learning (FL) and distributed machine learning offer unique mechanisms for training
models across decentralized devices or data sources. However, it is FL that emphasizes
collaborative model training with a keen focus on preserving data privacy, minimizing
communication overheads, and catering to dynamic and potentially heterogeneous data
environments. Distributed machine learning, while reducing computational constraints
through parallel processing, often involves more frequent data exchanges without the
inherent privacy-preserving design of FL [5]. Figure 1 provides a comprehensive architec-
tural comparison of FL against the traditional centralized and distributed machine learning
frameworks. It showcases the nuances in data distribution, model updates, and commu-
nication patterns among these paradigms, thus emphasizing the distinct attributes and
advantages of FL.

FL is a revolutionary approach in distributed machine learning, promising enhanced
data privacy and decentralized model training [6]. However, the communication overheads
associated with FL have emerged as a considerable challenge, especially when they pertain
to scalability and efficiency. In the FL paradigm, communication costs are bifurcated into
two primary categories: upload and download costs. The former encapsulates the data
transmitted by clients to the server during the training phase, while the latter accounts
for data fetched from the server by the clients [7]. Notably, these costs are influenced by
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various parameters, such as the dataset size, model intricacy, client count, and network
bandwidth [8,9].

Figure 1. Comparison of FL with conventional centralized machine learning and distributed learning.

The ramifications of these communication costs on FL’s efficiency have been the subject
of intensive research. Empirical analyses have ascertained that communication costs can act
as substantial constraints, inhibiting the scalability and effectiveness of FL systems [10,11].
To combat these challenges, innovative solutions, such as compression methodologies and
model quantization, have been postulated [12,13]. Compression solutions primarily focus
on diminishing the magnitude of model updates, thus curtailing upload expenses, whereas
model quantization optimizes model parameters’ precision, facilitating further reductions
in upload costs.

Moreover, the aspiration for energy-efficient communication systems is a pressing
concern that complements the drive for communication efficiency [14]. Reducing com-
munication overheads through FL directly ties into energy savings. Given that every
data exchange involves energy consumption, optimizing the FL process impacts the band-
width and potentially contributes to reduced energy expenditures, a vital consideration
for modern communication networks [15,16]. FL’s capacity to minimize data transmission
inherently reduces energy consumption, placing it at the forefront of strategies to develop
energy-efficient communication networks.

This paper provides an overview of the various communication-efficient FL strategies,
including model updating, compression techniques, resource management for the edge and
cloud, and client selection. An in-depth look at the different optimization techniques related
to communication-efficient FL, such as compression schemes and structured updates, is also
included. The potential of communication-efficient FL for emerging distributed applications
is discussed, including the benefits and challenges that could arise from its integration into
existing distributed systems.

The primary objective of this paper is to analyze the communication efficiency of FL
and its impact on system performance. Thus, our following discussion will solely revolve
around communication cost, disregarding other aspects of FL. Moreover, to the best of our
knowledge, no previous survey has specifically focused on examining the communication
cost of FL. Table 1 presents the existing work on FL relevant to our survey.

The rest of this paper is organized as follows: Section 2 presents the fundamentals
of FL. Section 3 explains the communication deficiency in detail. Section 4 provides the
details of resource management strategies in FL. Section 5 presents the importance of client
selection in FL. Section 6 presents the optimization techniques of FL. Section 7 presents the
potential future directions of FL regarding communication costs. Section 8 provides the
discussion and analysis of this survey. Finally, Section 9 concludes this survey paper. A
complete overview of this survey is presented in Figure 2.
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Table 1. Existing surveys and their primary focus.

Reference Year Focus Communication Constraints Challenges

[1] 2021 Characteristics and the current practical application of
FL Yes Network heterogeneity

[17] 2023 Threats and vulnerabilities of FL No Adversarial attacks

[18] 2021 Categorization of FL Partially discussed Design factors

[3] 2020 Comparison of different ML deployment architectures
and in-depth investigation on FL Partially discussed Architectural robustness

[19] 2021 Advances and open challenges of FL No Privacy and communication

[20] 2021 Characteristics of edge FL Yes Security and privacy

[21] 2021 Non-identical and non-independent data distribution
in FL Partially Communication efficiency

[22] 2022 FL in smart healthcare No Design factors

[23] 2023 Blockchain empowered FL No Privacy and security

[24] 2022 Security aspects of FL No Privacy and security

[25] 2022 Implementation of FL in centralized, decentralized,
and heterogeneous approach Partially discussed Network heterogeneity

[26] 2022 Integration of FL with industrial IoT No Privacy preservation

[27] 2023 FL in wireless networks Yes High communication costs

[28] 2023 Review of existing studies on communication
constraints in FL Yes Communication costs

[29] 2023 Threats to and flaws in the FL strategy No Privacy and Security

[30,31] 2020 FL in mobile edge computing Partially discussed Design factors

[32] 2020 Personalization of FL No Client selection

Figure 2. An overview of our survey.
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2. Fundamentals of Federated Learning

In this section, we will explore the fundamentals of FL, including the decentralized
nature of the data, local model training, model aggregation, and privacy preservation.
Understanding these fundamentals is essential for understanding the challenges and
opportunities associated with FL and developing approaches to reducing communication
costs and improving performance. Table 2 provides a description of the fundamentals of
FL, including the advantages and challenges associated with FL. The fundamentals are
the following:

• Decentralized data: FL involves multiple clients or devices that hold their respective
data. As a result, the data are decentralized and not stored in a central location [32,33].
This decentralized nature of data in FL helps preserve the local data’s privacy, but it can
also lead to increased communication costs [34]. The decentralized data distribution
means more data must be transferred between the clients and the central server during
the training process, leading to higher communication costs [35].

• Local model training: FL allows each client to perform local model training on its
respective data. This local training ensures that the privacy of the local data is pre-
served, but it can also lead to increased communication costs [36]. The local model
updates need to be sent to the central server, which aggregates them to generate a
global model. The communication costs of sending these updates to the central server
can be significant, particularly when the number of clients or data size is large [37,38].

• Model aggregation: After the local model training is completed, the clients send their
model updates to the central server for aggregation [39,40]. The server aggregates the
model updates to generate a global model, which reflects the characteristics of the
data from all the clients [41]. The model aggregation process can lead to significant
communication costs, particularly when the size of the model updates is large or the
number of clients is high [22,42,43].

• Privacy preservation: FL is designed to preserve the privacy of the local data, but it
can also lead to increased communication costs [44,45]. The privacy-preserving nature
of FL means that the local data remain on the clients, and only the model updates
are shared with the central server [46]. However, this also means more data must be
transferred between the clients and the server during the training process, leading to
higher communication costs.

Table 2. Fundamentals of FL.

Category Description

Definition
FL is a machine learning setting where the goal is to train a model across
multiple decentralized edge devices or servers holding local data samples,
without explicitly exchanging data samples.

Key
Components

The main elements of FL include the client devices holding local data, the
central server that coordinates the learning process, and the machine learning
models being trained.

Workflow

The typical FL cycle is as follows: (1) The server initializes the model and sends
it to the clients; (2) Each client trains the model locally using its data; (3) The
clients send their locally updated models or gradients to the server; (4) The
server aggregates the received models (typically by averaging); (5) Steps 2–4 are
repeated until convergence.

Advantages

The benefits of FL include (1) privacy preservation, as raw data remain on the
client; (2) a reduction in bandwidth usage, as only model updates are
transferred, not the data; (3) the potential for personalized models, as models
can learn from local data patterns.

Challenges
FL faces several challenges, including (1) communication efficiency;
(2) heterogeneity in terms of computation and data distribution across clients;
(3) statistical challenges due to non-iid data; (4) privacy and security concerns.
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Table 2. Cont.

Category Description

Communication
Efficiency
Techniques

Communication efficiency can be improved using techniques, such as
(1) federated averaging, which reduces the number of communication rounds;
(2) model compression techniques, which reduce the size of model updates;
(3) the use of parameter quantization or sparsification.

Data
Distribution

In FL, data are typically distributed in a non-iid manner across clients due to the
nature of edge devices. This unique distribution can lead to statistical
challenges and influence the final model’s performance.

Evaluation
Metrics

Evaluation of FL models considers several metrics: (1) global accuracy,
measuring how well the model performs on the entire data distribution; (2) local
accuracy, measuring performance on individual client’s data; (3) communication
rounds, indicating the number of training iterations; (4) data efficiency, which
considers the amount of data needed to reach a certain level of accuracy.

