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Abstract: Human pose estimation is an important Computer Vision problem, whose goal is to estimate
the human body through joints. Currently, methods that employ deep learning techniques excel in the
task of 2D human pose estimation. However, the use of 3D poses can bring more accurate and robust
results. Since 3D pose labels can only be acquired in restricted scenarios, fully convolutional methods
tend to perform poorly on the task. One strategy to solve this problem is to use 2D pose estimators,
to estimate 3D poses in two steps using 2D pose inputs. Due to database acquisition constraints, the
performance improvement of this strategy can only be observed in controlled environments, therefore
domain adaptation techniques can be used to increase the generalization capability of the system
by inserting information from synthetic domains. In this work, we propose a novel method called
Domain Unified approach, aimed at solving pose misalignment problems on a cross-dataset scenario,
through a combination of three modules on top of the pose estimator: pose converter, uncertainty
estimator, and domain classifier. Our method led to a 44.1mm (29.24%) error reduction, when training
with the SURREAL synthetic dataset and evaluating with Human3.6M over a no-adaption scenario,
achieving state-of-the-art performance.

Keywords: 3D human pose estimation; domain adaptation; adversarial neural networks

1. Introduction

Human pose estimation is an important and challenging computer vision problem.
Its objective is to estimate the human body shape (pose) based on a single image, usually
monocular. This shape can be inferred by the detection of joints in a skeleton, which are
connected in such a way that each connection represents a part of the human body [1].

Two-dimensional (2D) human poses can be employed in a diverse and vast set of
applications, of major relevance to society, among which we can mention crowd control,
action recognition, person identification, medical aid for therapies and sports analysis,
human–computer interaction, augmented and virtual reality, and pedestrian location for
autonomous cars [2].

Regarding 3D human poses, there are a few ways to approach the estimation problem:
for example, by using depth sensors, infrared sensors, radio sensors, or even multiple
camera perspectives by pose triangulation. However, these solutions end up being costly to
implement or work in highly controlled environments [2]. Besides those restrictions, with
the growth of digital cameras shipped in mobile devices, like smartphones and webcams, a
necessity to approach the 3D human pose estimation problem by using monocular RGB
images does emerge.

While the labeling process in 2D poses can be simply obtained by the usage of crowd-
sourcing tools, like Amazon Mechanical Turk (https://www.mturk.com/, accessed on
24 March 2022), obtaining 3D pose labels requires the usage of motion capture systems
in restricted environments [3], decreasing the diversity of the image data present in the
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training set and aggravating the issue with 3D pose estimation methods based on RGB
monocular images.

The usage of a single RGB camera introduces several challenges to the problem of
human pose estimation, such as, for example, the occurrence of occlusions and the lack
of full-body images of some individuals. Furthermore, variations in clothing, body type,
and camera angle can have a negative impact on the performance of the methods [4]. In
Figure 1, it is possible to notice some of the challenges in human pose estimation from
images captured in real and non-controlled environments (domains). These challenges
become more severe when methods based on a single RGB image are used.

Figure 1. Examples of challenges that can be found in the human pose estimation task in real
environments (domains) extracted from the MS-COCO dataset [5].

A solution to this problem involves taking advantage of the maturity of 2D pose
estimation methods to obtain the 3D pose in two steps: a first step, where the 2D pose is ob-
tained using traditional methods, such as OpenPose [6], PifPaf [7] or Stacked Hourglass [8],
followed by a second step, where from a 2D pose input the 3D pose is estimated.

According to Martinez et al. [9], state-of-the-art 3D two-step pose estimation tech-
niques tend to perform better than their end-to-end counterparts. Even so, recent meth-
ods have reported high levels of overfitting regarding camera angles in frequently used
databases, thereby impacting the performance of real applications [10–14]. Furthermore,
evaluation protocols aimed to address these issues are rarely used in the literature, such that
the most frequently used workaround is data augmentation across different camera angles.

An alternative, and arguably more reliable solution to this problem, would be to
include synthetic datasets during the training step. These options enable an increase in the
variety of poses, scenes, and camera angles that are available, providing a way to deal with
the overfitting problem caused by the use of a single dataset. Doing in this way, however,
introduces a shift from the real domain to the synthetic image one [15].

Despite recent demonstrations of improvement in human pose estimation, the lack
of approaches in the inter-domain scenario for two-step methods is still perceptible, with
solutions unable to address all the nuances of cross-domain 3D human pose estimation.
The following issues were identified as exacerbating the domain discrepancy in the task:

• The utilization of diverse body capture sensors across distinct datasets that leads to
distinct pose representations, consequently resulting in misalignment between joints;

• Distinct domains frequently exhibit misalignment in their camera and action distribu-
tions, which can impact the accuracy and robustness of 3D human pose estimation;

• The propagation of errors on the edge kinematic groups, namely the arms and legs,
resulting in a substantial increase in the overall error.
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To address the aforementioned problems, and subsequently mitigate the domain
discrepancy, this study introduces several improvements to the pose estimation procedure.
The following contributions form a crucial part of this work and will be discussed along
this paper:

• The introduction of a pose conversion technique aimed at achieving a unified pose
representation to overcome the observed differences between capture sensors;

• An enhancement and evaluation of the pose estimation training pipeline through the
development of a novel uncertainty-based method;

• The creation of a domain adaptation model based on adversarial networks for 3D
human pose estimation.

