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Abstract: Electromagnetic induction (EMI) systems are used for mapping the soil’s electrical con-
ductivity in near-surface applications. EMI measurements are commonly affected by time-varying
external environmental factors, with temperature fluctuations being a big contributing factor. This
makes it challenging to obtain stable and reliable data from EMI measurements. To mitigate these
temperature drift effects, it is customary to perform a temperature drift calibration of the instrument
in a temperature-controlled environment. This involves recording the apparent electrical conduc-
tivity (ECa) values at specific temperatures to obtain a look-up table that can subsequently be used
for static ECa drift correction. However, static drift correction does not account for the delayed
thermal variations of the system components, which affects the accuracy of drift correction. Here, a
drift correction approach is presented that accounts for delayed thermal variations of EMI system
components using two low-pass filters (LPF). Scenarios with uniform and non-uniform temperature
distributions in the measurement device are both considered. The approach is developed using a
total of 15 measurements with a custom-made EMI device in a wide range of temperature conditions
ranging from 10 °C to 50 °C. The EMI device is equipped with eight temperature sensors spread across
the device that simultaneously measure the internal ambient temperature during measurements.
To parameterize the proposed correction approach, a global optimization algorithm called Shuffled
Complex Evolution (SCE-UA) was used for efficient estimation of the calibration parameters. Using
the presented drift model to perform corrections for each individual measurement resulted in a root
mean square error (RMSE) of <1 mSm−1 for all 15 measurements. This shows that the drift model can
properly describe the drift of the measurement device. Performing a drift correction simultaneously
for all datasets resulted in a RMSE <1.2 mSm−1, which is considerably lower than the RMSE values
of up to 4.5 mSm−1 obtained when using only a single LPF to perform drift corrections. This shows
that the presented drift correction method based on two LPFs is more appropriate and effective for
mitigating temperature drift effects.

Keywords: electromagnetic induction (EMI); apparent electrical conductivity (ECa); temperature
drift correction

1. Introduction

Non-contact frequency domain electromagnetic induction (EMI) systems with small
coil separations are widely used in geophysics to map the distribution of the electrical
conductivity of the soil [1,2]. EMI instruments generally have at least one sender coil (Tx)
and one or more receiver coils (Rx). The Tx generates a primary magnetic field (Hp) that
penetrates the soil, causing eddy currents that generate a secondary magnetic field (Hs).
At Rx the combination of Hp and Hs is measured, which contains information about the
soil conductivity.
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Many EMI instruments can perform measurements in both the horizontal co-planar
mode (HCP) and the vertical co-planar mode (VCP). In HCP mode, the coils lie parallel
to the soil with the magnetic dipole in a vertical direction. In VCP mode, the coils are
orthogonal to the soil surface, and the magnetic dipole is parallel to the soil [3,4]. The HCP
mode has approximately twice the exploration depth of the VCP mode. The sensitivity of
the VCP mode is highest at the surface and decreases with depth, while the sensitivity of
the HCP mode peaks at a depth of 0.4 times the intercoil separation [5].

A lot of progress has been made in the field of EMI system development and data
interpretation, and many researchers have used the EMI technique in a broad range of appli-
cations. Some of the typical applications of EMI have been summarized by Allred et al. [6]
and extensive reviews have been presented by Dennis Corwin [7] and by Corwin and
Lesch [8]. In the field of agriculture, for example, Schmäck et al. [9] used EMI to analyze
soil bulk density, volumetric soil water content, soil texture, and to predict zones of harmful
soil compaction. Furthermore, Gebbers et al. [10] investigated the influences of seasonal
variations and soil physico-chemical properties on soil electrical conductivity and related
this to agricultural processes. EMI has also been used to investigate soil water content
distribution. For instance, van’t Veen et al. [11] and Altdorff et al. [12] performed studies to
relate EMI measurements to soil water content and water movement in the vadose zone.
In other studies, EMI measurements were used to characterize soil clay content and soil
textural heterogeneity [13].

Irrespective of the application for which EMI instruments are utilized, EMI data are
known to be affected by systematic errors, which impact their accuracy. Such errors are
very pronounced for EMI systems with coil separations smaller than 2 meters, where
significant errors of several to dozens of mSm-1 have been observed when compared with
reference data obtained from soil samples or more accurate contact-based conductivity
measurements. This problem has been investigated in several studies with the aim of
improving measurement accuracy. This problem has been investigated in several studies
with the aim of providing solutions for improving measurement accuracy. For instance,
Minsley et al. [14] and Sudduth et al. [15] attributed the deviations observed in EMI devices
to incorrect instrument calibration and improper instrument leveling. Other known sources
of systematic error are the presence of the operator [16] and cables lying close to the
measurement system [10].

