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Abstract: Artificial intelligence has revolutionised smart medicine, resulting in enhanced medical
care. This study presents an automated detector chip for age-related macular degeneration (AMD)
using a support vector machine (SVM) and three-dimensional (3D) optical coherence tomography
(OCT) volume. The aim is to assist ophthalmologists by reducing the time-consuming AMD medical
examination. Using the property of 3D OCT volume, a modified feature vector connected method
called slice-sum is proposed, reducing computational complexity while maintaining high detection ac-
curacy. Compared to previous methods, this method significantly reduces computational complexity
by at least a hundredfold. Image adjustment and noise removal steps are excluded for classification ac-
curacy, and the feature extraction algorithm of local binary patterns is determined based on hardware
consumption considerations. Through optimisation of the feature vector connection method after
feature extraction, the computational complexity of SVM detection is significantly reduced, making it
applicable to similar 3D datasets. Additionally, the design supports model replacement, allowing
users to train and update classification models as needed. Using TSMC 40 nm CMOS technology, the
proposed detector achieves a core area of 0.12 mm2 while demonstrating a classification throughput
of 8.87 decisions/s at a maximum operating frequency of 454.54 MHz. The detector achieves a final
testing classification accuracy of 92.31%.

Keywords: age-related macular degeneration (AMD); artificial intelligence (AI); application-specific
integrated circuit (ASIC); optical coherence tomography (OCT); slice-sum

1. Introduction

In recent times, the remarkable growth of artificial intelligence (AI) has led to ad-
vancements in smart healthcare applications across various medical domains [1]. The
integration of AI and healthcare has played a crucial role in fostering partnerships for the
goals of sustainable development. The smart medical applications have made significant
contributions, enabling the identification of pathology differences that doctors may find
challenging to diagnose [2–8].

Nowadays, ophthalmologists frequently use fundus colour and optical coherence
tomography (OCT) images to diagnose macular diseases [8]. Fundus colour images provide
two-dimensional information, including details of the topmost layer of the retina, retinal
vasculature, inner limiting membrane, and other underlying layers. In comparison, OCT
imaging is a non-invasive optical technique that offers excellent spatial resolution and tissue
distribution clarity. In addition, OCT scanners are no longer confined to large-scale scanning
instruments found in major hospitals. Portable OCT scanners [9,10] that can be used by
medical staff for medical patrol are gradually being developed. While hyperspectral and
multispectral imaging systems are not typically used as primary tools for disease diagnosis
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in the medical context, they can complement other imaging modalities, including OCT. For
example, they may provide additional information about tissue composition or enhance
the detection of specific features. The combination of different imaging techniques can
potentially improve diagnostic accuracy and provide a more comprehensive understanding
of tissue properties [11].

Automated age-related macular degeneration (AMD) is the most common macular
disease affecting individuals over the age of fifty [12]. As individuals grow older, the
vertebral cells, located at the centre of the retina, degenerate and lose their ability to absorb
nutrients; this leads to the atrophy of the macula. Additionally, abnormal hyperplasia of
choroidal blood vessels develops beneath the macula, making these newly formed vessels
susceptible to rupture. The rupture of these vessels causes bleeding or exudation, leading
to macular swelling, as shown in Figure 1. Over time, these factors contribute to a gradual
decline in vision.
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The vision is an important and sensitive organ in human beings, and even the slightest
discomfort can prompt individuals to visit the hospital for an eye examination. However,
diagnosing eye diseases presents significant challenges for ophthalmologists. In addition,
rural areas often lack adequate medical resources and doctors, making it necessary for
people to travel long distances to reach hospitals in cities. This imposes a heavy burden
on remote villagers and can lead to significant medical delays [13]. Therefore, it is crucial
to focus on developing an automated eye disease detection system using an edge-design
chip with a portable OCT scanner [6]. By employing this approach, if the detection result
is positive, the patient can then be referred to the hospital for a more comprehensive eye
examination. Developing a complete and credible automated system for detecting eye
diseases would benefit both doctors and patients, creating a win–win situation [7].

In this study, we propose an automated AMD detector to assist ophthalmologists by
reducing excessive and tedious medical examinations. To support medical service in rural
areas, it can be implemented on a single edge-design chip and integrated into a portable
OCT scanner, with the aim of promoting good health and well-being. Compared with
deep learning (DL) classifiers, low-complexity and hardware-friendly machine learning
(ML) classifiers are suitable for automated AMD detection designed for a portable OCT
scanner. Therefore, the proposed automated AMD detector utilizes a support vector
machine (SVM) [14] classifier because the SVM is a well-established supervised machine
learning (ML) algorithm known for its simplicity, quick classifier ability, and excellent
performance. Additionally, the proposed detector employs local binary patterns (LBP) [15]
to extract features because of its low computational complexity. The relatively complicated
task of training the classifier model was performed on software to develop an edge chip
design with low computational complexity. Subsequently, the pre-trained parameters and
input of the unknown OCT data can be applied into an edge chip, obtaining the classifier
result. In this study, the proposed detector has the following contributions:

(a) The low-complexity feature vector connection method, called slice-sum, is proposed to
reduce the computational processing required by the SVM classifier. Consequently, the
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method significantly reduces computational costs by at least a hundredfold compared
to previous methods;

(b) The detector uses only the LBP and SVM classifier, which minimises the hardware area
cost for image processing. This feature is advantageous for integrating the detector
into a portable OCT scanner;

(c) The model parameters of the proposed detector have been designed to be replaceable,
ensuring that users can easily update the model as per their future requirements.