3. Communication Deficiency

The communication deficiency of FL is an important issue that needs to be addressed
for this type of distributed machine learning to be successful. In FL, each client, typically a
mobile device, must communicate with a centralized server to send and receive updates to
the model [47]. As the number of clients increases, the amount of communication between
the server and clients increases exponentially. This can become a major bottleneck, causing
the training process to be slow and inefficient. Additionally, communication can be expen-
sive, especially for mobile devices, so minimizing the amount of communication required
for FL is important [48]. Figure 3 delves into the intricacies of the FL communication pro-
tocol. Beyond merely illustrating the flow, it captures the iterative nature of client–server
interactions, highlighting the stages where communication overheads might arise and
emphasizing the importance of efficient data exchanges in the FL process. The following
section will examine the communication deficiency concerning local model updating and
decentralized data training. In Table 3, we highlight the overview of some existing studies
on the communication deficiency of FL.

Table 3. Existing research focusing on communication deficiency in FL.

Reference Focus Overview

[49] Client selection The algorithm recognizes the non-IID degrees of clients and chooses those with lower degrees of
non-IID data to train the models with higher frequency.

[50] Client selection Optimizes the trade-off between maximizing the number of selected clients and minimizes the
energy drawn from batteries for the selected clients in FL.

[51] Resource
management

The study uses cluster heads to communicate with the cloud server through edge aggregation,
where clients upload their local models to their respective cluster heads. A joint communication and
computation resource management scheme is also formulated through efficient client selection to
achieve global cost minimization.

[52] Client selection

The study divides clients into tiers based on their training performance. It selects clients from the
same tier in each training round to mitigate the straggler problem. It employs an adaptive tier
selection approach to update the tiering on the fly based on the observed training performance
and accuracy.

[53] Communication
efficiency

The paper proposes the "In-Edge AI" framework that integrates deep reinforcement learning and FL
with mobile edge systems in order to optimize mobile edge computing, caching, and communication.

[54] Edge resource
management

The study proposes a DTWN model and designs an edge association problem armed with FL. A
multi-agent deep reinforcement learning-based algorithm is proposed to solve the problem. In
addition, the study considers an edge association and communication resource allocation problem
to minimize communication costs.
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Table 3. Cont.

Reference Focus Overview

[55] Edge resource
management

The paper proposes a framework called concurrent federated reinforcement learning. Specifically, it
protects the privacy of both the server and the edge node with the assistance of blockchain.

[56] Edge resource
management

The paper proposed an FL framework, which can securely update the data with the help of parallel
blockchains. It considers a two-phase commit protocol and defines an auction scheme based on ML
for price optimization.

[57] Incentive
mechanism

The paper considers a framework of a privacy-preserving incentive mechanism for encouraging the
users to join the network. Specifically, the paper makes an extremely rigorous convergence analysis
and derives a set of optimal contracts under the constraints of security demands and budget costs
for each worker in the scenario.

[58] Structured
updates

The study shows an FL framework for autonomous driving. With the help of MEC nodes and
blockchain, the system can achieve a lower latency and more accurate results between the vehicles,
even if there are malicious vehicles and MEC nodes.

[59] Incentive
mechanism

The paper proposes an FL-based autonomous vehicle controller. To explain it deeper, the study
uses a contract-theoretic incentive mechanism to speed up the process. It considers optimization
methods to decrease the communication and computation cost for the system.

[60] Incentive
mechanism

The paper proposes a coded FL method that is based on an evolutionary game and a deep learning
method to allocate the resource intelligently. The results show that the study mitigates the overall
system computation and communication latency.

[61] Optimization
technique

The paper designs a client–edge–cloud hierarchical FL architecture. It develops an HierFAVG
algorithm to allow edge servers to aggregate models partially to gain a higher efficiency.

[62] Client selection

The study proposes a two-level hierarchical FL framework and designs two incentive mechanisms
for resource allocation. The cluster selection mechanism of workers is based on an evolutionary
game, and one deep-learning-based auction mechanism is designed for the model owner’s selection
of cluster heads.

[63] Resource
management

The paper considers a maximum model accuracy problem of the wireless FL under the limited train-
ing time and latency constraint. It proposed a joint device scheduling and resource allocation policy.

[64] Client selection

The study presents a Clients’ Eligibility Protocol (CEP) to work with heterogeneous clients in
practical industrial scenarios efficiently. The CEP uses a trusted authority to calculate the client’s
eligibility score based on local computing resources, such as the bandwidth, memory, and battery
life, and selects the resourceful clients for training.

Figure 3. Workflow of communication protocol in FL.

3.1. Local Model Updating

Local model updating (LMU) is one of the key techniques used in FL to overcome
communication deficiency [65]. In LMU, each participating device trains the shared model
on its local data, and only the updated parameters are sent to the central server for aggre-
gation [66,67]. This approach significantly reduces the amount of data that needs to be
transmitted over the network, thereby reducing communication costs and latency.

However, several factors can affect the performance of LMU in FL, including the qual-
ity and quantity of local data, the frequency of updates, and the selection of participating
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devices. Below, we discuss some of these factors and their impact on the communication
efficiency of LMU in FL:

• Quality and quantity of local data: The quality and quantity of local data available on
each participating device can significantly impact the performance of LMU in FL. If the
local data are noisy or unrepresentative of the global dataset, it can lead to a poor model
performance and increased communication costs [68,69]. Moreover, if the quantity
of local data is too small, it can lead to overfitting and poor generalization, which
can also affect the overall performance of the FL system [52,70]. Several techniques
have been proposed to overcome these challenges, such as data filtering and data
augmentation [71,72]. Data filtering involves removing noisy or irrelevant data from
the local dataset before training the model. In contrast, data augmentation involves
generating new data from the existing data to increase the quantity and diversity of
the local dataset. These techniques can improve the quality and quantity of local data,
thereby improving the performance of LMU in FL.

• Frequency of updates: The frequency of updates refers to how often the participating
devices send their updated parameters to the central server for aggregation [73–75]. A
higher frequency of updates can lead to faster convergence and an improved model
performance but can also increase communication costs and latency. However, a
lower frequency of updates can reduce communication costs but may result in slower
convergence and suboptimal model performance. Several approaches have been
proposed to balance these trade-offs, such as asynchronous updates and adaptive
learning rates [76,77]. Asynchronous updates allow participating devices to update
the shared model at their own pace, which can reduce communication cost and latency
but may lead to slower convergence. Adaptive learning rates adjust the learning
rate based on the frequency of updates, which can improve convergence and reduce
communication costs.

• Selection of participating devices: The selection of participating devices in FL can
significantly impact the performance of LMU [49,78]. If the participating devices are
too few or diverse, it can lead to poor model generalization and increased communica-
tion costs. Moreover, if the participating devices are biased toward a particular subset
of the data, it can lead to a poor model performance and increased communication
costs. Several techniques have been proposed to overcome these challenges, such as
stratified sampling [79] and weighted aggregation [80]. Stratified sampling involves
selecting participating devices based on their similarity to the global dataset, which
can improve model generalization and reduce communication costs. Weighted aggre-
gation involves assigning different weights to the participating devices based on their
local data quality and quantity, which can improve model performance and reduce
communication costs.

3.2. Model Averaging

Model averaging is a popular technique used in FL to overcome the communication
deficiency problem [81]. In particular, model averaging involves training multiple models
on different devices and then combining the models to generate a final model that is more
accurate than any individual model [82]. Below, we discuss the model averaging technique
in detail and how it can help overcome communication deficiency in FL.

The model averaging technique involves training multiple models using the same
training data on different devices. Each device trains its own model using its local data,
and the models are then combined to generate a final model that is more accurate than
any individual model [83,84]. The models are combined by taking the average of the
weights of the individual models. This technique is known as “Weighted Average Federated
Learning” [85].

Weighted Average FL works as follows. Let W1, W2, . . . , WN be the weights of N in-
dividual models trained on different devices [86]. The final model is generated by taking
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the weighted average of the weights of the individual models, where the weights are
determined according to their accuracy. That is,

Final Weight =
(w1 × W1 + w2 × W2 + . . . + wN × WN)

(w1 + w2 + . . . + wN)
, (1)

where w1, w2, . . . , wN are the weights determined by the accuracy of individual models,
and W1, W2, . . . , WN are the weights of the corresponding models [87].

The weights of the individual models are determined based on their accuracy. Models
that perform better on the local data are given higher weights, and models that perform
poorly are given lower weights [88]. The weights are updated after each round of training,
and the process is repeated until convergence.

The model averaging technique has several advantages over other techniques used in
FL. First, it reduces the impact of communication deficiency by allowing each device to
train its own model locally. This reduces the amount of communication required between
the devices, which is particularly important in scenarios where the communication channel
is limited. Second, it improves the accuracy of the final model by combining the knowledge
of multiple models. This is particularly useful in scenarios where the local data are diverse
and different devices have different data distributions.