Furthermore, EMI devices are also known to be affected by temperature-dependent
changes described commonly as drifts that vary unpredictably over time during mea-
surements [17,18]. For instance, Huang et al. [19] tested the commercial DUALEM-41S
and DUALEM-21S EMI instruments at varying temperatures and demonstrated that they
affected the electrical conductivity values. Hanssens et al. [20] used ambient temperature
variations to characterize the drift patterns of different electromagnetic instruments during
static ground measurements. Mester et al. [21] identified several factors that thermally
affect the properties of the system hardware, such as the thermal drift of coils resulting
from daily ambient temperature variations. By exposing the commercial EM38, CM-138,
and OhmMapper instruments to varying temperatures at a fixed position during mea-
surements, Gebbers et al. [10] also reported drift effects associated with variations in air
temperature. Sudduth et al. [15] investigated the effect of varying ambient temperatures
from 23 °C to 35 °C on the accuracy of the commercial EM38 measurements and concluded
that the effects are difficult to correct due to the non-linear relation between the drifts and
ambient temperature.

The general consensus from these studies was that it is necessary to find measures to
mitigate temperature drifts in EMI data. Several suggestions have been made to reduce the
effects of temperature drifts. For instance, Huang et al. [19] suggested that the instrument
should be shaded with non-conductive thermal insulation. Robinson et al. [17] attributed
the drift effects observed to the differential heating of EMI devices, which results in a
non-uniform temperature distribution, making it problematic to correct the resulting drifts.
Abdu et al. [22] suggested that the EMI measurements should preferably be done on a
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cloudy day with less temperature variation. Tan X. [23] proposed the inclusion of a cooling
system such as a fan during EMI measurements to minimize temperature drift.

In further attempts to mitigate temperature drift effects, Tan X. [23] identified two types
of temperature drifts: drifts due to slow, uniform temperature variations and drifts resulting
from fast temperature variations. The drifts resulting from slow ambient temperature
changes are easier to correct. This is because when the temperature is changing slowly,
the inner thermal changes of the instrument components (coil and electronics) also follow
the measured ambient temperature, such that the delay due to the heating or cooling of the
components can be corrected with the measured temperature [23]. The drifts due to quick
ambient temperature changes, on the other hand, usually result in differences between
the measured ambient temperature and the temperatures of different system components,
which can be problematic to correct since components react with a delayed response to fast
temperature changes. As a solution for drifts due to fast but uniform temperature variations,
Tan X. [23] proposed to measure the temperature-dependent electrical properties of the coils
to compensate for drifts due to slow reactions of the properties to fast temperature changes.

To eliminate the effects of drifts due to fast, uniform temperature variations, Tazi-
for et al. [24] proposed a dynamic approach that uses information from temperature sensors
and a thermal drift model based on a low-pass filter to model and correct delayed drift
effects of hardware components. They concluded that such a dynamic thermal charac-
terization of the drift effects improved the overall accuracy compared with pure static
characterization, which is solely based on using a simple look-up table for drift correction.
The proposed approach was, however, only effective for EMI measurements performed
under uniform ambient temperature variations.

In this paper, a model-based approach is proposed that can correct for drift effects
resulting from fast, non-uniform temperature variations. It is designed for rigid-boom EMI
systems with the Tx and Rx in one enclosure but can also be used for a modular EMI system
under development, where the Tx and Rx are in different enclosures. In the following
sections, the EMI measurement system consisting of a transmitter, three receivers, and
integrated temperature sensors is introduced first. Next, the proposed drift model for drift
correction based on low-pass filters is presented. This is followed by a description of the
optimization method used to estimate the parameters of the drift model. Finally, the results
of drift correction with the two low-pass filter models are presented and discussed. Com-
parisons are made with the previous dynamic model composing one low-pass filter, and at
the end, conclusions are drawn.

2. Materials and Methods
2.1. Measurement System

The measurement system used in this study is shown in Figure 1. It is based on the sys-
tem developed by Mester et al. [25] and described by Tan X. [23] as well as Tazifor et al. [24].
The system was developed for studying modular and scalable system concepts and for
investigating interference effects, e.g., system drifts. It consists of a transmitter coil (Tx)
and three receiver coils (Rx1, Rx2, and Rx3) separated by a distance (x) of 0.4 m between
the respective coils. The analysis in this paper is based on Rx3 located at 1.2 m from the
Tx. The generator (Gen) supplied by a 12 V battery powers the Tx with AC current at a
frequency of 10 kHz. The voltage signal from the Rx3 coil and the current signal from the
Tx coil are sent to the data acquisition unit (DAQ), consisting of a 24-bit analog-to-digital
converter (ADC), a micro-controller (µC) used to configure the hardware, a mini computer
(mc) containing the MATLAB-based measurement software, and eight temperature sen-
sors spread across the measurement system. The entire setup is controlled by an external
personal computer using a wireless local area network (WLAN).
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Figure 1. (a) Photo of the modified electromagnetic induction (EMI) instrument; (b) Representation
of the measurement system consisting of a generator unit (Gen), a transmitter coil (Tx) and 3 receiver
coils (Rx1, Rx2 and Rx3). The data acquisition unit (DAQ) consists of an analog to digital converter
(ADC), a microcontroller (µC), a mini-computer (mc) and eight temperature sensors spread across the
device. All components are enclosed in a polyvinyl chloride (PVC) casing. Temperature sensors 2 and
6 measure the PVC temperature, sensors 3, 4 and 5 measure the air temperature, sensor 7 measures
the heat sink temperature, sensor 8 measures the Tx coil temperature and sensor 9 measures the
printed circuit board (PCB) temperature of the Tx. The system has a length of 243 cm and a width of
16 cm and is powered by a 12 V battery.