To verify the proposed automated AMD detector, a prototype chip has been imple-
mented, occupying a core area of 0.12 mm2, using the TSMC 40 nm CMOS technology.
The detector achieved a classification accuracy of 92.31%. In terms of performance, the
hardware operation time for predicting a single OCT volume was 139 times faster than
the MATLAB software. Furthermore, the classification throughput reached 8.87 decisions
per second, making it suitable for integration into portable OCT scanners available in
the market. To the best of our knowledge, we present the first instance of single-chip
implementation for automated AMD detection in the literature.

The remainder of this study is organised as follows: Section 2 provides a review of the
automated eye disease detection systems. Section 3 presents the steps for improving the
proposed system, with a description of the adopted algorithms in the following subsections.
Section 4 presents the VLSI implementation of the proposed detector, including the chip
results and a comprehensive work comparison. Finally, Section 5 provides a conclusion to
this study.

2. Fundamentals of Automated Eye Disease Detection System

This section describes the related works of automated eye disease detection systems
and reviews the fundamental flow, including image pre-processing, feature extraction,
training, and classification.

2.1. Related Works

Recently, AI techniques have been extensively utilized to process human retinal
information on OCT images. The tasks include DL-based denoising [16,17], DL-based
segmentation [18,19], DL-based disease classification [6–8,20–22], and ML-based disease
classification [3,6,23–28]. For the DL-based disease classification, the study in [6] has
utilized the AlexNet, GoogLeNet, and Inception-ResNet-v2 to achieve high AMD detection
accuracies up to 97.39%, 96.41%, and 98.18%, respectively. However, it also revealed that the
DL-based disease classification consumes high computational complexity, using powerful
graphic processing units (GPUs) of NVDIA GeForce GTX 1070 to achieve a high detection
accuracy compared to the SVM-based disease classification using the Intel i7-8700 3.2 GHz
6-core processor only. It means that the current DL-based AMD detections executed by
high-level GPUs are not a cost-effective hardware implementation. This initially motivated
us to design a low-cost automated AMD detector using the SVM classifier since the SVM
exhibits a lower area cost and becomes suitable for single-edge chip implementation [5,29].
In this study, the state-of-the-art SVM-based eye disease classifications are discussed as
follows while the other AI tasks on OCT images can be referred to the aforementioned
citations for details.

Table 1 lists the state-of-the-art studies related to SVM-based eye disease classifications.
It is worth noting that the studies in [3,24,26,28] employed image-level classification while
the studies in [25,27] employed volume-level classification. The volume-level classification
is more practical than the image-level classification since an OCT volume is representative
for a whole subject. In 2011, Liu et al. proposed a comprehensive automated eye disease
framework and still achieved good performance utilizing LBP and SVM for classifying
AMD, macular edema (ME), and macular hole (MH) [24]. The area under the receiver
operator characteristic curve (AUC) was used as the classification index, which differs
from the commonly adopted classification accuracy (ACC). To classify normal macula
and diabetic macular edema (DME) OCT volumes, the study in [25] denoised the OCT
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images using a three-dimension filter (BM3DF) [30] and extracted feature vectors using
the LBP combined with a histogram of oriented gradients (HOG) [31]. The classification
capability is evaluated through sensitivity (SE) and specificity (SP). Meanwhile, the study
in [26] demonstrated the effectiveness of transfer learning (TL) using GoogLeNet to classify
normal macula, AMD, and DME OCT images, achieving a high image-level accuracy
of 94.0%. Subsequently, employing distinct convolutional neural networks (CNNs) for
TL to extract feature vectors from OCT images has been widely adopted for the SVM
classifier [3,27,28]. Nonetheless, as noted in [6], the computational complexity of the LBP
remains significantly lower than that of the TL involving CNNs, which are still executed
by computation-intensive GPUs. Notably, the recent studies in [3,27,28] have not removed
the speckle noise for the feature extraction and still attained commendable classification
accuracies. Although the automated eye disease classifications listed in Table 1 have
achieved high classification accuracies, they have only been implemented through software
rather than a low-cost single chip, which is suitably integrated into a portable OCT scanner.
After a review of the-state-of-art literature, the basic flow of the automated eye disease
detection system depicted in Figure 2 is elaborated on in the subsequent subsections.