In addition, the model averaging technique has been successfully used in several appli-
cations, including image classification, natural language processing, and recommendation
systems [89]. For example, in image classification, multiple models are trained on different
devices using different subsets of the training data [90]. The models are then combined
using model averaging to generate a final model that is more accurate than any individual
model. This technique has been shown to improve the accuracy of image classification
models by up to 20%.

However, there are also some challenges associated with the model averaging tech-
nique [91]. One of the main challenges is the selection of the weights of the individual
models. The weights should be selected in such a way that they reflect the accuracy of
the models. If the weights are not selected correctly, the final model may not be accurate,
and the performance may degrade. Another challenge is the convergence of the algorithm.
Model averaging requires multiple training rounds, and the algorithm’s convergence can
be slow, particularly in scenarios where the local data are diverse [92].

3.3. Broadcasting the Global Model

Global model broadcasting is a crucial step in FL, where the locally trained models
are aggregated to form a global model [93]. The global model represents the collective
knowledge of all the edge devices and is used for making predictions and decisions. The
global model must be communicated efficiently and effectively across all devices to achieve
a high accuracy and high convergence rate [94]. However, this can be challenging in the
presence of communication deficiency. In particular, the central server aggregates the
model updates and computes the new global model, which is then broadcasted back to the
edge devices [95,96]. There are two main approaches to global model broadcasting in FL:
parameter-server-based and peer-to-peer.

In the parameter-server-based approach, a central server acts as a parameter server,
which stores and manages the model parameters. The edge devices communicate with
the parameter server to upload their local model updates and download the new global
model [97]. The parameter server can update the global model by using a synchronous or
asynchronous approach. In the synchronous approach, the edge devices upload their local
model updates at regular intervals, and the parameter server updates the global model after
receiving updates from all devices. In the asynchronous approach, the edge devices upload
their local model updates as soon as they are ready, and the parameter server updates the
global model in real time.
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In the peer-to-peer approach, the edge devices communicate with each other directly
to exchange their local model updates [98,99]. The devices can either use a fully connected
topology or a decentralized topology to exchange their model updates. In a fully connected
topology, each device communicates with all other devices to exchange their local model
updates. In a decentralized topology, each device communicates with a subset of other
devices to exchange their local model updates [33].

Communication deficiency is a major challenge in global model broadcasting in FL.
The deficiency can be caused by a limited bandwidth, high latency, or network conges-
tion [100,101]. The impact of communication deficiency can be severe, leading to slow
convergence, a low accuracy, and even a divergence of the global model. In particular, a
limited bandwidth can restrict the amount of data that can be transmitted between the
edge devices and the central server. This can result in delayed model updates and slower
convergence of the global model. High latency can also affect the performance of FL, lead-
ing to delayed model updates and the slower convergence of the global model. Network
congestion can further exacerbate the problem, as it can cause packet loss and delay in
model updates [102].

Several approaches have been proposed to mitigate communication deficiency in
global model broadcasting in FL. Compression is one of the most effective approaches,
where the model updates are compressed before transmission to reduce the data size [103].
Compression can significantly reduce the amount of data that needs to be transmitted,
mitigating the impact of a limited bandwidth and network congestion. Another approach
is network optimization techniques that can be used to improve communication efficiency
between the edge devices and the central server [104,105]. This can be achieved through
various methods, such as adaptive network scheduling, dynamic network reconfiguration,
or traffic engineering. These techniques can help optimize the network resources and
reduce the impact of network congestion and the latency impact. Model aggregation
techniques can also be used to improve the efficiency of global model broadcasting. This
can be achieved through various methods, such as federated averaging [106], decentralized
optimization [107], or hierarchical aggregation [108]. These techniques can help to reduce
the amount of data that needs to be transmitted and improve the convergence rate of the
global model.

4. Resource Management

Managing resources is critical for the success of FL, which relies on a network of devices
to train a machine learning model collaboratively [109]. In addition to computational and
communication resources, the availability and quality of edge and server resources can
significantly impact the performance of FL systems. In Table 4, we show the categorization
of FL resources in terms of the edge and server. In addition, Figure 4 distinctly portrays
the myriad techniques deployed for both client and server resource management in the
context of federated learning. By effectively managing these resources, we can reduce
communication costs and improve the efficiency and accuracy of FL models.

Table 4. Categorization of FL resources.

Resource Edge Resource Server Resource

Data Storage Local Storage Distributed Storage

Data Aggregation Local Aggregation Distributed Aggregation

Data Processing Local Processing Cloud Processing

Data Security Local Encryption Cloud Encryption
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Figure 4. Techniques for clients and server resource management in FL.

4.1. Edge Resource Management

Edge resources refer to the computing and storage resources available on devices
participating in the FL process. Edge devices typically have limited resources compared to
cloud servers, which makes managing these resources a critical task in FL [110]. Effective
edge resource management can help reduce communication costs and improve the overall
performance of the FL system.

4.1.1. Device Selection

The first step in edge resource management is selecting appropriate devices for FL.
Edge devices include smartphones, tablets, sensors, and other IoT devices. These devices
vary in their processing power, memory capacity, battery life, and network connectivity.
Therefore, selecting appropriate edge devices is critical for ensuring efficient resource
management in FL [111].

One way to select edge devices is based on their processing power. Devices with
more processing power can handle more complex machine learning models and compu-
tations [64]. However, devices with more processing power also tend to consume more
energy, which can limit their battery life. Therefore, selecting devices with the right balance
of processing power and energy efficiency is important. Another factor to consider when
selecting edge devices is their memory capacity [112]. Devices with more memory can store
more data and models, reducing the need for frequent communication with the central
server. However, devices with limited memory can bottleneck in FL, especially when
dealing with large datasets or models [113].

Network connectivity is another important factor to consider when selecting edge
devices. Devices with reliable and high-speed network connectivity can communicate with
the central server more efficiently, while devices with poor connectivity may experience
delays or errors during communication [114,115]. In general, selecting appropriate edge
devices depends on the specific use case and the requirements of the FL system. One
common approach is to use a mix of devices with different characteristics to balance the
trade-offs between processing power, memory, energy efficiency, and network connectivity.

4.1.2. Communication Scheduling

Communication scheduling is another important aspect of edge resource management
in FL. Communication refers to exchanging data and models between edge devices and
the central server [62,116]. Communication scheduling involves deciding when and how
frequently to communicate and which devices to communicate with.

One strategy for communication scheduling is to schedule communication based
on the availability and capacity of the edge devices. Devices with limited resources can
be scheduled to communicate less frequently, while devices with more resources can be
scheduled to communicate more frequently. This approach can help reduce the overall
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communication costs of the FL system [117]. Another strategy for communication schedul-
ing is to schedule communication based on the data and model updates [118]. Devices with
more recent updates can be scheduled to communicate more frequently, while devices with
older updates can be scheduled to communicate less frequently. This approach can help
ensure the most relevant and up-to-date data and models are used in the FL process.

In addition, the communication schedule can also consider the network conditions
and latency of the edge devices. Devices with poor network conditions or high latency
can be scheduled to communicate during periods of low network traffic or when network
conditions improve [119]. This approach can help reduce communication errors and
delays in the FL system. Effective communication scheduling can help balance the trade-
offs between communication costs and model accuracy and ensure the efficient use of
edge resources.

4.1.3. Compression Techniques

Compression techniques are important for managing edge resources in FL. In par-
ticular, compression techniques involve reducing the data size and exchanging models
between edge devices and the central server without sacrificing model accuracy [120].

The need for compression arises due to the limited resources available on edge devices.
Edge devices typically have a limited storage capacity and network bandwidth, making
transmitting large amounts of data and models challenging [121]. Compression techniques
can help reduce the amount of data and models transmitted, making performing FL on edge
devices with limited resources possible. There are several techniques for compressing data
and models in FL. One common technique is quantization, which involves reducing the
precision of the data and models [122]. For example, quantization can be used to represent
the data and models as integers with a lower precision instead of transmitting floating-point
numbers with a high precision. This can significantly reduce the size of the data and models
transmitted without sacrificing much accuracy. Another technique for compressing data
and models is pruning, which involves removing redundant or unnecessary parameters
from the model [123–125]. Pruning can help reduce the model’s size, making it easier
to transmit over the network. However, pruning can also lead to a reduction in model
accuracy if too many parameters are removed. Another technique for compressing data
and models is knowledge distillation, which involves training a smaller model to mimic
the behavior of a larger model [96,126]. The smaller model can then be used in place of the
larger model, which can help reduce the model’s size without sacrificing much accuracy.
Knowledge distillation can be particularly effective when the larger model is complex and
has many parameters.