A generator in the EMI measurement instrument provides a time-varying current
through the Tx, which generates a primary magnetic field (Hp) that penetrates the soil.
Based on the induction law, electrical voltages are induced in the soil, which produces so-
called eddy currents. The magnitude of the currents depends on the electrical conductivity
of the soil. The eddy currents, in turn, generate a secondary magnetic field (Hs) and the
superposition of the Hp and the Hs is measured at the Rx. The ratio between the Hp and the
Hs has a real and an imaginary component, whereby the imaginary component is related to
the electrical conductivity of the sensed subsurface. The cumulative response of a certain
volume of the underlying subsurface can be obtained as the average weighted electrical
conductivity values over the sensed subsurface. This is typically converted into ECa using a
Maxwell-based full solution electromagnetic forward model [26], the low induction number
(LIN) approximation [5], or a combination of both [25,27].

The measurement system was used to perform 21 calibration measurements at differ-
ent locations in the Research Center Jülich, Germany. The measurements were recorded in
the summer periods of 2021 and 2022 and showed varying temperature ranges and varia-
tions. The temperature sensors in the device measured temperatures varying from about
10 °C to 50 °C during the calibration measurements. For each measurement, the device
was raised 0.7 m above the ground using wooden supports, and data was acquired in the
VCP configuration to further minimize soil effects. Tazifor et al. [24] demonstrated that for
a measurement at a height of 0.7 m and an inter-coil spacing of 1.2 m, the expected ECa
change due to soil temperature changes is about 0.07 mSm −1 K−1 (worst-case). This is low
compared with expected system drifts larger than 1 mSm−1K. For effective temperature
drift analysis, only temperature data with a range of at least 10 K were considered (15 out of
21 datasets). Furthermore, only measured data after a warm-up time of 2 h were considered.
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2.2. Drift Correction Model

The phase drift model shown in Figure 2 is used to model the temperature-dependent
dynamic characteristics of the measurement system using two low-pass filters (LPF).
The LPFs are used to estimate the delayed response of the internal temperature of the
system components to external temperature variations. To facilitate the conversion of
temperature information into phase values, a look-up table (LuT) with cubic spline interpo-
lation is used. The combination of the two LPFs and the LuT constitutes the complete phase
drift model, which is described in more detail subsequently. The calibration parameters
that control the phase drift model are the time constant (τ) from the LPF, the gain (G),
and the non-linear variable (NL) of the LuT, as well as the system phase offset (Φo f f set).

The offset (Φo f f set) is not determined in this work; rather, it can be determined after
drift correction based on a method proposed by Tan et al. [28]. Their method simultane-
ously determines calibration parameters, including multiplicative and additive factors
for different coil configurations, as well as an inverted 1D horizontally layered subsur-
face model consisting of electrical conductivity values and the corresponding thicknesses
for each layer. Other methods for offset calibration have also been implemented by von
Hebel et al. [27] who used electrical resistivity tomography with Dipole-Dipole and Schlum-
berger electrode arrays and vertical electrical soundings. All three methods obtained robust
calibration results.

The drift model is based on the infinite impulse response (IIR) filter function described
in detail by Tazifor et al. [24]. The inputs for the drift model are pre-selected measured
temperatures Tms, which are transformed into a delayed response Tmod using the time
constant parameter τ and the Tmod of the previous time step:

Tmod(t) = b0 · Tms(t) + b1 · Tms(t− 1) + a1 · Tmod(t− 1) (1)

where t are the discrete time points of the time series, a1, b0 and b1 are the filter coefficients
determined from τ and the sampling period Ts using

a1 =
1− Ts

2·τ
1 + Ts

2·τ
and (2)

b0 = b1 =
Ts
2·τ

1 + Ts
2·τ

. (3)

The temperature range for the LuT was from 0 °C to 50 °C, based on the mea-
sured temperature range. To build the LuT, three reference temperature points are set:
(Tre fmin

= 0.0 °C, Tre fmid
= 25.0 °C, and Tre fmax = 50.0 °C). The parameters G and NL are

used to determine the corresponding reference phase values Φre fmin
,Φre fmid

, and Φre fmax .
The initial calibration point is the phase measured at 0 °C, and it is set for convenience at
zero since the phase offset shift has no effect on drift correction:

Φre fmin
= 0. (4)

Φre fmax is obtained from the temperature range and the gain parameter G:

Φre fmax = G · (Tre fmax − Tre fmin
). (5)

The determination of Φre fmid
also involves the non-linear term NL:

