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Abstract: Physical activity is increasingly being captured by accelerometers worn on different body
locations. The aim of this study was to examine the associations between physical activity volume
(average acceleration), intensity (intensity gradient) and cardiometabolic health when assessed by
a thigh-worn and wrist-worn accelerometer. A sample of 659 office workers wore an Axivity AX3
on the non-dominant wrist and an activPAL3 micro on the right thigh concurrently for 24 h a day
for 8 days. An average acceleration (proxy for physical activity volume) and intensity gradient
(intensity distribution) were calculated from both devices using the open-source raw accelerometer
processing software GGIR. Clustered cardiometabolic risk (CMR) was calculated using markers of
cardiometabolic health, including waist circumference, triglycerides, HDL-cholesterol, mean arterial
pressure and fasting glucose. Linear regression analysis assessed the associations between physical
activity volume and intensity gradient with cardiometabolic health. Physical activity volume derived
from the thigh-worn activPAL and the wrist-worn Axivity were beneficially associated with CMR and
the majority of individual health markers, but associations only remained significant after adjusting
for physical activity intensity in the thigh-worn activPAL. Physical activity intensity was associated
with CMR score and individual health markers when derived from the wrist-worn Axivity, and these
associations were independent of volume. Associations between cardiometabolic health and physical
activity volume were similarly captured by the thigh-worn activPAL and the wrist-worn Axivity.
However, only the wrist-worn Axivity captured aspects of the intensity distribution associated
with cardiometabolic health. This may relate to the reduced range of accelerations detected by the
thigh-worn activPAL.
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1. Introduction

Accelerometer-based devices are increasingly being used in research to assess phys-
ical behaviour [1]. Traditionally, accelerometers are worn on the hip; however, other
wear locations, such as the wrist and thigh, are being increasingly used for large-scale
surveillance [1,2]; wrist-wear is associated with higher participant compliance [3], whereas
thigh-wear enables more accurate determination of posture and stepping [4–6]. Overall,
there appears to be a consistent pattern of association between accelerometer-assessed
physical activity and health, irrespective of wear location or brand. For example, low levels
of physical activity have been associated with all-cause mortality when physical activity is
derived from accelerometers worn on the hip [7], wrist [8,9], or thigh [10]. Furthermore,
the volume of physical activity, regardless of intensity, has been associated with markers of
cardiometabolic health in adults, irrespective of whether the accelerometer is worn on the
hip [11,12], wrist [13], or thigh [14].

Accelerometer outputs differ by wear site; thus, intensity and behavioural outcomes
are generated using wear-site specific processes (e.g., cutpoints for wrist-worn and posture
for thigh-worn accelerometers). Despite wear-specific processes, the magnitude of time
spent in behaviours often differs by wear site [15]. Previous studies have reported similar
associations of cardiometabolic health for sedentary time derived from thigh- and hip-worn
accelerometers [16] and adiposity for physical activity derived from hip- and wrist-worn
accelerometers [17]. It is less clear whether this would be the case for directly measured
acceleration metrics that facilitate the assessment of the relative contribution of volume
and intensity of activity for health.

Physical activity (PA) volume and intensity metrics can be derived directly from
accelerometers and can be used to examine associations with health. Average acceleration
can be used as a proxy to describe the volume of PA over the 24 h day and the intensity
gradient can be used to describe the intensity distribution of PA over the 24 h day [18].
Using this approach, Dawkins et al. [19] reported that both PA volume and intensity were
associated with lower cardiometabolic risk in healthy adults, but only for PA volume in
those with chronic disease.

These approaches to examine the interrelationship between the volume and intensity
of physical activity with health have largely been carried out in studies with wrist-worn
accelerometer data. As highlighted previously, the activPAL accelerometer and other
brands worn on the thigh are increasingly being used to capture physical activity and
sedentary behaviour [20]. Furthermore, accelerometer outputs differ by wear site [21,22],
and previous research has demonstrated that the magnitude and distribution of acceleration
differs between the activPAL and other common accelerometer brands (Axivity, GENEActiv
and ActiGraph) when all are worn concurrently on the thigh [23]. Therefore, the detected
associations between the volume and intensity of physical activity and health may differ
according to whether data from a thigh-worn activPAL or a wrist-worn Axivity are used to
generate the PA metrics.