In addition to these techniques, several compression algorithms are specifically de-
signed for FL. For example, federated averaging (FedAvg) is a compression algorithm that
involves averaging the model updates from multiple edge devices, which can help reduce
the amount of data transmitted between devices [10]. Another algorithm, FedProx, involves
adding a penalty term to the loss function to encourage edge devices to stay close to the
global model [127]. This can help reduce the amount of data transmitted while maintaining
model accuracy. By reducing the size of the data and models transmitted between edge
devices and the central server, compression techniques can help reduce communication
costs and improve the overall performance of the FL system.

4.1.4. Model Partitioning

Model partitioning is another critical component of FL systems, as it involves dividing
the machine learning model into smaller submodels that can be trained on individual
devices. Model partitioning aims to reduce the amount of communication required between
devices while ensuring that the model’s overall accuracy is not compromised [128].

Several strategies have been developed for model partitioning in FL systems. One
common approach is vertical partitioning, where the model is divided based on the features
or attributes being used [129]. For example, in an image recognition model, one device
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may be responsible for training the feature extraction layer, while another device may
train the classification layer. This approach can be particularly useful when the model has
many features, allowing the devices to focus on a subset of the features [130]. Another
approach is horizontal partitioning, where the model is divided based on the data being
used [88,131]. For example, each device may train the model on a specific subset of the
training data. This approach can be particularly useful when the data are distributed
across multiple devices and transferring the entire dataset to a central server would be
impractical. A third approach is hybrid partitioning, where a combination of vertical and
horizontal partitioning is used to divide the model [132,133]. For example, the model may
be partitioned vertically based on the features, and each feature may be further partitioned
horizontally across multiple devices. However, the goal should always be to minimize
the amount of communication required between devices while maintaining the model’s
overall accuracy.

4.2. Server Resource Management

Server resource management is a crucial aspect of FL that is responsible for opti-
mizing the utilization of server resources to enhance the efficiency and accuracy of FL
models [134,135]. A server’s role in FL is coordinating and managing communication and
computation among the participating edge devices. The server needs to allocate compu-
tational and communication resources optimally to ensure that the participating devices’
requirements are met while minimizing the communication costs and enhancing the FL
model’s accuracy.

4.2.1. Device Selection

Device selection is a critical aspect of server resource management in FL. In an FL
system, edge devices train a local model using their data and then communicate the model
updates to the server [136,137]. The server aggregates the updates from all devices to create
a global model. However, not all devices are suitable for participating in FL for several
reasons, such as a low battery life, poor network connectivity, or low computation power.
Therefore, the server must select the most suitable devices to participate in FL to optimize
resource utilization and enhance model accuracy [138]. The device selection process can
be based on several factors: the device computation power, network bandwidth, battery
life, and data quality. A popular approach for device selection is to use a machine learning
model that predicts the device’s contribution to the global model [139]. The server can use
the model’s predictions to select the devices that are likely to provide the most significant
contribution to the global model.

4.2.2. Communication Scheduling

The server needs to allocate communication resources optimally to ensure that the
participating devices’ updates are timely while minimizing communication costs. In FL,
devices communicate with the server over wireless networks, which are prone to commu-
nication delays, packet losses, and network congestion [140]. Therefore, the server must
effectively schedule communication between devices and the server. The communication
schedule can be based on several factors, such as the device availability, network conges-
tion, and data priority. A popular approach for communication scheduling is to use a
priority-based scheduling algorithm that prioritizes the communication of high-priority
data over low-priority data [141]. The server can use the device’s data priority to sched-
ule the communication effectively, which helps to reduce the communication delay and
enhance the model accuracy.

4.2.3. Compression Techniques

In FL, the server receives updates from all participating devices, which can be signifi-
cant in size. The size of the updates can be reduced by applying compression techniques
to the updates before sending them to the server. Compression reduces the communi-
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cation and the server’s computational costs [142]. The compression techniques can be
based on several factors, such as the update’s sparsity, the update’s structure, and the
update’s importance.

4.2.4. Model Partitioning

The model partitioning can be based on several factors, such as the model’s size, the
model’s complexity, and the available server resources [143]. A popular model partitioning
approach is the model distillation technique, which distills the global model into a smaller
submodel [144]. The server can use the model distillation technique to partition the model
into several submodels that can be trained and stored on different servers [145]. Another
approach for model partitioning is to use the model parallelism technique, which splits the
model into smaller parts that can be trained simultaneously on different servers [146,147].
The server can use the model parallelism technique to partition the model into smaller
submodels that can be trained in parallel, significantly reducing the training time and
improving the model accuracy.

5. Client Selection

The process of selecting appropriate clients for FL is a critical component of building
successful FL systems. In this section, we will discuss various considerations that should
be considered when selecting clients for FL, including factors such as device heterogeneity,
device adaptability, incentive mechanisms, and adaptive aggregation. In Table 5, we show
a comparison of each of those factors.

Table 5. Comparison of factors that can be considered for client selection in FL.

Device Heterogeneity Device Adaptability Incentive Mechanism Adaptive Aggregation

Categorize devices Assess device capability Assign rewards Aggregate according to
device type

Evaluate device resources Monitor device performance Balance rewards Adjust aggregation strategy

Consider device availability Check device compatibility Set rewards based
on participation Consider data privacy

Analyze device specifications Identify device limitations Assign rewards based on
data quality

Adapt to changes in
data distribution

Evaluate device
trustworthiness Assess device reliability Offer rewards for

data computation
Change aggregation

frequency

Consider device latency Determine device
storage capacity

Provide rewards for
data transmission Monitor device performance

Check device battery level Examine device
memory usage

Create rewards for
data accuracy

Adapt to changing
device configurations

5.1. Device Heterogeneity

Device heterogeneity refers to the variety of devices and their characteristics that
participate in an FL system. The heterogeneity of devices presents several challenges in FL,
including system heterogeneity, statistical heterogeneity, and non-iid-ness [148].

5.1.1. System Heterogeneity

System heterogeneity refers to differences in the hardware, software, and networking
capabilities of the devices participating in the FL system. The heterogeneity of these devices
can lead to significant performance disparities and make it difficult to distribute and balance
the workload among the devices [149]. These discrepancies can cause communication and
synchronization issues, leading to slow convergence rates and increased communication
costs. To address these issues, several techniques have been proposed, including device
selection algorithms that select devices with similar hardware and software configura-
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tions and adaptive communication schemes that adjust the communication frequency and
message sizes based on the characteristics of the devices [150–152].

5.1.2. Statistical Heterogeneity

Statistical heterogeneity refers to the differences in the data distributions across the
devices participating in the FL system. In an ideal FL system, the data should be identically
and independently distributed (IID) across all devices, allowing the global model to be
trained effectively [153,154]. However, in practice, the data are often non-IID, which can
lead to a poor model performance. For example, if one device has significantly more
data points for a specific class than others, the global model may become biased toward
that class. Several techniques have been proposed to mitigate this issue, including data
sampling [155], which involves selecting representative subsets of data from each device to
achieve a more balanced distribution across devices, and data aggregation techniques that
weigh the contribution of each device’s update based on their local data distribution [156].

5.1.3. Non-IID-Ness

Non-iid-ness refers to the situation where the data distribution across the devices
significantly differs from the global distribution. This is a common challenge in FL scenar-
ios, where devices may collect data from different sources or have unique user behavior
patterns [157]. The presence of non-iid-ness can lead to slower convergence rates and a
poor model performance, as the global model may not accurately represent the data distri-
bution across all devices [21,158]. To address non-iid-ness, several techniques have been
proposed, including model personalization, which involves training personalized models
for each device based on their local data distribution, and transfer learning, which involves
leveraging knowledge learned from similar domains to improve model performance on
non-iid data [159–161].

5.2. Device Adaptivity

Device adaptivity allows devices to adjust their participation in FL, which has emerged
as an essential technique to reduce communication costs. Here, we will discuss two critical
aspects of device adaptivity: flexible participation and partial updates.

5.2.1. Flexible Participation

Flexible participation allows devices to determine the extent of their involvement in FL
based on their capabilities and resources. It allows devices to choose how much data they
will contribute, how many communication rounds they will participate in, and when they
will participate [162,163]. Flexible participation can significantly reduce communication
costs by enabling devices with limited resources to participate in FL without overburdening
their systems.

One way to achieve flexible participation is to use dynamic client selection. Dynamic
client selection involves selecting clients based on their data quality, availability, and
computation capabilities [164]. This approach can significantly reduce communication
costs by only selecting a subset of clients to participate in each round of training. Another
approach to achieving flexible participation is to use selective transfer learning, where
models are selectively transferred from high-capability devices to low-capability devices to
minimize communication costs. This approach is particularly effective when training large
models with limited resources [165].