Figure 2 summarizes our method and its contributions. Our method, called the
domain-unified approach (DUA) for 3D human pose estimation, works in a cross-domain
scenario, where the goal is to learn from labeled 3D source data and generalize effectively
to an unsupervised target domain.

The method is structured around three main modules, all operating on top of a
backbone pose estimator. Initially, the pose estimator serves as a feature extractor, from
which one can obtain poses from a dedicated pose head P . These extracted features are
fused with pose predictions to generate an uncertainty estimate, aiding the training process.
Furthermore, the predicted target-domain poses undergo transformation into a unified
pose representation, harmonizing joint distribution with the source domain. Lastly, a
domain discriminator is employed, tasked with distinguishing between source and target
poses. Its role is to facilitate the establishment of a consistent feature representation within
a common domain.

Figure 2. Proposed domain-unified approach for 3D human pose estimation. The method is com-
posed of three main modules on top of the 3D pose estimator: the uncertainty estimation module,
the pose conversion module, and the domain discriminator. The dashed lines on the pose converter
represent frozen weights.

2. Related Work

According to Stamou et al. [16], a human pose can be described as an articulated body,
that is, an object composed of a set of rigid parts connected through joints, which allow the
execution of translational and rotational movement in six degrees of freedom. Therefore,
human pose estimation is a problem that aims to find a particular pose P in a space Π that
contains all possible articulated poses. In the context of RGB images, the objective is to
extract a set of features from the image that represent each joint of the human body.

Although there are commercial solutions that address the 3D pose estimation problem,
these solutions work mostly in restricted environments, as is the case of those based on
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Kinect, which has a depth sensor, or use markers for body detection [2], which ends up
being quite restrictive. Therefore, there is a need to propose more flexible solutions to 3D
pose estimation, which can be used in uncontrolled scenarios, preferably using a low-cost
easily accessible monocular RGB camera. This is particularly challenging because depth
information should be recovered from a single image.

The increasing availability of 2D pose data has provided a viable solution to address
the scarcity of annotated 3D poses by employing a two-step human pose estimation ap-
proach. Earlier works in two-step 3D human pose estimation aimed at obtaining the
poses through Euclidean distance matrices [17], but the potential of the technique was
elevated when Martinez et al. [9] created a baseline for pose estimation through proper
pose processing and a simple encoder-decoder neural network.

Since then, graph-based approaches have been gaining popularity, with the emergence
of semantic graph convolutional networks (SemGCNs) [18], proposing a way of dealing
with the convolution weight sharing problem found in traditional graph convolutional
networks, in a way that, after the semantic definition of the graph, each node has its own
convolutional matrix.

Cross-Domain 3D Human Pose Estimation

The idea of using domain adaptation to 3D human pose estimation has been discussed
before. Zhang et al. [19], for example, proposed a method in which a synthetic depth-based
dataset is used for domain adaptation during the learning step. However, the idea of
estimating 3D human pose in a cross-domain scenario was still not discussed by them.

Recent works started to notice the discrepancy in performance between data obtained
from distinct distributions [20]. To deal with this issue, several approaches have been
proposed, such as that in [21], where synthetic pose datasets artificially generated were used
to enhance the amount of data available during the training. Other authors also followed
this data augmentation paradigm by using generative adversarial frameworks [22] or a
conditional variational auto encoder (CVAE), aiming to generate poses from another dataset
distribution [23].

The expansion of the training set through data augmentation was further discussed by
recent works aimed at working directly in cross-dataset scenarios, where the discrepancy
in performance is even more noticeable. One such work introduced augmentation by
adjustment of distinct geometric factors through a joint optimization algorithm trained
online [24].

Gholami et al. [25] addressed the domain gap caused by the cross-dataset evaluation
through the weakly supervised generation of synthetic 3D motions. These represented
the target distribution only looking at the 2D poses, working both as a pose estimation
technique and as a synthetic pose generator. A distinct approach that also employs syn-
thetically generated poses, focused on alleviating the domain shift jointly through feature
spaces and pose spaces using semantic awareness and skeletal pose adaptation.

The idea of directly using domain adaptation techniques to approach this problem has
been discussed in previous works. One such work [26] utilized the skinned multi-person
linear (SMPL) model and proposed a method called bilevel online adaptation to reconstruct
mesh and pose through a multi-objective optimization problem using temporal constraints
to deal with the domain discrepancy.