Φre fmid
= NL · G · (Tre fmid

− Tre fmin
). (6)

A value of 1 for the NL parameter implies a linear relationship between phase and
temperature. An NL value different from 1 will result in a non-linear temperature-phase
relationship. By using LuT and cubic spline interpolation, the modelled temperatures
Tmod1 and Tmod2 for the two LPFs are converted into the modeled phases Φmod1 and Φmod2
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respectively, as already described by Tazifor et al. [24]. The corrected phase Φc was then
calculated from Φmod1 and Φmod2 as

Φc = Φms −Φmod1 −Φmod2 (7)

The corrected phase can be converted to ECa using the approximation proposed by [5]:

ECa =
4

ωµ0x2 · tan(Φc) (8)

where x is the inter-coil spacing, ω is the angular frequency and µ0 is the permeability of
free space. This equation is valid for low induction numbers.

Figure 2. Phase drift model with pre-selected measured temperatures Tms, which serve as input
for the low-pass filters (LPF). The outputs of LPF1 and LPF2 are the modelled temperatures Tmod1

and Tmod2, which are converted to modelled phases Φmod1 and Φmod2 respectively by cubic spline
interpolation using a lookup table (LuT).

2.3. Selection of Temperature Sensors

It is challenging to determine the most useful position to place the temperature sensors
on the EMI device, as sensors on different components will react with different delays
to external temperature changes. It is unclear whether the sensors should be placed on
components with large thermal capacities (coils) that react slowly to temperature changes
or simply in the air that reacts fast. For the EMI data analyzed here, there are two positions
where drifts may originate. These are the positions of the Tx coil and the Rx coil at an
inter-coil spacing of 1.2 m. In the Rx region, the air and PVC temperatures are measured
using sensors 3 and 2, respectively. In the Tx region, the PVC, heat-sink, Tx coil, and PCB
temperatures are measured using sensors 6, 7, 8, and 9, respectively.

In an attempt to find suitable sensors for drift correction, delayed responses of all eight
measured temperature time series were modeled with the first part of the drift correction
model shown in Figure 2 (i.e., excluding the LuT and only considering the LPFs). The goal
was to check if temperatures with fast reaction times can be used to model temperatures
with a delayed response, which would imply that both types of temperature time series
could be used for correction. In addition, this analysis was used to check if the LPFs
could properly model the system component delays. To ease analysis and facilitate the
comparison between modeled and measured temperatures, the root mean square error was
calculated after fitting the optimal value for the time constant (τ).

2.4. Assessment of Spatial Temperature Variation

To evaluate whether temperature drift correction with two LPFs allows for fast, non-
uniform temperature variations, it is of interest to determine the temperature distribution
within the measurement device. Here, we again consider the two regions where drifts are
expected to originate. If the two regions have similar temperature variations, it is antici-
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pated that a model with only one LPF will suffice to correct the drift, as shown in ref. [24].
If the temperature time series in the two regions differ, it is anticipated that a model with
two LPFs will be required to correct the drifts. To evaluate the effect of an uneven tempera-
ture distribution on drift, the available calibration datasets were analyzed and separated
into two classes: datasets with a uniform temperature variation (UTV) and datasets with
a non-uniform temperature variation (NUTV). To separate the UTV and NUTV datasets,
a principal component analysis (PCA) of the measured temperature data was used. The first
step of the PCA method [29] consists of determining the covariance matrix

C = TT
ms · Tms (9)

of the normalised (by
√

n) and mean-centered measured temperature time series Tms,
where n is the number of temperature time series [30]. An eigen decomposition of this
covariance matrix

[Evec, Eval ] = eigen(C) (10)

transforms the temperature data into eigenvalues Eval with their corresponding linear
independent (orthogonal) eigenvectors Evec [31]. The eigenvalues are an indication of the
magnitude of the respective eigenvectors and a measure of their importance in explaining
variation within the dataset [30]. After calculation of the eigenvalues, they were normal-
ized with the sum of all eigenvalues. These normalized eigenvalues (Eval,N) facilitate the
comparison of different temperature time series with respect to their homogeneity. If the
first normalised eigenvalue Eval,1N is close to 1, all temperature time series show similar
variation, which thus indicates a uniform temperature distribution. Here, a threshold value
Vth was used to differentiate between UTV and NUTV datasets. All temperature datasets
with Eval,1N greater than or equal to Vth were classified as UTV datasets, and all datasets
with Eval,1N less than Vth were classified as NUTV datasets.

2.5. Determination of the Representative Calibration Parameters

To estimate the calibration parameters m = (τ1, G1, NL1, τ2, G2, NL2) for the two LPFs,
the misfit between the measured phase Φms and the modelled phase Φmod was calculated
using the objective function

RMSE =
√
||Φc −mean(Φc)||2 (11)

based on the L2-norm. Here, the objective function RMSE is used for optimization without
the offset (mean value). It should be noted that the drift model is not limited to only 2 LPFs
but can be adapted to 3 or more as per requirement. In this case, three more parameters are
added for every additional LPF.