5.2.2. Partial Updates

Partial updates allow devices to transmit only a portion of their model updates to
the central server instead of transmitting the entire update [166]. This approach can
significantly reduce communication costs by reducing the amount of data transmitted
between devices. Partial updates can be achieved in several ways, including compressing
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the model updates, using differential privacy to obscure the update, and using gradient
sparsification to reduce the update’s size [167].

Compression techniques, such as quantization, pruning, and sparsification, can be
used to reduce the size of the model updates [8]. Quantization involves reducing the preci-
sion of the model parameters to reduce their size. Pruning involves removing redundant or
insignificant parameters from the model. Sparsification involves setting some parameters
to zero to reduce the size of the model update. Differential privacy can be used to obscure
the model update by adding random noise to the update [168]. Gradient sparsification can
reduce the update’s size by only transmitting the most significant gradient values.

5.3. Incentive Mechanism

One of the main challenges in minimizing communication costs in FL is incentivizing
the clients to cooperate and share their local model updates with the central server. Incen-
tives can encourage clients to participate actively and contribute to the system, leading to
a better performance and scalability [97,169,170]. However, designing effective incentive
mechanisms is not straightforward and requires careful consideration of various factors.
Figure 5 provides a detailed visualization of the FL incentive mechanism. It offers insights
into how different stakeholders, from data providers to model trainers, are motivated to
participate in the federated ecosystem, ensuring that contributions are recognized and
rewarded appropriately, fostering a collaborative and sustainable environment.

Figure 5. Process of incentive mechanism in FL.

Different types of incentive mechanisms can be used to encourage participation in FL.
Some of the commonly used incentive mechanisms are explained below:

• Monetary incentives: Monetary incentives involve rewarding the clients with a mone-
tary value for their contributions. This approach can effectively motivate the clients
to contribute actively to the system [171]. However, it may not be practical in all
situations, as it requires a budget to support the incentive program.

• Reputation-based incentives: Reputation-based incentives are based on the principle
of recognition and reputation. The clients who contribute actively and provide high-
quality updates to the system can be recognized and rewarded with a higher reputation
score [172]. This approach can effectively motivate the clients to contribute to the
system actively.
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• Token-based incentives: Token-based incentives involve rewarding the clients with
tokens that can be used to access additional features or services [173]. This approach
can effectively motivate the clients to contribute actively to the system and help build
a vibrant ecosystem around the FL system.

The choice of incentive mechanism depends on the system’s specific requirements
and the clients’ nature. In general, the incentive mechanism should be designed to align
the clients’ interests with the system’s goals. One of the critical factors to consider while
designing an incentive mechanism for communication costs in FL is the clients’ privacy
concerns [174]. In FL, the clients’ data are typically stored locally on their devices, and only
the model updates are shared with the central server. Therefore, the incentive mechanism
should not compromise the privacy of the client’s data.

Various privacy-preserving techniques can be used to address the clients’ privacy
concerns. For example, differential privacy can be used to ensure that the model updates
do not reveal any sensitive information about the client’s data [175]. In this approach,
noise is added to the model updates before sharing them with the central server, making
extracting any individual information from the updates difficult. Another critical factor
to consider while designing an incentive mechanism is the system’s fairness [176]. The
incentive mechanism should be designed to ensure that all the clients are treated fairly and
that their contributions are appropriately recognized. Fairness can be ensured by designing
an incentive mechanism to reward the clients based on their contributions rather than
their status or position in the system. Another critical aspect to consider while designing
the incentive mechanism is the central server’s level of control over the clients [177]. The
incentive mechanism should be designed to ensure that the clients have a certain level
of autonomy and control over their data. The clients should be free to decide whether to
participate in the system or not, and their contributions should be voluntary.

5.4. Adaptive Aggregation

Adaptive aggregation is a method for reducing communication costs in FL systems.
In FL, data are typically distributed across multiple devices, and the goal is to train a
machine learning model using this decentralized data. To accomplish this, the data are
typically aggregated on a central server, which can be computationally expensive and lead
to high communication costs [178,179]. Adaptive aggregation seeks to mitigate these costs
by dynamically adjusting the amount of aggregated data based on the communication
bandwidth of the selected client [180].

The basic idea behind adaptive aggregation is to adjust the amount of data sent to the
central server based on the available bandwidth of the devices. This means that devices with
slow or limited connectivity can send fewer data, while faster or more reliable connectivity
can send more data. Adaptive aggregation can reduce the overall communication costs of
FL systems by adapting the amount of data sent [181].

There are several ways that adaptive aggregation can be implemented in FL systems.
One approach is to use a threshold-based method, where each device sends a fixed amount
of data until its bandwidth is exceeded, at which point it stops sending data [182]. This
approach is simple and easy to implement. Still, it may not be very effective at reducing
communication costs since it does not consider the variability of communication band-
width across devices. A more sophisticated approach is a feedback-based method, where
the amount of data sent by each device is adjusted based on feedback from the central
server [183]. This feedback can be in the form of acknowledgments or error messages,
which indicate whether the data received by the server were sufficient to update the model.
Devices with faster or more reliable connectivity can send more data, while devices with
slower or less reliable connectivity can be limited to sending smaller amounts of data. This
approach can be more effective at reducing communication costs since it can adapt to the
variability of communication bandwidth across devices. Another approach to adaptive
aggregation is to use a learning-based method, where the amount of data sent by each
device is adjusted based on past performance [184]. This can be performed using machine



Sensors 2023, 23, 7358 17 of 31

learning techniques like reinforcement learning or neural networks. The system can learn
to predict the optimal amount of data to send based on the communication bandwidth of
the devices and adjust the amount of data sent accordingly. This approach can effectively
reduce communication costs since it can adapt to the specific characteristics of the devices
in the FL system.

One of the challenges of adaptive aggregation is determining the appropriate amount
of data to send for each device. If too few data are sent, the model may not converge
to an accurate solution, while if too many data are sent, the communication costs may
be excessive [185]. This trade-off can be addressed by using techniques such as cross-
validation, which can estimate the model’s performance based on a subset of the data [88].
Another challenge is ensuring that the model is updated in a timely manner despite the
variability in communication bandwidth across devices [186]. This can be addressed
using techniques such as asynchronous updates, allowing devices to update the model
independently and asynchronously [187].

6. Optimization Techniques

This section will discuss two key optimization techniques commonly used in FL: com-
pression schemes and structured updates. Table 6 shows the pros and cons of those techniques.

Table 6. Pros and cons of optimization techniques in FL.

Technique Pros Cons

Compression Schemes

Quantization Reduced communication Information loss

Sparsification Lower bandwidth usage Increased computation

Low-rank factorization Efficient storage Complexity in updating

Structured Updates

Gradient sparsification Reduced communication Limited expressiveness

Weight differencing Low memory requirement Sensitivity to noise

6.1. Compression Schemes

Compression schemes involve techniques that reduce the models’ size and gradients
exchanged between the client devices and the central server. This is necessary because the
communication costs of exchanging large models and gradients can be prohibitively high,
especially when client devices have limited bandwidth or computing resources [30,188].
Various compression schemes can be used to address this issue, including quantization,
sparsification, and low-rank factorization.

6.1.1. Quantization

Quantization is a popular technique that involves representing the model or gradient
values using a smaller number of bits than their original precision [189]. For instance,
instead of representing a model parameter using a 32 bit floating-point number, it can
be represented using an 8 bit integer. This reduces the number of bits that need to be
transmitted and can significantly reduce communication costs. However, quantization also
introduces some errors in the model or gradient values, which can affect the quality of the
learning process.

6.1.2. Sparsification

Sparsification is another commonly used compression technique that involves setting
a large proportion of the model or gradient values to zero [190]. This reduces the number of
non-zero values that need to be transmitted, which can result in significant communication
savings. Sparsification can be achieved using techniques such as thresholding, random
pruning, and structured pruning. However, sparsification can also introduce some errors
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in the model or gradient values, which can impact the accuracy of the learning process.
Some sparsification techniques are described below:

• Thresholding is a popular technique for sparsification that involves setting all model
or gradient values below a certain threshold to zero [191]. This reduces the num-
ber of non-zero values that need to be transmitted, which can result in significant
communication savings. The threshold can be set using various techniques, such as
absolute thresholding, percentage thresholding, and dynamic thresholding. Absolute
thresholding involves setting a fixed threshold for all values, whereas percentage
thresholding involves setting a threshold based on the percentage of non-zero values.
Dynamic thresholding involves adjusting the threshold based on the distribution of
the model or gradient values [192].