Therefore, the aim of this study was to examine associations between the intensity and
volume of physical activity and cardiometabolic health when physical activity is assessed
with the activPAL worn on the thigh and the Axivity worn on the wrist.

2. Materials and Methods
2.1. Design and Participants

Baseline data from the randomised controlled trial of the SMART Work and Life
intervention [24] were used for this cross-sectional analysis. In brief, the SMART Work
and Life trial was a three-arm cluster randomised controlled trial assessing the effective-
ness and cost-effectiveness of an intervention to reduce sitting time. The trial recruited
756 employees who were predominantly desk-based from six local authorities in the UK.
Participants were eligible to take part if they were aged ≥18 years, contracted to work for
the local authority at ≥60% full-time equivalent, spent the majority of their day sitting
(self-reported), and were able to walk without assistance. Participants were ineligible if they
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used a height-adjustable workstation, were pregnant or were unable to provide written
informed consent. All participants provided written informed consent prior to the baseline
measurements. Ethical approval was obtained from the University of Leicester (Ref: 14372)
and the University of Salford (Ref: HSR1718-039) prior to the commencement of the study.

2.2. Demographics and Anthropometric Measures

Date of birth, sex, ethnicity and postcode were collected by questionnaire. The index
of multiple deprivation (IMD) was calculated using the participants’ postcode to determine
socio-economic status (SES). Height (Leicester stadiometer), body mass, body fat percentage
(Tanita, West Drayton, UK), and waist circumference were measured to the nearest 0.5 cm,
0.1 kg, 0.1%, and 0.5 cm, respectively. Body mass index (BMI) was calculated as body
mass (kg)/height (m)2.

2.3. Metabolic and Cardiovascular Markers

Capillary blood samples were taken following an overnight fast >10 h, and adherence
to this was checked verbally by the researcher. Participants who reported not being fasted
were excluded from the analysis.

Biochemical outcomes were fasting glucose, triglycerides and lipid profile (HDL-
Cholesterol [HDL-C], LDL-Cholesterol [LDL-C] and total cholesterol) calculated using a
point-of-care device (Cardiochek Plus, PTS Diagnostics, Whitestown, IN, USA), which has
high levels of accuracy when compared with venous sampling [25]. HbA1c was determined
using the Quo-Test HbA1c analyser (EKF Diagnostics, Cardiff, UK) from the same capillary
sample [26]. Blood pressure was measured three times following a 5 min seated rest. The
last two measures were averaged. Mean arterial pressure (MAP) was calculated as:

MAP ∼= PDias +
1
3
(PSys − PDias)

Our primary outcome was the cardiometabolic risk (CMR) score, which was generated
using waist circumference, triglycerides, HDL-C, MAP and fasting glucose [27,28]. After
normalisation (log 10), variables were standardised, i.e., z = value − mean/SD. HDL-C
is protective of cardiometabolic risk, so its z-score was multiplied by −1. Z-scores were
summed, and the sum was divided by five to create the CMR score (units of SD). The CMR
score is a commonly used measure of cardiometabolic health in studies that have examined
physical behaviours, such as sitting, standing and stepping [27,28].

2.4. Accelerometer Data Collection and Processing

Participants were requested to wear wrist- (Axivity AX3) and thigh-worn (ActivPAL3
micro) accelerometers simultaneously for 24 h/day for 8 days. Throughout the monitoring
period, participants completed a diary that recorded when they got into bed, went to
sleep, woke up, got out of bed, and any time when the devices were removed for ≥10 min.
Participants also reported whether the day was a workday or not and whether it was a
typical day for them.