Initial tests with local search algorithms showed that the optimization results were
affected by local minima in the objective function, as indicated by different results for
different starting values of the calibration parameters. For this reason, a global optimiza-
tion method named shuffled complex evolution (SCE-UA) [32] was used to minimize the
objective function. The SCE-UA algorithm is a stochastic optimization method that is
commonly used to solve complex problems in a variety of fields, such as hydrology, envi-
ronmental science, and engineering. The algorithm begins by creating an initial population
of randomly sampled parameter sets from the feasible parameter space, which is the set of
all possible solutions that meet the problem’s constraints. Based on the suggestion from
Duan and Gupta [32], the initial population m× n is divided into n complexes, where n
equals the number of calibration parameters and each complex contains a fixed number of
parameter sets m. The parameter sets in each complex are evolved based on an extension
of the simplex method [33].

After this, the parameter sets in each complex are again combined into a single
population, which completes the first loop of the algorithm. In the next loop, the entire
population is reassigned to different complexes to promote information sharing and prevent
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the algorithm from getting stuck in local minima. As the search progresses, the points in
the population tend to converge towards the neighborhood of the global optimum, which
is the best solution in the entire feasible space [32]. In this paper, the search was stopped
when the objective function value did not improve by more than 1% in the last 20 loops.

A suitable set of calibration parameters should be able to correct all datasets. It is
assumed that the intrinsic drift parameters are stable over longer periods of months or
years and do not vary with time. If this were the case, it would be highly challenging to
calibrate the system for drift. Therefore, all datasets were simultaneously fitted. Preliminary
analysis showed that the models with more than one LPF showed strong dependencies
between individual parameters. For example, it is possible to obtain the same overall G
for several combinations of G1 and G2 when using two LPFs. It is therefore required to set
adequate boundaries for the parameter space. To obtain such boundaries, the range of τ1,
G1, τ2, G2 was determined for a linear version of the drift model by removing the NL term
(i.e., setting NL1 and NL2 to 1). Wide boundaries were used for the remaining parameters:
0 ≤ τ1, τ2 ≤ 4000 s, −e−4 ≤ G1, G2 ≤ e−4 radK−1.

To only consider data with approximately linear behavior, the calibration for the initial
ranges considered only a subset of the data. In particular, only data were considered in
a reduced temperature range around the mean temperature with a range of 10 K. Fur-
thermore, only NUTV datasets was used to reduce the degree of dependence between
the parameters because it is anticipated that the NUTV datasets need two LPFs for drift
modeling. The range of the respective calibration parameters across all NUTV datasets
were used to estimate new and smaller boundaries for the feasible parameter space. In the
final step, the new boundaries were used to calibrate all datasets using the non-linear drift
model and the full temperature range (0 °C–50 °C).

In the following, three types of calibrations were performed (named A, B, and C) to
evaluate the performance of drift models with one and two LPF. In type A calibrations,
all datasets were individually fitted with the objective function RMSE in Equation (11),
using temperature measurements from sensors 3 and 9 and two LPFs. Type A calibrations
are expected to provide the lowest fitting error and will serve as a reference. In type B
calibration, all datasets were simultaneously fitted with the same temperature sensors and
two LPFs. Finally, type C calibration only considered one LPF and the mean of temperature
sensors 3 and 9 to perform simultaneous fitting on all datasets using the initial wide
boundaries for the parameter space.

3. Results and Discussion
3.1. Selection of Temperature Sensors

The eight temperature sensors were fitted with each other using the LPF part of the
drift model (i.e., only the time constant τ parameter was evaluated) to identify the most
relevant temperature sensors suitable for drift correction (Figure 3). During the fitting run,
the RMSE (Equation (11)) and the delay (τ) between the respective sensors were evaluated.
It can be seen that the temperature sensors 2 and 3 in the Rx region result in a small RMSE
(less than 0.5 K), whereby, sensor 3 models sensor 2 with a delay τ of 336 s. Furthermore,
it can be seen that sensors 6, 7, 8, and 9 in the Tx region result in a small RMSE (less than
0.45 K), whereby sensor 9 models sensor 8 with a delay τ of 337 s. Sensor 7 was placed on
the heat-sink and also showed a small error (less than 0.35 K), but it was not considered
because the self-heating may not always be representative of the temperature in this region.
Temperature sensor 4 in the middle region is more similar to the sensors in the Tx region,
whereas temperature sensor 5 is more similar to the Rx3 region. However, there are no
drift-relevant components in this middle region that have an influence on the drift behavior
for the intercoil spacing of 1.2 m.

The results show that slow-reacting sensors placed on system components with large
heat capacities, such as the Tx coil (measured by temperature sensor 8), can be modeled
sufficiently well by sensors with a fast response. On the other hand, it is difficult to model
sensors with a fast response using sensors with a slow response. Based on this analysis,
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temperature sensors 3 and 9 were selected as being representative for the Tx and Rx3
regions, respectively. These sensors are the fastest sensors, can properly model other
sensors, and can therefore be used to replace them.