Table 1. Comparison of automated eye disease classification using SVM classifier.

Studies Classification Denoising Feature Extraction Performance

* 2011 [24] Normal, AMD, ME, MH Medium Filter LBP * AUC: 92.0%

2017 [25] Normal, DME BM3DF LBP + HOG SE: 87.5%
SP: 87.5%

* 2017 [26] Normal, AMD, DME BM3DF GoogLeNet * ACC: 94.0%
2021 [27] Normal, AMD None Proposed CNN ACC: 97.7%

* 2023 [28] Normal, DME, CNV, Drusen None DL-Based Feature Fution + HOG * ACC: 99.9%
* 2023 [3] AMD, DME, BRVO, CRVO, CSCR None DenseNet-201 + ACO * ACC: 99.1%

* represents the image-level classification.
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2.2. Image Pre-Processing

Image pre-processing involves two main methods: adjusting the image size and
removing noise from images. There are several techniques for noise removal, including
BM3DF, hybrid median filter (HMF) [32], and adaptive wiener filter (AWF) [33].

Regarding the previous topic, the classification accuracy is nearly the same whether
the image-cropping step is used or not [23]. However, the analysis of computational time
reduction focuses on the software phase rather than the hardware phase. Considering the
hardware aspect, image cropping only increases the area cost without any improvement in
classification accuracy.

In contrast, while BM3DF is well-known for its powerful image noise removal capa-
bilities, resulting in excellent clarity for human looks, its target audience is not ophthal-
mologists but rather AI detection systems for automated eye detection. Owing to its high
complexity, BM3DF does not offer an advantage in classification accuracy. High classifi-
cation accuracy can still be achieved even without noise removal [6]. Moreover, the HMF
exhibits a slight increase in accuracy while maintaining a friendly hardware complexity. A
combined architectural method using the HMF and feature extraction was proposed [34].

2.3. Feature Extraction

The primary objective of feature extraction is to effectively differentiate the features
present in AMD and normal OCT images. Prior studies have employed various approaches,
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such as LBP [24,25] and HOG [25]. Although these studies have different classification
accuracies, it is not possible to directly compare them in terms of feature extraction owing
to variations in experimental conditions, including image pre-processing, training flow,
and dataset.

2.4. Training and Classification

A simple training flow for an SVM model using the MATLAB toolbox was described
in [35]. This process involved K-Fold cross-validation, which helps prevent overfitting. The
derivation of K-Fold cross-validation is as follows: first, all OCT volumes in the dataset
were randomly separated into K subdatasets. The first subdataset, F1, served as the testing
data while F2 to Fk constituted the training data employed for building the classification
model, as shown in Figure 3. Next, F2 would serve as the testing data, with F1 and F3 to
Fk serving as the training data. This progression continued until all subdatasets had been
used as testing data, resulting in K testing results. Finally, the average of these K test results
was considered as the final K-fold accuracy of the model.
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3. Proposed Low-Complexity Automated AMD Detector

This section presents the proposed automated AMD detection system and the training
dataset. The simulation results are also demonstrated here before introducing the VLSI
implementation of the automated AMD detector.

3.1. OCT Dataset

The OCT dataset we used was obtained from the open resources of Duke Univer-
sity [36]. This dataset registered at ClinicalTrials.gov with an identifier of NCT00734487
comprises 269 AMD and 115 normal OCT volumes. Each OCT volume consists of 100 OCT
images, each with a size of 512 × 1000 pixels and greyscale pixel values, as shown in
Figure 4.

3.2. Local Binary Patterns

LBP are a practical feature extraction algorithm commonly employed for grey-scale
images. It effectively represents texture features through its histogram statistics method.
The classic LBP algorithm is as follows:

LBPp,r =
p

∑
i=1

u(gi − gc)2p−1, (1)

with

u(x) =
{

1, x ≥ 0
0, x < 0

}
, (2)

where p denotes the number of image pixel sampling points, and r represents the radius
of the window used for calculations. In this equation, gi refers to the pixel value of the
neighbouring sampling point, while gc is the pixel value of the centre in the window
being considered. The derivation of the LBP algorithm is illustrated in Figure 5, which
depicts a comparison of pixel values between the neighbour points and the centre point.
Consequently, a feature vector [00001111] is obtained, which is sorted counterclockwise

ClinicalTrials.gov
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and serves as a representation of the texture feature for the specific 3 × 3 window being
analysed.
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The histogram statistics subsequently represent the occurrence of features in the entire
image. The number of feature types in the histogram depends on the sampling points.
For example, if we have p = 8 sampling points, which corresponds to 28, we will have
256 feature types. Along with the translation of the calculated window in the whole image.
This enables us to obtain a final feature vector that represents the texture feature of a single
OCT image, as shown in Figure 6.