The Axivity AX3 (Axivity, Newcastle, UK) was initialised to record tri-axial acceler-
ation data at a frequency of 100 Hz with a dynamic range of ±8 g and was worn on the
non-dominant wrist using the manufacturer’s wrist strap. The device was initialised, and
subsequent data were downloaded in .cwa format using OmGui open-source software
(OmGui Version 1.0.0.30, Open Movement, Newcastle, UK). The activPAL3 Micro (PAL
Technologies Ltd., Glasgow, UK) was initialised to record tri-axial acceleration data at a
frequency of 20 Hz, with a dynamic range of ±2 g. The device was waterproofed with a
nitrile sleeve and Hypafix transparent dressing. The device was attached to the midline
anterior aspect of the right thigh using an additional piece of Hypafix. Participants were
only requested to remove the device if they had a bath or went swimming to avoid damage
or loss of the device. The activPAL data were downloaded as a .csv file using PALAnalysis
version 8.11 (PAL Technologies Ltd., Glasgow, UK).
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On return, data for both devices were visually checked for wear compliance. If there
were ≤4 days of wear, participants were contacted and requested to repeat the monitoring
period. Downloaded data from both devices were processed separately using open-source
R package GGIR version 2.4-0 [29], using default package arguments for signal processing;
auto-calibration using local gravity as a reference [30]; calculation of Euclidean Norm minus
1 g (ENMO) from the tri-axial acceleration data averaged over 5 s epochs and expressed in
milli-gravitational units (mg); detection of non-wear; and detection of abnormally sustained
high values [29]. Days were excluded if there was <16 h data or a calibration error >10 mg.
Participants were included in this analysis if they had ≥4 valid days of data from each
accelerometer from the same week (participants who re-wore the activPAL to provide
enough primary outcome data for the trial were excluded due to the time lag between data
from each device) [31].

Average acceleration and intensity gradients were calculated for data from both de-
vices. Average acceleration (hereinafter referred to as volume) represents the average
acceleration values across all epochs per 24 h day. Intensity gradient (hereinafter referred
to as intensity) describes the distribution of the intensity of accelerations across the 24 h
day. The intensity gradient was calculated by accumulating frequencies of acceleration
in 25 mg bins, and the regression slope was calculated for the log-transformed variables.
Higher values (less negative) indicate a larger proportion of activity spent at a high inten-
sity [32,33]. Additionally, the lowest acceleration values for the most active X (MX) minutes
per day were generated for descriptive and interpretative purposes [32]. The thresholds for
interpreting moderate-to-vigorous physical activity were 273 mg for the activPAL [34] and
250 mg for interpreting moderate-to-vigorous physical activity intensity indicative of brisk
walking for the Axivity [35]. Values were averaged over all valid days.

2.5. Statistical Analysis

All statistical analyses were performed in Stata 16 (StataCorp LP, College Station, TX, USA).
Continuous parametric participant characteristic data were calculated as mean ± standard
deviation (SD), non-parametric data as median (IQR), and categorical data as percentages.
Paired t tests were used to analyse the differences between summary physical activity metrics
from the two accelerometers. Linear regressions were used to assess the correlations between
volume and intensity within each device separately. Multiple linear regression was used
to assess associations between the volume and intensity derived from the thigh and wrist
accelerometers and the cardiometabolic risk score. We undertook secondary analyses on the
markers underlying the risk score (CMR, BMI, body fat %, waist circumference, HbA1c, total
cholesterol, LDL- and HDL-C, triglycerides, systolic and diastolic blood pressure, and MAP) to
show where associations were strongest. Wear site-specific standardised scores were generated
for the volume and intensity and the regression coefficients reported per standard deviation (SD)
for ease of comparison. Model 1 assessed volume and intensity separately, adjusting for age, sex
(male/female), ethnicity (White European/other), smoking status (never/previous/current),
lipid-lowering and beta-blocker medication (yes/no), history of type 2 diabetes (yes/no), and
deprivation score. Model 2 assessed the independent contributions of volume and intensity
by including them both in the same model. Regression coefficients are reported with 95%
confidence intervals. Two tailed p ≤ 0.05 were considered statistically significant.

Forest tree plots were generated to display regression coefficients from both models
using GraphPad Prism version 7.04 (GraphPad Software, San Diego, CA, USA). Radar
plots were generated post-hoc to assist with data interpretation using the open-source
code RadarPlotGenerator (available at: www.github.com/Maylor8/RadarPlotGenerator
(accessed on 13 February 2023)). This utilises package ggplot2 in R and has been described
previously [32].

www.github.com/Maylor8/RadarPlotGenerator
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3. Results

Of 659 participants, 610 (80.6%) (mean age (±standard deviation): 44.6 ± 10.4 years;
72.9% female; mean BMI: 26.4 ± 6.1 kg/m2) were included in the final analyses. Supple-
mentary Figure S1 describes the flow of participants through the study. The characteristics
of the included participants are provided in Table 1. There were no differences in any of the
characteristics between those who provided valid data for these analyses and those who
did not.