• Random pruning is another sparsification technique that randomly sets some model
or gradient values to zero [123]. This reduces the number of non-zero values that
need to be transmitted and can result in significant communication savings. Random
pruning can be achieved using techniques like Bernoulli sampling and stochastic
rounding [193]. Bernoulli sampling involves setting each value to zero with a certain
probability, whereas stochastic rounding involves rounding each value to zero with a
certain probability.

• Structured pruning is a sparsification technique that sets entire rows, columns, or
blocks of the model or gradient matrices to zero [194]. This reduces the number of non-
zero values that need to be transmitted and can result in significant communication
savings. Structured pruning can be achieved using various techniques like channel,
filter, and tensor pruning. Channel pruning involves setting entire channels of the
model to zero, whereas filter pruning involves setting entire model filters to zero.
Tensor pruning involves setting entire blocks of the model to zero, which can be useful
when the model has a structured block-wise pattern. Structured pruning can preserve
the underlying structure of the model and can result in higher compression rates than
random pruning [195]. Still, it may require more complex implementation and may
introduce more errors in the model or gradient values.

6.1.3. Low-Rank Factorization

Low-rank factorization is a compression technique that involves representing the
model or gradient matrices using a low-rank approximation [196,197]. This reduces the
number of parameters that need to be transmitted and can significantly reduce communica-
tion costs. Low-rank factorization can be achieved using techniques such as Singular Value
Decomposition (SVD) [198] and Principal Component Analysis (PCA) [199]. However,
low-rank factorization can also introduce some errors in the model or gradient values,
which can affect the quality of the learning process. The techniques are described below:

• Singular Value Decomposition (SVD): SVD is a matrix factorization technique that
decomposes a matrix X into three matrices A, B, and C such that X = ABCT . Here,
A and C are orthogonal matrices, and B is a diagonal matrix containing the singular
values of X. The script T represents the transpose operator, which flips the rows
and columns of a matrix. The singular values represent the amount of variation
captured by each singular vector. By retaining only the top − k singular values and
their corresponding singular vectors, we can approximate the original matrix X with
a lower rank matrix Xk = AkBkCT

k , where Ak and Ck are the truncated orthogonal
matrices, and Bk contains only the top − k singular values [200].

• Principal Component Analysis (PCA): PCA is a dimensionality reduction technique
that can be used to compress data. Given a data matrix X, PCA aims to find a
lower-dimensional representation of X that retains the maximum amount of variance.
This is achieved by computing the eigenvectors of the covariance matrix of X and
selecting the top − k eigenvectors corresponding to the largest eigenvalues. The
selected eigenvectors form a new orthogonal basis for the data, and the projection of
X onto this basis yields the lower-dimensional representation of X [201].
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6.2. Structured Updates

Structured updates are another important optimization technique in FL that can reduce
communication costs by transmitting only the updates to the changed model parameters.
This is necessary because, in many FL scenarios, only a small proportion of the client
devices update their local models in each round of communication, and transmitting the
entire model can be wasteful [11,202]. Structured updates involve identifying the parts
of the model that have been updated and transmitting only those parts to the central
server. Various techniques can be used to achieve structured updates, such as gradient
sparsification and weight differencing [8].

6.2.1. Gradient Sparsification

Gradient sparsification is a technique used to reduce communication costs in FL. In
this technique, only the important gradient values are sent instead of sending the complete
gradient information [203]. This can be performed by setting a threshold value and sending
only those gradients whose absolute value exceeds the threshold. This threshold can be
adjusted depending on the compression and the model’s performance [204]. By reducing
the number of gradients sent, the communication costs can be significantly reduced while
maintaining the model’s accuracy.

6.2.2. Weight Differencing

Weight differencing is a technique used to reduce communication costs in FL. In this
technique, only the differences between the current and previous model parameters are sent
instead of sending the entire model parameters [205]. This can be performed by computing
the difference between the model parameters at the end of each round and sending only the
difference information. This technique reduces the amount of information sent over the net-
work and thus reduces communication costs. However, it requires additional computation
at each client to compute the difference and may not be suitable for all scenarios.

7. Future Directions

Despite the potential benefits, existing research on FL discusses several challenges
associated with communication efficiency. Overcoming those challenges is crucial for
harnessing the full potential of FL and realizing its benefits across diverse domains and
applications. In Table 7, we briefly summarize the existing research challenges. In addition,
below, we explore some possible future directions in FL to reduce communication costs. By
leveraging the following techniques, we can improve the efficiency and scalability of FL
algorithms and enable the training of machine learning models on increasingly large and
diverse datasets.

Table 7. Summary of existing research challenges in FL related to communication efficiency.

Research Challenge Brief Description

High
Communication
Overhead

FL requires transferring large amounts of data, which can lead to high
communication costs.

Data Heterogeneity Differences in data distribution across devices can affect model
performance and require efficient communication strategies.

Latency Variations in network conditions and device capabilities can cause
latency issues, requiring efficient communication solutions.

Bandwidth
Limitations

A limited bandwidth can cause slow model training and update
propagation. The efficient use of the available bandwidth is a challenge.

Stragglers
Some devices may be slow to compute updates or fail to send updates,
slowing down the learning process. The efficient handling of stragglers
can improve communication efficiency.
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Table 7. Cont.

Research Challenge Brief Description

Scalability As the number of participating devices increases, efficiently managing
communications becomes more challenging.

Security Efficiently ensuring secure and privacy-preserving communication is a
significant challenge.

Device Failures Devices may fail or drop out during the learning process, requiring
robust communication protocols to handle these situations.

Resource Constraints Devices participating in FL may have different computational resources,
which can create challenges for efficient communication.

Data Synchronization Ensuring all devices have the latest model updates for efficient learning
can be a challenge, especially given the asynchronous nature of FL.

Noise in Gradients Due to the decentralized nature of FL, there can be a high level of noise
in the gradient updates, affecting the overall communication efficiency.

Compressed
Communication

Due to bandwidth limitations, it may be necessary to compress data
during transmission, which can lead to a loss of information and affect
the learning process.

7.1. Edge Intelligence

Edge intelligence is a concept where machine learning models are deployed on the
edge devices, such as smartphones, IoT devices, and sensors. By deploying the models
on these devices, the communication costs are significantly reduced, as the data does not
need to be transmitted to a central server for processing. Instead, the models can be trained
locally on the edge devices, and only the model updates need to be communicated to the
central server [206,207].

7.2. Quantum Computing

Quantum computing has the potential to revolutionize FL by enabling faster and more
efficient computations [208]. Quantum computers can perform certain tasks currently in-
feasible with classical computers, such as factoring large numbers and solving optimization
problems. This could lead to significant improvements in the efficiency of FL algorithms,
which rely heavily on optimization.

7.3. Federated Transfer Learning

Federated transfer learning is a technique where models trained on one device or node
can be transferred to another device or node, where they can be fine-tuned on local data.
This approach can significantly reduce communication costs, as only the model updates
are required to be communicated between the devices rather than the entire model [209].

7.4. Multi-Task Learning

Multi-task learning is a technique where a single model is trained on multiple related
tasks simultaneously [210]. In FL, this approach can reduce communication costs by allow-
ing the nodes to share their local models, which can be fine-tuned on other related tasks.

7.5. Federated Reinforcement Learning

Federated reinforcement learning is a technique where agents learn from their interac-
tions with the environment, and the models are trained in a decentralized manner [211].
This approach can significantly reduce communication costs, as the agents can learn from
their local experiences and only communicate the model updates to a central server.
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7.6. Federated Meta-Learning

Federated meta-learning is a technique where a meta-model is trained on the local
models of each node, and the meta-model is used to coordinate the training process [212].
This approach can reduce communication costs by allowing the nodes to share their local
models, which can be used to improve the performance of the meta-model.

7.7. Hybrid Approaches

Hybrid approaches combine multiple techniques to achieve a better performance and
reduce communication costs [213]. For example, a hybrid approach could combine edge
intelligence with federated transfer learning, where models are trained on edge devices
and transferred to a central server for fine-tuning.

7.8. Automatic Model Compression

Automatic model compression is a technique where machine learning models are com-
pressed to reduce their size and complexity, which can significantly reduce communication
costs [214]. This technique can be used with other approaches, such as federated transfer
learning, to further reduce communication costs.