The introduction to LBP mentioned above refers to the traditional operating algorithm.
Before conducting statistics using the histogram, there are several variants that simplify the
feature types, each with their respective characteristics. These include rotational invariance
(RI), uniform pattern 2 (U2), and a combination of rotational invariance with the uniform
pattern 2 (RIU2).

The LBP-RI considers all rotated images within a 3×3 calculated window as having
the same texture feature, resulting in statistics of shifting rotations, such as [00001111]
and [1000111], being grouped together in a histogram. In contrast, the LBP-U2 treats rare
textures in the image as the same feature type. The LBP-RIU2 combines the behaviours
of both RI and U2. Although these three variants have distinct characteristics, we handle
this aspect using a look-up table (LUT). This implies that the classic LBP, LBP-RI, LBP-U2,
and LBP-RIU2 have the same operational complexity in terms of hardware design. The
only variations lie in the width of the feature vector represented by the histogram and
their classification accuracy. Specifically, the classic LBP, LBP-RI, LBP-U2, and LBP-RIU2
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have feature vector widths of 256, 36, 59, and 10 in the histogram, respectively. A narrower
feature vector width reduces the operational complexity in SVM.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 19 
 

 

256 feature types. Along with the translation of the calculated window in the whole image. 
This enables us to obtain a final feature vector that represents the texture feature of a single 
OCT image, as shown in Figure 6. 

00000000 00000001 00000010 ... 11111110 11111111

256 Types

0 0 0 0 0...Type
Occur (times)

50 64 27 168 90...Occur (times)

Calculated after one OCT image

00000000 00000001 00000010 ... 11111110 11111111

256 Types

50 64 27 168 90...Types
Occur (times)

The texture feature of one OCT image

 
Figure 6. Texture feature of a single OCT image from the histogram statistics. 

The introduction to LBP mentioned above refers to the traditional operating algo-
rithm. Before conducting statistics using the histogram, there are several variants that sim-
plify the feature types, each with their respective characteristics. These include rotational 
invariance (RI), uniform pattern 2 (U2), and a combination of rotational invariance with 
the uniform pattern 2 (RIU2). 

The LBP-RI considers all rotated images within a 3×3 calculated window as having 
the same texture feature, resulting in statistics of shifting rotations, such as [00001111] and 
[1000111], being grouped together in a histogram. In contrast, the LBP-U2 treats rare tex-
tures in the image as the same feature type. The LBP-RIU2 combines the behaviours of 
both RI and U2. Although these three variants have distinct characteristics, we handle this 
aspect using a look-up table (LUT). This implies that the classic LBP, LBP-RI, LBP-U2, and 
LBP-RIU2 have the same operational complexity in terms of hardware design. The only 
variations lie in the width of the feature vector represented by the histogram and their 
classification accuracy. Specifically, the classic LBP, LBP-RI, LBP-U2, and LBP-RIU2 have 
feature vector widths of 256, 36, 59, and 10 in the histogram, respectively. A narrower 
feature vector width reduces the operational complexity in SVM. 

3.3. Feature Vector Connected Method 
Before training the SVM model with the texture feature vector, it is necessary to ad-

dress an important issue regarding how these texture feature vectors should be connected. 
This is often overlooked in other studies, but it presents two or more different approaches. 
The first method tries to connect feature vectors from different OCT images, treating the 
model training as training with the entire OCT volume. This approach is illustrated in 
Figure 7a and referred to as ‘slice-chain’ method. The second method involves treating 
each OCT image as an independent dataset and predicting all OCT images individually. 
This approach is shown in Figure 7b and referred to as the ‘slice-threshold’ method. Ulti-
mately, the final classification result is determined by comparing the model’s classification 
of whether the OCT image is diseased to a customised threshold within the OCT volume, 
as presented in [37]. 

After evaluating the hardware implementation, it was discovered that the operation 
matrix is almost the same size in both the slice-chain and slice-threshold methods, with 
the only difference being the column expansion or row expansion. Consequently, this in-
dicates that the operational complexity is still significant. 

Figure 6. Texture feature of a single OCT image from the histogram statistics.

3.3. Feature Vector Connected Method

Before training the SVM model with the texture feature vector, it is necessary to address
an important issue regarding how these texture feature vectors should be connected. This
is often overlooked in other studies, but it presents two or more different approaches.
The first method tries to connect feature vectors from different OCT images, treating the
model training as training with the entire OCT volume. This approach is illustrated in
Figure 7a and referred to as ‘slice-chain’ method. The second method involves treating each
OCT image as an independent dataset and predicting all OCT images individually. This
approach is shown in Figure 7b and referred to as the ‘slice-threshold’ method. Ultimately,
the final classification result is determined by comparing the model’s classification of
whether the OCT image is diseased to a customised threshold within the OCT volume, as
presented in [37].