Table 1. Participant characteristics.

Characteristic Mean (SD)

Age (years) 44.6 (10.4)
Sex, n women 445 (72.9%)

Ethnicity, n White European 432 (70.8%)
Cardiometabolic risk score (z) −0.01 (0.66)

Body Mass Index (kg/m2) 26.5 (5.9)
Fasting Glucose (mmol/L) 5.49 (0.96)

HbA1c (%) 5.25 (0.49)
Total cholesterol (mmol/L) 4.70 (1.07)

HDL-C (mmol/L) 1.43 (0.40)
LDL-C (mmol/L) 2.59 (1.10)

Triglycerides (mmol/L) 1.22 (0.64)
Systolic blood pressure (mmHg) 117.9 (15.9)
Diastolic blood pressure (mmHg) 79.1 (10.3)

Mean Amplitude of blood pressure (mmHg) 92.1 (11.6)

Table 2 shows the correlation and difference between the activPAL and Axivity derived
summary variables. Correlations between volume and intensity were significant and moder-
ate when assessed by the thigh-worn activPAL (r = 0.543, p < 0.001) and wrist-worn Axivity
devices (r = 0.570, p < 0.001), indicating that the volume and intensity provided overlapping
and complementary information. More valid days were obtained from the wrist-worn
Axivity compared with the thigh-worn activPAL (mean (±SE) difference −0.23 ± 0.04 days,
p < 0.001). The volume (mean (±SE) difference −4.81 ± 0.22 mg, p < 0.001) was higher
with the wrist-worn Axivity compared with the thigh-worn activPAL. Conversely, the
intensity was higher when derived from the thigh-worn activPAL (mean (±SE) difference
0.49 ± 0.06 units, p < 0.001) compared with the wrist-worn Axivity.

Table 2. Accelerometer summary statistics.

Variable Axivity ActivPAL Mean Axivity-Activpal Delta p

Number of valid days 7.8 (0.5) 7.6 (0.9) 0.2 (1.1) <0.001
Average acceleration (mg) 27.40 (7.11) 22.52 (6.58) 4.81 (5.71) <0.001

Intensity gradient −2.55 (0.21) −2.05 (0.22) −0.49 (0.26) <0.001
Intensity gradient R2 0.89 (0.04) 0.81 (0.07) −0.08 (0.06) <0.001

Average acceleration—Intensity
gradient Correlation 0.570 0.543 - -

Figure 1 displays the associations between physical activity volume and intensity
assessed by thigh-worn activPAL and wrist-worn Axivity, and cardiometabolic health
risk (bottom of plots) and individual markers. After adjustment for basic confounders
(model 1), both activPAL- and Axivity-derived volume were significantly and beneficially
associated with CMR score, whereas only intensity derived from the wrist-worn Axivity
was significantly and beneficially associated with CMR score. Following additional adjust-
ment for intensity (model 2), volume remained significantly associated with CMR when
derived from the thigh-worn activPAL, but not the wrist-worn Axivity. Conversely, after
adjustment for volume, the intensity remained significantly associated with wrist-worn
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Axivity. Regression coefficients (unadjusted and adjusted) are detailed in Supplementary
Table S1.
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Figure 1. Associations between ActivPAL and Axivity average acceleration (A) and intensity gradient
(B) with cardiometabolic risk score and individual health markers. Adjusted for age, sex, ethnicity,
smoking status, medical history of type 2 diabetes, lipid lowering medication or beta blockers and
deprivation score (model 1). Beta coefficients are standardised. * p < 0.05; ** p < 0.001.