Figure 3. Root mean square error (RMSE) between modelled and measured temperatures to identify
representative temperature sensors suitable for drift correction. The colour bar shows the RMSE
between modelled and measured temperatures (in Kelvin). An error value of 0 indicates that one
sensor can perfectly replace another temperature sensor.

3.2. Assessment of Spatial Temperature Variation

Principal component analysis (PCA) was applied to the time series of the selected
temperature sensors 3 and 9 and used to identify UTV and NUTV datasets. The first eigen-
values for the respective datasets were obtained after PCA. The residual eigenvalues were
evaluated by subtracting the first eigenvalues from a maximum value of one (1− Eval,1N).
The results of plotting the residual eigenvalues for the respective datasets are depicted in
Figure 4. It can be seen that 1− Eval,1N ranges from 0.0013 to 0.028. The smallest values are
associated with measurements on cloudy days, whereas larger values are associated with
sunny days. In the latter case, there was partial shading on the measurement device that
moved with time during the calibration measurements.

It can be further observed from the figure that there is a jump in the eigenvalues
between datasets 10 and 11. This is the boundary where differentiation is made between
UTV and NUTV datasets. Based on this, the measurements #1 to #10 were UTV datasets,
whereas measurements #11 to #15 were classified as NUTV datasets (Figure 4). It should be
noted that the PCA method applied here was designed to cover more than two temperatures
for future outlooks.
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Figure 4. Plot of the residual eigenvalues (1-Eval,1N) for all datasets obtained from principal compo-
nent analysis (PCA) on time series of temperature sensors 3 and 9. The red bars represent datasets
recorded with uniform temperature distributions and the blue plots represent datasets recorded with
non-uniform temperature distributions.

3.3. Estimation of Calibration Parameter Boundaries

In order to show the strong dependence between individual calibration parameters,
an optimization (with calibration strategy type A) was done with the correlation test
parameter boundaries shown in Table 1. The results from comparing G1 and G2 for dataset
#10 show a lot of possible solutions where the error is less than 1 mSm−1, as shown in
Figure 5. For a range of−0.06 < G1 < 0.06 mradK−1 and 0 < G2 < 0.1 mradK−1, the same
minimal fitting errors were obtained. This therefore demonstrates the need to constrain
the parameters.

To determine appropriate boundaries for the calibration parameters G and τ, the NUTV
datasets were used with a reduced temperature range and a linear drift correction model
using a broad feasible parameter space (Table 1).After fitting, the minimum and maximum
values of G1, G2, τ1, τ2 were determined and used as the new boundaries of the feasible
parameter space for the final calibration (Table 1). It was found that G1 is always negative
and G2 is always positive, with an overall sum of 0.033 mradK−1.

Table 1. Boundary for the time constant (τ) and gain (G) calibration parameters before and after fitting.

Parameters Boundaries G1 G2 τ1 τ2 NL1 NL2(mradK−1) (mradK−1) (s) (s)

Correlation Lower −0.1 −0.1 0 0 0 0
Upper 0.1 0.1 4000 4000 2.5 2.5

Initial Lower −0.1 −0.1 0 0 1 1
Upper 0.1 0.1 4000 4000 1 1

Constrained Lower −0.06 0.05 0 500 0 0
Upper −0.005 0.1 1000 4500 2.5 2.5
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Figure 5. Plot of the correlation between the calibration parameters G1 and G2 showing all parameter
combinations for errors (RMSE) less than 1 mSm−1, obtained from fitting dataset #10 with the
initial boundaries.

3.4. Determination of the Representative Calibration Parameters

The reduced feasible parameter space was used to compare the calibration results for
calibration strategies A, B, and C. The time series variation of measured and modeled ECa
for calibration strategy type A as well as the corrected ECa values estimated for the three
calibration strategies are depicted in Figure 6 and Figure 7. The first ten datasets in Figure 7
are UTV datasets, and the remaining five are NUTV datasets.

The results for calibration strategy type A where all parameters were calibrated
individually for each dataset show that this strategy provides the best calibration results.
The resulting mean RMSE over all datasets is 0.46 mSm−1. However, the resulting fitted
parameters may not be representative of the entire system drifts because each dataset
typically covers a limited temperature range. There is thus a risk that this calibration
strategy results in overfitting of the data by accounting for specific pecularities in each
dataset. The results for calibration strategy type B which involves simultaneous data
fitting with two LPFs showed an overall increase in RMSE values compared with type
A. Calibration strategy type B gave a representative parameter set with a mean error of
0.8 mSm−1 over all datasets. The results show that type B corrects UTV and NUTV datasets
with similar accuracy (Figure 7). The results for calibration strategy type C which involves
simultaneous data fitting using only a single LPF gave a mean error of 2.4 mSm−1. This
shows that the drift correction with one LPF provides a lower accuracy in comparison with
two. This is particularly visible in the last 3 NUTV datasets (#13, #14, and #15) where the
RMSE values are larger than 4 mSm−1 (Figure 7) when a single LPF is used.