After evaluating the hardware implementation, it was discovered that the operation
matrix is almost the same size in both the slice-chain and slice-threshold methods, with the
only difference being the column expansion or row expansion. Consequently, this indicates
that the operational complexity is still significant.

Finally, we solved it with a different idea. Returning to the LBP statistic characteristic
introduced in Section 3.2, we utilise the feature vector that serves as a counter for the
occurrences of texture features in the image. We can extend the statistics of the texture
feature to encompass the entire OCT volume, meaning that the histogram statistics are not
limited to a single OCT image but instead scan the entire OCT volume. We can regard this
as the sum of all occurrences of the same type of texture feature that are scattered across
multiple OCT images within the OCT volume. The matrix, referred to as ‘slice-sum’, is
shown in Figure 7c. This improved method significantly reduces the operational complexity
by a factor of 100 compared to both slice-chain and slice-threshold methods. Moreover, its
applicability may extend to other three-dimensional datasets with similar characteristics.
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3.4. SVM Operation

Compared to the self-smart monitoring instrument, the automated AMD detection
system is designed for mass-detection across various individuals, eliminating the need
for online training. Moreover, this elimination of online training can significantly reduce
area costs.

Based on this premise, the training of the SVM model was completed using the
MATLAB toolbox, resulting in a fixed pre-trained model. The pretrained model parameters
were then transmitted to our chip to predict the unknown OCT data.

With the exclusion of the SVM training step, the classifier can be obtained simply by
using a linear SVM as follows:

ypredict = sign
(

Weightj × LBP Vectorj′+ Bias
)

, (3)
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where LBP Vectorj represents the feature vector derived from the histogram statistics of
the LBP. Weightj is the weight vector, which is obtained as follows:

Weightj =
k

∑
i=1

(
αi × yi × xi,j

)
. (4)

Bias is the correction value, which is obtained as follows:

Bias = mean
(

yj − xi,j ×Weightj′
)

, (5)

where k denotes the support vector point, αi signifies the Lagrange multiplier, and yi represents
the labels of the training matrix; xi,j signifies the samples of the training matrix obtained
from the SVM toolbox as the model parameter. Additionally, ypredict represents the final

predicted result based on the positive or negative value of
(

Weightj × LBP Vectorj′+ Bias
)

.
One represents normal OCT, and the other represents abnormal OCT, depending on the
labelling during training.

The results of the kernel experiments are presented in Table 2. When comparing the
different kernels to the Linear, Quadratic, and Cubic kernels, it is evident that they only
led to a marginal accuracy improvement of less than 1% in OCT volume classification.
Consequently, to simplify the hardware implementation, we prioritised the use of the
Linear SVM.

Table 2. Accuracy performance comparison in different SVM kernels using MATLAB Toolbox.

SVM Kernel Linear Quadratic Cubic

Accuracy (%) 90.4 91.2 90.8

3.5. System Simulation

To determine the final flow of the automated AMD detection system, we simulated
three groups based on performance accuracy and hardware-friendly. The first group
compared image size adjustments, the second group assessed noise removal techniques for
the images, and the third group examined the effectiveness of the feature vector connected
method and feature extraction using LBP, as shown in Tables 3–5.

Table 3. Simulation results of Group 1 using MATLAB toolbox.

Flow (Group 1) ACC (%) SE (%) SP (%)

Resize + LBP + SVM

LBP 87.70 86.84 88.60
LBP-RI 85.50 86.84 84.21
LBP-U2 83.30 82.46 84.21

LBP-RIU2 89.00 87.72 90.35

Crop + LBP + SVM

LBP 86.40 88.60 84.21
LBP-RI 87.30 87.72 86.84
LBP-U2 85.10 80.70 89.47

LBP-RIU2 86.80 88.60 85.09

None + LBP + SVM

LBP 89.00 92.98 85.09
LBP-RI 87.70 90.35 85.09
LBP-U2 84.60 83.30 85.96

LBP-RIU2 90.80 93.85 87.72
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Table 4. Simulation results of Group 2 using MATLAB toolbox.

Flow (Group 2) ACC (%) SE (%) SP (%)

Resize + LBP + SVM

LBP 86.40 89.47 83.33
LBP-RI 85.50 88.60 82.46
LBP-U2 87.30 91.23 83.33

LBP-RIU2 88.60 92.11 85.09

Crop + LBP + SVM

LBP 87.70 90.35 85.09
LBP-RI 83.30 82.46 84.21
LBP-U2 86.80 89.47 84.21

LBP-RIU2 87.70 89.47 85.96

None + LBP + SVM

LBP 89.00 92.98 85.09
LBP-RI 87.70 90.35 85.09
LBP-U2 84.60 83.30 85.96

LBP-RIU2 90.80 93.85 87.72

Table 5. Simulation results of Group 3 using MATLAB toolbox.