7.9. Federated Learning in Medical Fields

As federated learning (FL) continues its integration with the burgeoning realm of
the Internet of Medical Things (IoMT), buttressed by the advanced capabilities of 6G,
new horizons in healthcare appear imminent. The study [215] offers a glimpse into this
future, showcasing 6G-enhanced FL in IoMT. Emerging challenges and opportunities in this
confluence include enhancing real-time health monitoring and diagnostics while ensuring
robust data privacy. The next frontier likely involves crafting tailored communication-
efficient techniques that can accommodate the unique demands of medical diagnosis and
treatment. There is a palpable anticipation for a healthcare paradigm where FL and 6G
seamlessly intertwine, catalyzing more personalized, timely, and secure patient care [216].
Future endeavors in this domain will undoubtedly focus on harnessing these synergies for
optimal healthcare outcomes.

8. Discussion and Analysis

While this survey has comprehensively detailed techniques addressing communication
efficiency in FL, it is paramount to understand their inherent challenges, complexities, and
potential benefits.

8.1. Challenges and Complexities

The juxtaposition of local model updating, model averaging, and broadcasting the
global model hints at a delicate balance: optimizing one aspect can inadvertently impact
another, leading to unforeseen communication bottlenecks.

Resource management, especially on the edge versus server-side, is not a straightfor-
ward binary. Factors like unpredictable client availability, diverse resource capabilities, and
fluctuating network conditions make universal solutions elusive. The prominence given to
client selection is noteworthy; yet, the task is not trivial. Deciding on “the most appropriate
devices” involves not just current resource metrics but predictive insights into their future
states, adding another layer of complexity.

Moreover, while optimization techniques like compression schemes and structured
updates promise reduced communication costs, they come with their caveats. For instance,
aggressive model compression might reduce data transfer but could also lead to degraded
model accuracy. Structured updates, although efficient, may not always align with the
non-i.i.d data distributions often seen in FL setups.

In light of the future directions presented, it is clear that while advancements such as
quantum computing and federated meta-learning offer exciting prospects their practical
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application in FL will introduce new challenges. It is imperative that, as we move forward,
we are not just devising solutions but anticipating the trade-offs they bring to the fore.

8.2. Benefits of Energy-Efficient FL

Energy efficiency has recently emerged as an indispensable pillar in the realm of
communication systems, predominantly due to the burgeoning demand for connected
devices and the skyrocketing data exchange volumes. FL, with its inherent design, lends
itself beneficially to this scenario. Some of its benefits are listed below:

• Reduced data transmission: At its core, FL minimizes the need for data centralization.
Instead of transmitting extensive datasets, devices share compressed model updates.
This direct reduction in data transmission not only conserves bandwidth but also
considerably reduces the energy expended in the communication process, given that
data transmission and reception are among the most energy-intensive operations in
wireless communication.

• Decentralized computation: In FL, computations are performed at the edge, on user de-
vices themselves. This decentralization aids in leveraging the collective computational
prowess of these devices, reducing the burden on centralized servers. Consequently,
servers consume less energy for computations, ensuring a more balanced and energy-
efficient system.

• Intelligent client participation: Energy efficiency in FL is not just about reducing
communication. It extends to judiciously determining which clients participate in
the training. By selecting devices that are currently charging or have high battery
levels, FL processes can minimize battery drain issues, leading to a more sustainable
execution of federated tasks.

• Adaptive communication protocols: Modern FL implementations have started em-
ploying adaptive communication techniques. By assessing the network’s current state,
these techniques modulate the frequency and size of model updates. Such dynamism
ensures that devices communicate optimally, preserving energy in low-bandwidth or
unstable network conditions.

• Synergy with modern hardware: With the advent of energy-efficient hardware tailored
for AI and ML tasks, FL can further amplify energy savings. By integrating with
low-power neural network accelerators, for instance, the computational aspect of FL
becomes even more energy efficient.

While energy efficiency introduces undeniable advantages, it is paramount to integrate
it thoughtfully into the FL paradigm. The challenge is ensuring that the pursuit of energy
savings does not compromise the model’s accuracy or the system’s responsiveness.

9. Conclusions

This survey paper has thoroughly analyzed the limitations and future aspects of com-
munication costs in federated learning. We have explored the fundamentals of federated
learning, the challenges associated with communication deficiency, resource management,
client selection, and optimization techniques. The survey has highlighted the need to
address communication costs to improve the efficiency and scalability of federated learn-
ing. The future directions of federated learning with respect to communication costs have
also been identified. This survey paper provides a valuable resource for researchers and
practitioners working on federated learning and inspires further research in this area.
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188. Caldas, S.; Konečny, J.; McMahan, H.B.; Talwalkar, A. Expanding the reach of federated learning by reducing client resource
requirements. arXiv 2018, arXiv:1812.07210.

189. Oh, Y.; Lee, N.; Jeon, Y.S.; Poor, H.V. Communication-efficient federated learning via quantized compressed sensing. IEEE Trans.
Wirel. Commun. 2022, 22, 1087–1100. [CrossRef]

190. Moustafa, A.; Asad, M.; Shaukat, S.; Norta, A. Ppcsa: Partial participation-based compressed and secure aggregation in federated
learning. In Proceedings of the Advanced Information Networking and Applications: Proceedings of the 35th International
Conference on Advanced Information Networking and Applications (AINA-2021), 2021; Volume 2, pp. 345–357. Available online:
https://link.springer.com/chapter/10.1007/978-3-030-75075-6_28 (accessed on 19 August 2023).

191. Shah, S.M.; Lau, V.K. Model compression for communication efficient federated learning. IEEE Trans. Neural Netw. Learn. Syst.
2021, early access.

192. Li, Y.; He, Z.; Gu, X.; Xu, H.; Ren, S. AFedAvg: Communication-efficient federated learning aggregation with adaptive communi-
cation frequency and gradient sparse. J. Exp. Theor. Artif. Intell. 2022, 1–23. [CrossRef]

193. Kumar, G.; Toshniwal, D. Neuron Specific Pruning for Communication Efficient Federated Learning. In Proceedings of the 31st
ACM International Conference on Information & Knowledge Management, 2022; pp. 4148–4152. Available online: https:
//dl.acm.org/doi/abs/10.1145/3511808.3557658?casa_token=ChA7OHSjH8wAAAAA:dBSDxTud31f78I4p9B4XmkEjqTcZf2
4lOL06M9I0UMFXIqUPx7VRHAYnyU-c5VmFWd_6rOiim8Dlew (accessed on 19 August 2023).

194. Wu, X.; Yao, X.; Wang, C.L. FedSCR: Structure-based communication reduction for federated learning. IEEE Trans. Parallel Distrib.
Syst. 2020, 32, 1565–1577. [CrossRef]

195. Qiu, X.; Fernandez-Marques, J.; Gusmao, P.P.; Gao, Y.; Parcollet, T.; Lane, N.D. ZeroFL: Efficient on-device training for federated
learning with local sparsity. arXiv 2022, arXiv:2208.02507.

196. Yao, D.; Pan, W.; O’Neill, M.J.; Dai, Y.; Wan, Y.; Jin, H.; Sun, L. Fedhm: Efficient federated learning for heterogeneous models via
low-rank factorization. arXiv 2021, arXiv:2111.14655.

197. Zhou, H.; Cheng, J.; Wang, X.; Jin, B. Low rank communication for federated learning. In Proceedings of the Database Systems
for Advanced Applications. DASFAA 2020 International Workshops: BDMS, SeCoP, BDQM, GDMA, and AIDE, Jeju, Republic of
Korea, 24–27 September 2020; pp. 1–16.

198. Hartebrodt, A.; Röttger, R.; Blumenthal, D.B. Federated singular value decomposition for high dimensional data. arXiv 2022,
arXiv:2205.12109.