With regard to the UTV datasets, fitting with one LPF offers less accurate results than
expected, with a mean error of 1.8 mSm−1. This is also less accurate in comparison to
the results in [24], where the median error is 0.49 mSm−1. This is because the 1− Eval,1N
values from the work of [24] are mostly less than 0.0028 across all measurements, which is
extremely small in relation to the more complicated datasets in this work.
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Figure 6. Time series variation of measured apparent electrical conductivity (ECams) (red circle) and
modelled apparent electrical conductivity (ECamod) (black lines) for 15 datasets.

The calibration parameters obtained from type B and type C are shown in Table 2. It
can be seen from the table that when the optimization is done with calibration strategy
type B involving two LPFs, two different gains are obtained, one being negative and the
other positive. This implies that the system gains (G1 and G2) partly compensate each other,
but only if the times constants (τ1 and τ2) are equal. However, the table shows different
time constants, where LPF1 has no delay with a corresponding time constant τ1 of 0.002 s
and LPF2 has a time constant τ2 of 1033 s. Furthermore, it can be seen that LPF1 has a strong
non-linearity NL with a value of 0.29, whereas the second LPF is linear with a value of 1.02.
This shows that it is important to consider these different gains and time constants when
fast temperature changes or non-uniform temperature changes occur. Also, the system’s
non-linearities must be considered.
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Figure 7. Root mean square errors (RMSE) from fitting with temperature sensors 3 and 9 using
calibration strategies A–C (black, red and blue bars, respectively). The black bars show the results of
drift correction with calibration parameters obtained from fitting individual measurements. The red
bars show the correction with the calibration parameters obtained from simultaneously fitting all
datasets. The blue bars are the correction results with parameters obtained from simultaneous fitting
with 1 LPF and the mean of temperature sensors 3 and 9.

For calibration strategy type C, the gain is around the sum of the G1 and G2 of
calibration type B, and NL is 1.48, and the time constant for type C is greater than those
in type B. The differences in parameter values between type B and C are likely explained
by the fact that the datasets with large non-uniform temperature distributions cannot be
properly fitted by calibration type C.

The corresponding gains as ECa values for type B were G1 = −0.804 mSm−1K−1,
G2 = 2.159 mSm−1K−1 and for type C was G1 = 1.7 mSm−1K−1.

Table 2. Calibration parameters obtained with calibration strategy type B and type C.

Calibration Strategy Type G1 G2 τ1 τ2 NL1 NL2(mradK−1) (mradK−1) (s) (s)

B −0.022 0.061 0.002 1033 0.291 1.02

C 0.048 - 2057 - 1.48 -

Other approaches for temperature drift mitigation rely on the typical static correction
methods (without a LPF), where only look-up tables are used to establish unique rela-
tionships between temperature and phase. In comparison to these methods, the results
in Table 2 show a higher fitting accuracy when LPF is considered, as also confirmed by
Tazifor et al. [24].

In addition to the total error after data correction, the individual measured and
modeled data are compared in Figures 8–10 for calibration strategies type A, type B, and
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type C, respectively. It is evident that calibration strategy type A and type B results in
accurate fits of the drift model to the measured ECa for datasets with both uniform and non-
uniform spatial temperature variations. The hysteresis loops in the relationship between
measured ECa values and temperature, which were also reported by Huang et al. [19] and
Tazifor et al. [24], are a result of the dynamic heating and cooling history of the system
components. They were accurately reproduced by the drift model.

Figure 8. Comparison of modelled apparent electrical conductivity (ECamod), denoted as black lines,
with measured apparent electrical conductivity (ECams), denoted as red circles, as a function of the
mean of temperatures 3 and 9 for 15 datasets, using calibration parameters obtained from fitting type
A. All ECa values are mean-centered and represented as ECa changes.
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Figure 9. Comparison of modelled apparent electrical conductivity (ECamod), denoted as black lines,
with measured apparent electrical conductivity (ECams), denoted as red circles, as a function of the
mean of temperatures 3 and 9 for 15 datasets, using calibration parameters obtained from fitting type
B. All ECa values are mean-centered and represented as ECa changes.

The results obtained from calibration strategy type C with only one LPF are shown in
Figure 10. By comparing the ECamod values with the ECams values, it can be seen that the
hysteresis effects were best modeled for dataset #6, and that the results are worst for datasets
#13, #14, and #15, which are the most complicated NUTV datasets with strong partial
shading effects. It is seen clearly here that a drift model with only one LPF can only fit some
of the measured data. Overall, the results show that it is possible to correct drift effects
resulting from the occurrence of non-uniform temperature variations in measurement
systems during EMI data acquisition when two LPFs and two drift-sensitive temperatures
are used.
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Figure 10. Comparison of modelled apparent electrical conductivity (ECamod), denoted as black lines,
with measured apparent electrical conductivity (ECams), denoted as red circles, as a function of the
mean of temperatures 3 and 9 for 15 datasets, using calibration parameters obtained from fitting type
C. All ECa values are mean-centered and represented as ECa changes.