Flow (Group 3) Training Accuracy
(MATLAB Toolbox) (%)

Testing Accuracy
(Hardware-Based
Linear-SVM) (%)

Slice-chain

LBP 87.50 92.31
LBP-RI 83.50 88.46
LBP-U2 88.50 92.31

LBP-RIU2 83.00 76.92

Slice-threshold

LBP 84.20 92.31
LBP-RI 77.90 88.46
LBP-U2 82.00 92.31

LBP-RIU2 74.40 84.62

Slice-sum

LBP 89.50 92.31
LBP-RI 87.00 92.31
LBP-U2 89.00 92.31

LBP-RIU2 84.50 76.92

Tables 3 and 4 present four types of LBP for comparison, as reaching a firm conclusion
regarding the performance accuracy of different LBP methods proved challenging. Among
Group 1, LBP, LBP-RI, and LBP-RIU2 showed the highest accuracy in the non-adjusted
image size flow. Although LBP-U2 had better accuracy in the crop flow, the 0.5% increase
in accuracy was not worth implementing in the crop hardware.

Table 4 indicates that the accuracy in LBP, LBP-RI, and LBP-RIU2 is the highest when
no noise removal is applied in the image flow. Only LBP-U2 exhibited better accuracy
performance with the BM3DF. However, the use of BM3DF incurs significant hardware
costs. Moreover, the accuracy of LBP-U2 with BM3DF is lower than that of LBP, LBP-
RI, and LBP-RIU2 under the no-flow condition. Based on the findings from Table 4, the
recommended approach is to utilise the image flow without any noise removal.

Table 5 presents the testing accuracy, which comprises 26 new datasets that were not
used to train the model. Moreover, the testing detection process simulated the hardware
behaviour described in the SVM detection model, as shown in Equation (3). Table 5 indicates
that the slice-sum method displays better training accuracy compared to the slice-chain and
slice-threshold methods for all LBP types. In addition, the testing accuracy of the slice-sum
method was either superior or equal to that of the slice-chain and slice-threshold methods
in LBP, LBP-RI, and LBP-U2. Therefore, we can conclude that the slice-sum method can
replace the slice-chain and slice-threshold methods owing to its lower hardware complexity.
Considering that LBP, LBP-RI, and LBP-U2 exhibit similar testing accuracy, we have chosen
to implement the LBP-RI method owing to its narrower feature vector widths.
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In conclusion, the final system flow does not involve image size adjustment or noise
removal. Instead, we utilise the slice-sum method for feature connection and employ
LBP-RI for feature extraction.

4. VLSI Implementation

This section provides a description of the hardware implementation in our chip,
focusing on our objective of developing an automated eye disease system for embryos with
an edged design. The input data consisted of pixel-by-pixel OCT images obtained directly
from a portable OCT instrument, and the output was the predicted result.

4.1. System Architecture

An overview of the entire system architecture is depicted in Figure 8. Since the testing
OCT image was processed pixel-by-pixel, a Line Buffer was employed to ensure that the
LBP-RI accurately received the pixel information within a 3 × 3 calculated window cycle
by cycle. The LBP Vector calculated the occurrence count of each type of feature vector
and produced the final texture feature as an output. Statistic Saturation served to provide
a warning effect. When the occurrence count of a specific feature vector type reached
saturation, it was maintained, and the user was notified accordingly. It was crucial to
carefully observe the detection results. Furthermore, the pre-trained parameter of the SVM
model could be replaced by outside supply users to replace models in the future.
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4.2. Line Buffer

The design that utilises a line buffer required a pre-processing time to allow for the
reading of pixels from a specific location, facilitating the sequential transmission of an
accurate 3 × 3 calculated window information to the LBP-RI cycle. The LBP-RI cycle was a
long buffer arranged in series that stored all the scanned pixel values, as shown in the blue
section of Figure 9. When the pixel read 2003, the line buffer could produce an output of
[1 2 3 1001 1002 1003 2001 2002 2003], which was represented by the red border line. This
output from the line buffer consisted of 72-bits. In the next cycle, the output would be [2
3 4 1002 1003 1004 2002 2003 2004]. However, it is important to note that this convenient
operation comes with a significant area cost.



Sensors 2023, 23, 7315 12 of 19

Sensors 2023, 23, x FOR PEER REVIEW 12 of 19 
 

 

4.2. Line Buffer 
The design that utilises a line buffer required a pre-processing time to allow for the 

reading of pixels from a specific location, facilitating the sequential transmission of an 
accurate 3 × 3 calculated window information to the LBP-RI cycle. The LBP-RI cycle was 
a long buffer arranged in series that stored all the scanned pixel values, as shown in the 
blue section of Figure 9. When the pixel read 2003, the line buffer could produce an output 
of [1 2 3 1001 1002 1003 2001 2002 2003], which was represented by the red border line. 
This output from the line buffer consisted of 72-bits. In the next cycle, the output would 
be [2 3 4 1002 1003 1004 2002 2003 2004]. However, it is important to note that this conven-
ient operation comes with a significant area cost. 