For individual cardiometabolic health markers following adjustment for basic con-
founders (model 1), volume when derived from either accelerometer was significantly
associated with HbA1c, HDL cholesterol, BMI, waist circumference, body fat %, diastolic
blood pressure (DBP) and MAP. Additional associations were seen for volume derived from
the thigh-worn activPAL for triglycerides and systolic blood pressure. The magnitudes
of association were similar for the thigh-worn activPAL and wrist-worn Axivity across
all variables. For intensity, the only significant association observed for both thigh-worn
activPAL- and wrist-worn Axivity was for HDL cholesterol, whereas wrist-worn Axivity-
derived intensity was also associated with all other markers except for glucose, LDL and
total cholesterol. ActivPAL-derived intensity was not associated with any other markers
of health.

Following adjustment for intensity (model 2, Figure 2), all associations for volume
observed in model 1 remained significant, though associations were weaker than model 1
when derived from the Axivity and stronger when derived from the activPAL. Follow-
ing adjustment for volume, all associations for intensity observed in model 1 remained
significant but weaker, with the exception of the thigh-worn activPAL and HDL cholesterol.

MX Results

To aid in the interpretation of the differences in accelerations between the thigh-worn
activPAL and wrist-worn Axivity, the MX values were plotted on a radar plot (Figure 3).
This shows that the distribution of acceleration differed by device/wear-site. Higher
acceleration values were generated by the wrist-worn Axivity during the most active very
short periods (1–2 min) of the day and over the most active long duration periods (2–12 h)
of the day. However, higher acceleration values were observed during the most active
10–60 min of the day for the thigh-worn activPAL. These contrasts in the distribution of
acceleration by device/wear-site are indicated by the crossing of the red and blue lines
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towards the bottom left and top left of the plot. Supplementary Table S2 displays the MX
values for each device.
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Figure 2. Associations between ActivPAL and Axivity average acceleration (A) and intensity gradient
(B) with cardiometabolic risk score and individual health markers. Adjusted for intensity gradient (A)
or average acceleration (B), age, sex, ethnicity, smoking status, medical history of type 2 diabetes,
lipid lowering medication or beta blockers and deprivation score (model 2). Beta coefficients are
standardised. * p < 0.05; ** p < 0.001.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 3. MX values for both devices. Mean MX values are expressed as milli-gravitational units. 

Shaded error represents 95% confidence intervals. The red dashed line is indicative of a moderate-

to-vigorous activity threshold for the ActivPAL, and the blue dashed line is indicative of a brisk 

walking pace for the Axivity. MX, most active X minutes from any point in the 24 h day. 

4. Discussion 

This study is the first to model the associations of two cutpoint-independent physical 

activity volume and intensity metrics with cardiometabolic risk scores and individual 

markers of health when derived from thigh and wrist accelerometers. The key findings 

from this analysis are that physical activity volume, derived from the thigh-worn ac-

tivPAL or wrist-worn Axivity, was associated with various cardiometabolic risk markers 

(model 1), but associations were independent of intensity only for the thigh-worn ac-

tivPAL (model 2). In contrast, physical activity intensity was only associated with cardi-

ometabolic risk markers when derived from the wrist-worn Axivity and associations were 

independent of volume. This suggests that the intensity distribution derived from the 

thigh-worn activPAL did not capture the aspects of intensity associated with cardiometa-

bolic health. This may relate to the reduced range of accelerations detected by the thigh-

worn activPAL as recently shown in children by Buchan et al. [15]. The strength of associ-

ations between physical activity volume and markers of health were similar across the 

wrist and thigh worn accelerometers but were three times stronger for physical activity 

intensity and markers of health when derived from the wrist accelerometer. 

Comparisons with previous research are challenging, as there is limited evidence in-

vestigating the associations between the newer physical activity volume and intensity 

metrics used in the present study and cardiometabolic risk markers. One recent study by 

Backes et al. [36] examined associations between intensity gradient and average accelera-

tion, assessed by a wrist-worn ActiGraph accelerometer, and insulin sensitivity and gly-

cated haemoglobin and found that changes to both variables were associated with im-

proved insulin sensitivity, but not HbA1c after adjusting for similar confounding varia-

bles as the present study. Likewise, the present study observed that intensity gradient was 

not associated with HbA1c, although average acceleration was without additional 

Figure 3. MX values for both devices. Mean MX values are expressed as milli-gravitational units.
Shaded error represents 95% confidence intervals. The red dashed line is indicative of a moderate-to-
vigorous activity threshold for the ActivPAL, and the blue dashed line is indicative of a brisk walking
pace for the Axivity. MX, most active X minutes from any point in the 24 h day.
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4. Discussion