https://dl.acm.org/doi/abs/10.1145/3375627.3375840?casa_token=I7BkjRl2lTMAAAAA:j8480Q_PSQfIMpFVnzX5U2GZhlKKfihAgPMo8uq49Vr34IA0IUTMDoRVpXHY3AA_MF2qkzu5FD3Qew 
https://dl.acm.org/doi/abs/10.1145/3375627.3375840?casa_token=I7BkjRl2lTMAAAAA:j8480Q_PSQfIMpFVnzX5U2GZhlKKfihAgPMo8uq49Vr34IA0IUTMDoRVpXHY3AA_MF2qkzu5FD3Qew 
http://dx.doi.org/10.1109/JSAC.2022.3213323
http://dx.doi.org/10.1109/TNSE.2022.3168969
http://dx.doi.org/10.1109/TII.2020.3034674
https://proceedings.mlr.press/v162/wang22o.html
https://ieeexplore.ieee.org/document/9546463/
https://dl.acm.org/doi/abs/10.1145/3545008.3545085?casa_token=ki3sb1BKfhcAAAAA:G99Gr9CAcdW3uWG4JQaQbFQICM4J4jEkmr0swtY8VFPptSVZH-oRcGY6nJXZHDpw-10_5Aggh18o_w
https://dl.acm.org/doi/abs/10.1145/3545008.3545085?casa_token=ki3sb1BKfhcAAAAA:G99Gr9CAcdW3uWG4JQaQbFQICM4J4jEkmr0swtY8VFPptSVZH-oRcGY6nJXZHDpw-10_5Aggh18o_w
https://dl.acm.org/doi/abs/10.1145/3545008.3545085?casa_token=ki3sb1BKfhcAAAAA:G99Gr9CAcdW3uWG4JQaQbFQICM4J4jEkmr0swtY8VFPptSVZH-oRcGY6nJXZHDpw-10_5Aggh18o_w
http://dx.doi.org/10.1109/TC.2021.3099723
https://ieeexplore.ieee.org/document/9484497/
https://ieeexplore.ieee.org/document/9484497/
https://ieeexplore.ieee.org/document/10044951
http://dx.doi.org/10.1109/TWC.2022.3201207
https://link.springer.com/chapter/10.1007/978-3-030-75075-6_28
http://dx.doi.org/10.1080/0952813X.2022.2079730
https://dl.acm.org/doi/abs/10.1145/3511808.3557658?casa_token=ChA7OHSjH8wAAAAA:dBSDxTud31f78I4p9B4XmkEjqTcZf24lOL06M9I0UMFXIqUPx7VRHAYnyU-c5VmFWd_6rOiim8Dlew
https://dl.acm.org/doi/abs/10.1145/3511808.3557658?casa_token=ChA7OHSjH8wAAAAA:dBSDxTud31f78I4p9B4XmkEjqTcZf24lOL06M9I0UMFXIqUPx7VRHAYnyU-c5VmFWd_6rOiim8Dlew
https://dl.acm.org/doi/abs/10.1145/3511808.3557658?casa_token=ChA7OHSjH8wAAAAA:dBSDxTud31f78I4p9B4XmkEjqTcZf24lOL06M9I0UMFXIqUPx7VRHAYnyU-c5VmFWd_6rOiim8Dlew
http://dx.doi.org/10.1109/TPDS.2020.3046250


Sensors 2023, 23, 7358 31 of 31

199. Hu, Y.; Sun, X.; Tian, Y.; Song, L.; Tan, K.C. Communication Efficient Federated Learning with Heterogeneous Structured Client
Models. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 7, 753–767. [CrossRef]

200. Huang, J.; Tong, Z.; Feng, Z. Geographical POI recommendation for Internet of Things: A federated learning approach using
matrix factorization. Int. J. Commun. Syst. 2022, e5161. [CrossRef]

201. Alsulaimawi, Z. A non-negative matrix factorization framework for privacy-preserving and federated learning. In Proceedings
of the 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), 2020; pp. 1–6. Available online:
https://ieeexplore.ieee.org/document/9287113 (accessed on 19 August 2023).

202. Li, M.; Andersen, D.G.; Smola, A.J.; Yu, K. Communication efficient distributed machine learning with the parameter server. Adv.
Neural Inf. Process. Syst. 2014, 27.

203. Asad, M.; Moustafa, A.; Aslam, M. CEEP-FL: A comprehensive approach for communication efficiency and enhanced privacy in
federated learning. Appl. Soft Comput. 2021, 104, 107235. [CrossRef]

204. Li, S.; Qi, Q.; Wang, J.; Sun, H.; Li, Y.; Yu, F.R. GGS: General gradient sparsification for federated learning in edge computing.
In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), 2020; pp. 1–7. Available online:
https://ieeexplore.ieee.org/document/9148987 (accessed on 19 August 2023).

205. Xu, J.; Glicksberg, B.S.; Su, C.; Walker, P.; Bian, J.; Wang, F. Federated learning for healthcare informatics. J. Healthc. Inform. Res.
2021, 5, 1–19. [CrossRef]

206. Qiao, Y.; Munir, M.S.; Adhikary, A.; Raha, A.D.; Hong, S.H.; Hong, C.S. A Framework for Multi-Prototype Based Federated
Learning: Towards the Edge Intelligence. In Proceedings of the 2023 International Conference on Information Networking
(ICOIN), 2023; pp. 134–139. Available online: https://ieeexplore.ieee.org/document/10048999 (accessed on 19 August 2023).

207. Asad, M.; Shaukat, S.; Javanmardi, E.; Nakazato, J.; Tsukada, M. A Comprehensive Survey on Privacy-Preserving Techniques in
Federated Recommendation Systems. Appl. Sci. 2023, 13, 6201. [CrossRef]

208. Larasati, H.T.; Firdaus, M.; Kim, H. Quantum Federated Learning: Remarks and Challenges. In Proceedings of the 2022 IEEE
9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on
Edge Computing and Scalable Cloud (EdgeCom), 2022; pp. 1–5. Available online: https://ieeexplore.ieee.org/document/9842983
(accessed on 19 August 2023).

209. Dai, S.; Meng, F. Addressing modern and practical challenges in machine learning: A survey of online federated and transfer
learning. Appl. Intell. 2022, 53, 11045–11072. [CrossRef]

210. Keçeci, C.; Shaqfeh, M.; Mbayed, H.; Serpedin, E. Multi-Task and Transfer Learning for Federated Learning Applications. arXiv
2022, arXiv:2207.08147.

211. Tam, P.; Corrado, R.; Eang, C.; Kim, S. Applicability of Deep Reinforcement Learning for Efficient Federated Learning in Massive
IoT Communications. Appl. Sci. 2023, 13, 3083. [CrossRef]

212. Liu, B.; Lv, N.; Guo, Y.; Li, Y. Recent Advances on Federated Learning: A Systematic Survey. arXiv 2023, arXiv:2301.01299.
213. Zhou, S.; Li, G.Y. FedGiA: An efficient hybrid algorithm for federated learning. IEEE Trans. Signal Process. 2023, 71, 1493–1508.

[CrossRef]
214. Yang, T.J.; Xiao, Y.; Motta, G.; Beaufays, F.; Mathews, R.; Chen, M. Online Model Compression for Federated Learning with Large

Models. arXiv 2022, arXiv:2205.03494.
215. Ahmed, S.T.; Kumar, V.V.; Singh, K.K.; Singh, A.; Muthukumaran, V.; Gupta, D. 6G enabled federated learning for secure IoMT

resource recommendation and propagation analysis. Comput. Electr. Eng. 2022, 102, 108210. [CrossRef]
216. Rajasekaran, A.S.; Maria, A.; Rajagopal, M.; Lorincz, J. Blockchain enabled anonymous privacy-preserving authentication scheme

for internet of health things. Sensors 2022, 23, 240. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TETCI.2022.3209345
http://dx.doi.org/10.1002/dac.5161
https://ieeexplore.ieee.org/document/9287113
http://dx.doi.org/10.1016/j.asoc.2021.107235
https://ieeexplore.ieee.org/document/9148987
http://dx.doi.org/10.1007/s41666-020-00082-4
https://ieeexplore.ieee.org/document/10048999
http://dx.doi.org/10.3390/app13106201
https://ieeexplore.ieee.org/document/9842983
http://dx.doi.org/10.1007/s10489-022-04065-3
http://dx.doi.org/10.3390/app13053083
http://dx.doi.org/10.1109/TSP.2023.3268845
http://dx.doi.org/10.1016/j.compeleceng.2022.108210
http://dx.doi.org/10.3390/s23010240

	Introduction
	Fundamentals of Federated Learning
	Communication Deficiency
	Local Model Updating
	Model Averaging
	Broadcasting the Global Model

	Resource Management
	Edge Resource Management
	Device Selection
	Communication Scheduling
	Compression Techniques
	Model Partitioning

	Server Resource Management
	Device Selection
	Communication Scheduling
	Compression Techniques
	Model Partitioning


	Client Selection
	Device Heterogeneity
	System Heterogeneity
	Statistical Heterogeneity
	Non-IID-Ness

	Device Adaptivity
	Flexible Participation
	Partial Updates

	Incentive Mechanism
	Adaptive Aggregation

	Optimization Techniques
	Compression Schemes
	Quantization
	Sparsification
	Low-Rank Factorization

	Structured Updates
	Gradient Sparsification
	Weight Differencing


	Future Directions
	Edge Intelligence
	Quantum Computing
	Federated Transfer Learning
	Multi-Task Learning
	Federated Reinforcement Learning
	Federated Meta-Learning
	Hybrid Approaches
	Automatic Model Compression
	Federated Learning in Medical Fields

	Discussion and Analysis
	Challenges and Complexities
	Benefits of Energy-Efficient FL

	Conclusions
	References