1 2 3 4 5

1001 1002 1003 1004 1005

2001 2002 2003 2004 2005

3001 3002 3003 3004 3005

4001 4002 4003 4004 4005

......

510,001 510,002 510,003 510,004 510,005

999

1999

2999

3999

4999

511,002 511,003 511,004 511,005

......

......

......

1000

2000

3000

4000

5000

510,999

511,999

511,000

512,000

3 × 3 Calculated Window

 
Figure 9. Line buffer exhibit in OCT image. 

4.3. LBP-RI 
The LBP-RI input from the line buffer consisted of nine pixels. These pixels included 

the neighbouring pixels, namely g1, g2, g3, g4, g5, g6, g7, and g8, excluding the centre pixel 
referred to as gc. To evaluate the texture feature, we employed an LUT that analysed the 
sign bit of the eight subtracted results. Figure 10 illustrates the register statistics that rep-
resent the occurrence frequencies of each feature type. 

Figure 9. Line buffer exhibit in OCT image.

4.3. LBP-RI

The LBP-RI input from the line buffer consisted of nine pixels. These pixels included
the neighbouring pixels, namely g1, g2, g3, g4, g5, g6, g7, and g8, excluding the centre pixel
referred to as gc. To evaluate the texture feature, we employed an LUT that analysed
the sign bit of the eight subtracted results. Figure 10 illustrates the register statistics that
represent the occurrence frequencies of each feature type.
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4.4. SVM Detection

The SVM detection performed a multiplication between the corresponding Weightj
and LBPVectorj and added the Bias in the final calculation. In our LBP-RI chip design,
there were 36 weights and 36 feature types in the histogram statistics. To minimise the
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cost of multipliers, we used a single multiplier and summed every product over 36 cycles.
Additionally, by positioning the Bias in the first addend of the adder, we successfully
reduced the required number of cycles by one. The classification result was obtained from
the sign bit of the sum at the end of the classifier, as shown in Figure 11.
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4.5. Frequency Division Design

As the OCT volume represents a vast dataset, we utilised an example from Duke
University for analysis. Each OCT volume consisted of 100 OCT images, and each image
had sizes of 512 × 1000 pixels. This meant that a single OCT volume contained a total of
51,200,000 pixels that required processing. The clock cycle between the fast domain and the
slow domain was 51,200,000:36. Based on this information, our objective was to improve
the operating frequency during the pixel processing step and divide the frequency by six
for the SVM detection step. This approach aimed to reduce the area cost, as depicted in
Figure 12. Table 6 demonstrates that the frequency divider design decreases the area in the
slow domain by 47.85%. Additionally, this design reduced power consumption by 79.71%
under the same testing pattern.
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Table 6. Comparison of AMD detector with frequency divide version.

Original AMD
Detector

AMD Detector with
Frequency Divider

Frequency (MHz) 500.0 500.0/83.3

Latency (ns) 102,400,072 102,400,434

Total Power of Slow Domain (mW) 0.25783 (100%) 0.05232 (20.29%)

Total Area of Slow Domain (µm2) 6251.74 (100%) 3260.25 (52.15%)

4.6. Fixed-Point Simulation

To determine the appropriate word length for the hardware implementation, we
needed to assess the classification accuracy of three components for simulating the fixed
point: the LBPVector, Weight, and Bias. The analysis using floating-point numbers showed
a classification accuracy of 92.31%. Our experiment consisted of a training dataset contain-
ing 100 AMD and 100 normal OCT volumes as well as a testing dataset with 13 AMD and
13 normal OCT volumes.

The LBPVector represented the histogram statistics derived from LBP-RI, which was
a 1 × 36 integer vector. Both the Weight and Bias were parameters obtained from the
pre-trained model in the MATLAB toolbox. Since the amount of integer data was too large,
we truncated the fraction bits in both the Weight and Bias. Previous simulation results have
confirmed this approach.

The process of conducting fixed-point operations started with the LBPVector, was
followed by the Weight, and concluded with the Bias. However, when we reduced the
integer bits to 23, the accuracy performance of the LBPVector significantly declined, as
shown in Figure 13a. Furthermore, it was evident that the accuracy of all parameters
dropped to 50%. In our simulation results using the testing dataset, all classification results
predicted either ‘normal’ or ‘abnormal’ owing to the inability of the word length to express
complete data information, as shown in Figure 13.

4.7. Implementation of ASIC

The chip implementation results using TSMC 40 nm are presented in Table 7. Both the
line buffer and LBP-RI achieved a maximum operating frequency of 454.5 MHz. The SVM
detection operated at 75.8 MHz, which had six times the frequency divider with a core area
of 0.12 mm2. The line buffer represented the largest area cost, accounting for 88.8% of the
overall core area. Regarding power consumption, the line buffer consumed 35.06 mW, the
LBP consumed 1.65 mW, and the SVM consumed 0.03 mW. Figure 14 shows the layout
view of the proposed detector.