This study is the first to model the associations of two cutpoint-independent physical
activity volume and intensity metrics with cardiometabolic risk scores and individual
markers of health when derived from thigh and wrist accelerometers. The key findings
from this analysis are that physical activity volume, derived from the thigh-worn activPAL
or wrist-worn Axivity, was associated with various cardiometabolic risk markers (model 1),
but associations were independent of intensity only for the thigh-worn activPAL (model
2). In contrast, physical activity intensity was only associated with cardiometabolic risk
markers when derived from the wrist-worn Axivity and associations were independent
of volume. This suggests that the intensity distribution derived from the thigh-worn
activPAL did not capture the aspects of intensity associated with cardiometabolic health.
This may relate to the reduced range of accelerations detected by the thigh-worn activPAL
as recently shown in children by Buchan et al. [15]. The strength of associations between
physical activity volume and markers of health were similar across the wrist and thigh worn
accelerometers but were three times stronger for physical activity intensity and markers of
health when derived from the wrist accelerometer.

Comparisons with previous research are challenging, as there is limited evidence
investigating the associations between the newer physical activity volume and intensity
metrics used in the present study and cardiometabolic risk markers. One recent study by
Backes et al. [36] examined associations between intensity gradient and average acceleration,
assessed by a wrist-worn ActiGraph accelerometer, and insulin sensitivity and glycated
haemoglobin and found that changes to both variables were associated with improved
insulin sensitivity, but not HbA1c after adjusting for similar confounding variables as
the present study. Likewise, the present study observed that intensity gradient was not
associated with HbA1c, although average acceleration was without additional adjustment
for intensity gradient. When considering physical activity volume and intensity more
broadly, similar to the present study, physical activity volume and intensity appear to
be associated with measures of adiposity, such as body fat percentage [37], BMI and
waist circumference [38], regardless of the device and metrics used to produce volume
and intensity. However, for other metrics of cardiometabolic health (e.g., fasting glucose,
blood pressure, LDL cholesterol, triglycerides), no associations between physical activity
volume, when described as steps per day, and intensity have been reported [38,39], with
the exception of daily MVPA time and HDL cholesterol [39]. In the current study, we
also observed that intensity (assessed by either accelerometer) was associated with HDL
cholesterol but not after adjusting for volume. Similar to previous research, we also found
no associations between intensity and other cardiometabolic markers, with the exceptions
being triglycerides and the overall cardiometabolic risk score. Our results for physical
activity volume were contrasting across our two accelerometers, with activPAL-assessed
volume being associated with an overall cardiometabolic risk score, triglycerides, HDL,
total cholesterol and blood pressure, after adjusting for confounders including physical
activity intensity, but Axivity-assessed volume was not associated with any cardiometabolic
markers, apart from the adiposity ones highlighted previously.

As well as wear-site, there are two inherent disparities that likely contributed to the
differences between the two accelerometers used in the present study. First, the Axivity
recorded at a sampling rate of 100 Hz and with a dynamic range of ±8 g compared with the
20 Hz sampling rate and ±2 g dynamic range of the activPAL3 micro model, making it likely
that more intense accelerations were blunted with the activPAL. Indeed, Small et al. [40]
recently reported a <14% reduction in acceleration values when wrist accelerometer data
were recorded at 25 Hz compared with 100 Hz. When both the Axivity and activPAL were
worn concurrently on the thigh, using the same recording specifications as the present
study, Edwardson et al. [23] observed lower (23%) values for activPAL assessed average
acceleration compared with the Axivity. However, in contrast to the current study, the
activPAL assessed intensity gradient was also lower, suggesting that the higher intensity
gradient observed in the current study is due to the thigh wear-site, not the accelerometer.
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Therefore, it is likely that the intensity distribution measured at the thigh is lower than that
measured at the wrist. This is highlighted in the radar plot illustrating the MX distribution
(Figure 3), which shows that the accelerations were higher in the wrist-worn Axivity than
the thigh-worn activPAL for the most active 2 to 12 h, which represents the majority of
waking hours. Furthermore, the intensity of the most active 1–5 min was also higher at the
wrist, with the maximum intensity recorded 24.6% higher at the wrist. Conversely, the M5
to M60 accelerations were higher in the thigh-worn activPAL compared with the wrist-worn
Axivity. However, the intensity gradient calculated from activPAL data was not associated
with CMR. We observed a higher average acceleration across the 24 h day from the wrist
accelerometer. This could, in part, be due to the capture of wrist movements, meaning that
the wrist-worn device had greater sensitivity to upper body movements, which may be an
important contributor to cardiometabolic risk markers such as body composition, lipid and
glucose metabolism [41]. Additionally, the capture of higher accelerations detected by the
wrist monitor (for example, during M1–M5) also contributed to a higher overall volume.