4. Conclusions and Discussions

A dynamic drift correction method was presented that uses two low-pass filters
(LPF) to model the transient response of electromagnetic induction (EMI) instruments to
non-uniform temperature variations. The parameters that control the model are the time
constant (τ) from the LPF, the gain (G), and the non-linear variable (NL) of the LuT, as well
as the system phase offset (Φo f f set). In this study, an EMI instrument was used to perform
15 measurements on different days and at different locations. Temperature sensors spread
across the device simultaneously measured the ambient internal temperature, varying
between 10 °C and 50 °C. To develop a drift correction method, it is necessary to place the
temperature sensors in the best positions where sources of drift are expected. The problem
here is that the system components have different thermal delays to external temperature
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change, which leads to the question of whether localized temperature sensors are required
to correct the drifts that arise. This study showed that the fastest-reacting sensors can
nicely model the thermal delays of the system components with slower reaction times. It is
therefore sufficient to place the sensors in the air or on other fast-reacting components like
the PCB, where we assume the drifting electronic components to be. For the EMI system
used here, there are two drift-sensitive regions, notably, the transmitter region and the
receiver region, for an inter-coil spacing of 1.2 m. For these two regions, the temperature
sensors 3 and 9 with a quick response were selected.

For a drift model with two or more LPFs, it is difficult to determine calibration
parameters through fitting because they are strongly correlated with each other. This
creates, on the one hand, the need for an optimization method that searches for the global
minimum. To address this, the shuffled complex evolution (SCE-UA) method was used
to estimate optimal calibration parameters. On the other hand, the parameter boundaries
must be selected carefully since narrow boundaries may lead to a sub-optimum solution
and too wide boundaries may lead to convergence problems and a very large computation
time. To address this, an initial optimization run was performed by individually fitting
each dataset in a linear region. Based on these initial runs, relatively narrow boundaries
were derived.

Using these constrained boundaries, the correction with parameters from simulta-
neously fitting all datasets offered satisfactory results with a mean RMSE of 0.8 mSm−1

across all datasets, showing that the parameters obtained are characteristic for the system
drifts and that the system can be temperature-calibrated. The final calibrated parameters
were G1 = −0.804 mSm−1K−1, G2 = 2.159 mSm−1K−1, and τ1 = 0 s and τ2 = 1030 s,
NL1 = 0.326, and NL2 = 1.028. Here, it should be noted that both positive and nega-
tive gains were obtained, which is particularly problematic for drift correction. For slow
uniform temperature changes, the gains compensate for each other. However, for fast
temperature changes and different time constants, or for non-uniform temperature changes,
the presence of both positive and negative gains results in large drift errors if the two
different gains are not considered. This implies that it is very important to estimate these
gains. The strong non-linearity of NL1 shows that a linear model is not sufficient for drift
correction, which leads to an increase in dependency between the calibration parameters,
so that for each LPF, the NL parameter must also be considered and fitted.

The correction with calibration parameters obtained from using only one LPF while
simultaneously fitting all datasets showed that the drift correction was generally less
accurate than in the case where two LPFs were used. Due to the non-uniformity of the
temperature distribution in the device, the drift model needs more than one temperature
sensor for correction. It could be shown for data with extreme non-uniform temperature
variations that the ECa error after drift correction with one LPF was very large at about
4.5 mSm−1. This situation typically arises when partial shading is experienced during
measurements. In order to recognize these situations, it is useful to evaluate the uniformity
of temperature variation with principal component analysis (PCA). It is also possible that
at least two dominant temperature components are present in the system with different
time constants τ and non-linearities NL, which cannot be modelled with only one LPF.

In summary, the dynamic drift correction model with two LPFs provides a reliable
solution for removing the effects of temperature-related drifts in a wide range of appli-
cations involving near-surface EMI systems. This dynamic correction approach can be
subsequently extended to commercial devices by integrating the required temperature
sensors, since air temperature sensors are sufficient for the proposed correction method.
These sensors can be easily integrated through holes on the devices’ surface. In view of our
modular and scalable EMI system under development, only air temperature sensors will
be considered for development.

A simple method to calibrate the EMI devices is to perform outdoor measurements.
The drift of individual electrical components can be measured in temperature chambers
by manufacturers. However, this does not hold true for the coils or for the entire system
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since such measurements require a metal-free and low-noise environment. Typically,
laboratories are not adequate for this. Contrary to the measurement of the drift of single
components, the proposed approach is intended to consider the device as an integral
drifting system. By incorporating temperature sensors into the instruments and using
the new drift correction technique, it is possible to enhance the precision of temperature-
related drift correction in EMI systems beyond the level achievable with traditionally used
correction techniques. The new method has potential applications in various agricultural
scenarios where accurate near-surface ECa measurements are required.
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