Table 7. Summary of the chip used for the proposed detector.

Technology TSMC 40 nm CMOS

Logic Utilisation 89.33%

Supply Voltage (V) 0.9

Core Area (mm2) 0.12 (0.35 × 0.35)

Logic Gate Count 177 k

Block Line Buffer LBP-RI SVM Detection

Max. Frequency (MHz) 454.5 454.5 75.8

Area (mm2) 0.09 (88.8%) 0.0088 (8.2%) 0.0017 (0.2%)

Power (mW) 35.06 1.65 0.03
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4.8. Comparison

This section presents an overall comparison of various SVM classifier chips that
utilised an ASIC implementation. To ensure a fair assessment, the definitions of the
normalised evaluation equation are provided below, where S represents the technology
and U represents the supply voltage.

Normalised Area = Area×
(

40
S

)2
(6)

Normalised Throughput = Throughput× S
40

(7)

Normalised Power = Power×
(

0.9
U

)2
(8)

Table 8 presents an overall comparison of the SVM classifier chip with other studies.
The TCASII-2018 chip demonstrates extremely low power consumption and high through-
put [29]. The TBCAS 2019 chip is unique, as it incorporates online training, making it a
self-monitoring system that can obtain the same dataset from the same people. However,
their work employed SMO, the training accelerator of the SVM model, which was their
largest hardware design [5]. ICICDT 2022 achieves a maximum frequency of 500 MHz [38],
whereas MWSCAS 2022 displays the highest accuracy, reaching 97.1% [39].
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Table 8. Overall comparison of the SVM classifier against other chips.

This Work TCASII’18 [29] TBCAS’19 [5] ICICDT’22 [38] MWSCA’22 [39]

Technology TSMC 40 nm TSMC 65 nm UMC 65 nm TSMC 65 nm TSMC 40 nm

Object AMD Detection Personalised Stress
Detection

Neural Seizure
Detection Human Detection Arrhythmia

Detection
Online Training No No SMO No No

Core Area (mm2) 0.12 0.17 0.20 1.14 0.54
Max Frequency

(MHz) 454.5 250 100 500 100

Power (mW) 39.43 7.6 × 10−7 14.91 195 5.7 × 10−6

Accuracy (%) 92.31 96.7 90.34 N/A 97.1
Frame Rate (fps) 887 N/A N/A 139 N/A

Throughput
(decision/s) 8.87 243,902 N/A N/A N/A

Normalised Area
(mm2) 0.12 0.06 0.08 0.43 0.54

Normalised Frame
Rate (fps) 887 N/A N/A 255.88 N/A

Normalised
Throughput
(decision/s)

8.87 396340.75 N/A N/A N/A

Normalised Power
(mW) 39.43 6.2 × 10−7 12.08 157.95 5.7 × 10−6

Frame Rate = image/s; Throughput = decision/s. (One decision includes 100 OCT images.). N/A: Not Available.

5. Conclusions and Future Work

In this study, an automated AMD detector has been proposed to assist ophthalmolo-
gists by reducing excessive and tedious medical examinations. Because the detector was
expected to be implemented in a single edge-design chip and integrated into a portable
OCT scanner, the LBP and SVM classifier were employed in the detector to minimise the
hardware area cost. The slice-sum vector connection method was proposed to reduce
the computational processing between the SVM classifier. Additionally, the frequency
divider design was conducted to further reduce the area cost and computational power.
Therefore, the area cost is reduced by 47.85% through optimisation of the slice-sum feature
vector connection method, reduction of the multiplier and adder in the SVM detection
block, and division of the clock domain to a slow frequency. Based on the proposed ar-
chitecture, the area cost is only 0.12 mm2, making it easily applicable to edge chips. The
power consumption is 39.43 mW, and the classification throughput reaches 8.87 decisions/s
with a maximum frequency of 454.5 MHz. In terms of hardware acceleration, when using
an OCT volume as the calculation standard, the hardware demonstrates a speed that is
139 times faster than the MATLAB software. This enables efficient handling of the OCT
volume scanning speed by portable OCT scanners available in the market. Notably, the
proposed detector is the first instance of single-chip implementation for automated AMD
detection with a high classification accuracy of 92.31% in the literature. In the future, the
proposed AMD detector design will be further fine-tuned, tested, and evaluated using
a practical dataset extracted from a real portable OCT scanner, with the approval of an
institutional review board. To further increase the classification accuracy, an improved
automated AMD detector will be designed and implemented using other hardware-friendly
ML or light-weight DL classifiers based on the fruitful single-edge chip design experiments
demonstrated in this study.
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