The sample used in the present study were office workers, so a high proportion of the
waking day is likely to include participants who sat at their desk and thereby used their
hands to operate their computer while the lower half of the body remained relatively still.
Conversely, accelerations captured on the thigh are likely more indicative of purposeful
movements, such as walking, a behaviour associated with beneficial health outcomes [42].
Despite this, acceleration values for walking are higher on the wrist than the hip [21] and we
anticipated that these differences would have been even larger between the wrist and thigh
accelerometer wear locations. Separate analyses of the thigh-worn activPAL data reported
participants spending a mean of 109 min/day stepping [24]. However, we observed higher
acceleration values in the thigh for M5 to M60 durations (Figure 3) when we expected the
wrist to capture higher accelerations. It is possible that confounding factors affected this,
such as participants walking with their hand in their pocket or holding their phone/bag
and not swinging their wrist in a typical manner, as instructed during laboratory testing.
In the present study, higher accelerations were observed for M1 and M2 s with the wrist-
worn Axivity, which suggests the Axivity captured a wider intensity distribution than the
thigh-worn activPAL and therefore associations of cardiometabolic health markers and the
intensity gradient derived from a thigh-worn activPAL may lack utility.

Strengths and Limitations

The main strengths of this study were the comparison of data-driven metrics derived
from two concurrently worn research-grade accelerometers that are widely used in the
field of sedentary behaviour and physical activity research. However, there are some
limitations to our analysis that should be noted. First, we did not down-sample the
Axivity data to 20 Hz in order to match the activPAL, which might have assisted in
determining how much difference was due to the recording specifications or wear-site of
the different monitors. However, we used the default recording settings for both monitors,
as is commonly adopted by researchers. This makes the findings more generalisable and
comparable to the majority of existing data collected using these monitors and wear sites.
A second limitation was that we conducted multiple comparisons across the individual
markers of health, which increases the risk of a type 1 error. However, our primary outcome
was the clustered cardiometabolic risk score, with the additional comparisons used as
explanatory contributions towards the clustered statistics. A third limitation was that
although the sample was relatively large, the markers of health suggested the sample was
relatively healthy. This may have weakened the strength of the associations in our analyses.
The use of these metrics in samples at a higher risk of cardiometabolic disease or with
a sample covering different occupations should be investigated. Additionally, the study
assessed data cross-sectionally and needs further confirmation in longitudinal studies.
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5. Conclusions

Despite differences in magnitude, physical activity volume was similarly associated
with cardiometabolic health markers for both devices, although the association was only
independent of intensity when derived from the thigh-worn activPAL. Conversely, the
intensity distribution was only associated with cardiometabolic health when derived
from the wrist-worn Axivity and associations were independent of volume. The lack of
an association between the intensity measured at the thigh and cardiometabolic health
may relate to a reduced range of accelerations detected by the thigh-worn activPAL. This
suggests that the intensity gradient measured at the thigh may not provide meaningful
information in relation to cardiometabolic health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23177353/s1, Supplementary Table S1: Standardised unadjusted
regression results; Supplementary Table S2: MX values: M720. M480, M240, M120, M60, M30, M15,
M5 and M2 for the activPAL and Axivity devices. Supplementary Figure S1: Flow of participants
through the study.
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