Chai et al. [27], on the other hand, observed that most of the distribution discrepancy of
cross-dataset evaluation stems from camera parameters and the diversity of local structures
during training. Thus, they employed domain adaptation by combining a global position
alignment mechanism, aiming to eliminate the viewpoint inconsistency, and a local pose
augmentation was used to enhance the diversity of the available poses.

The approach proposed by Kundu et al. [28] introduced the usage of uncertainty
mechanisms to work with self-supervised 3D human pose estimation. This operated in
such a way that minimizing the uncertainty for the unsupervised real dataset alongside a
supervised synthetic dataset allows for the cross-dataset pose adaptation. Zhang et al. [29],
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on the other hand, proposed a method for learning causal representations in order to
generate out-of-distribution features that can properly generalize to unseen domains.

Some works tried to solve the problem of pose misrepresentation, which is also
found in the literature regarding cross-dataset evaluation. The work Rapczyński et al. [30]
aimed to solve this issue through a pose-harmonization mechanism that involved scale
normalization and virtual camera augmentation. The approach Sárándi et al. [31], instead,
involved using an autoencoder to learn a set of latent keypoints that can properly represent
all of the distinct datasets across the same embedding.

Considering the limitations of existing methods in addressing the multifaceted chal-
lenges posed by domain discrepancy, often focusing on addressing specific aspects of the
domain discrepancy problem, our work aims to introduce a novel approach that tackles this
issue from a unified perspective. We propose a domain-unified approach that combines
domain adaptation techniques with a universal pose representation and a specialized
training technique to mitigate error propagation at the edges.

3. Proposed Method

As previously discussed, a few works approached the pose estimation problem in a
cross-dataset scenario. However, as exposed in Section 2, this is a multifaceted problem,
necessitating the resolution of distinct sub-problems before a valid solution can be considered.

Thus, we have proposed a new method aimed at creating a unified framework for
solving the 3D human pose estimation problem in a cross-dataset scenario. To this end,
our approach includes three novel modules, each oriented towards addressing specific
aspects of the problem, culminating in an integrated framework illustrated in Figure 2.
This method is composed of the following components:

Unified Pose Representation: To mitigate the challenge of pose misrepresentation found
across distinct datasets, we propose an original technique method to find a unified pose
representation. This approach involves finding a mapping function Φ that dynamically
estimates trajectory vectors between representations;
Uncertainty Estimation: Aimed at dealing with the error amplification towards peripheral
joints, a phenomenon exacerbated by cross-domain scenarios, we have devised a unique
strategy to estimate uncertainty through a naive approach. This involves the usage of an
uncertainty loss mechanism by penalizing poses with a high probability of being wrong.
Domain-Unified Approach Adaptation: Finally, with the objective of proposing a solution
to the domain shift found in cross-dataset scenarios, we incorporate an adversarial-based
domain adaptation technique. This mechanism ensures that the feature extraction module
finds a uniform representation of the features in a common domain.

Our approach, called Domain Unified Approach (DUA) for 3D Human Pose Estima-
tion, combines the proposed solutions for each sub-problem of cross-dataset 3D human
pose estimation into a single framework, in order to increase the robustness of the task.

The following subsections will delve into the specifics of each module, including the
motivations behind them, providing a thorough analysis of its implementation and outcomes.

3.1. Unified Pose Representation

The incompatibility between pose representations is a commonly observed problem
in 3D human pose estimation when dealing with different datasets. Previous works have
already discussed this issue in the literature. One such work aims to learn unified represen-
tations by utilizing different data sources concurrently [31]. This problem arises from the
existence of various body capture sensors and different 3D pose representations being used
in the literature causing each dataset to have its own representation.

This problem was previously addressed in the task of volumetric pose shape estima-
tion, by the creation of the Archive of Motion Capture as Surface Shapes (AMASS) [32].
This represents a large and varied database of human motion that unifies 15 different
optical-marker-based datasets through the lenses of SMPL, a representation widely used
by synthetic datasets in 3D human pose estimation. This is achieved through the usage of
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the motion and shape capture (MoSh) technique, aimed at estimating body shape SMPL
parameters given the 3D pose data [33].

An instance elucidating the difference between the moshed SMPL representation of
the 3D pose found in the Human3.6M dataset is depicted in Figure 3. In this figure, the
SMPL representation (red) has been juxtaposed with the H3.6M representation (black) to
accentuate their distinctions, most prominently evident in the regions of the hips and head.
The perceptible impact of the pose representation upon the task is undeniable, and unless a
common representation is established, the resolution of cross-dataset evaluations remains
a challenge.

Therefore, in order to mitigate this problem surrounding pose representations, our
approach aims to develop a pose converter used to transform the 3D human pose to
the singular pose representation using data obtained from both the SMPL and original
Human3.6M representations.

Figure 3. Overlapped joints of the Human3.6M dataset coming from two distinct pose representations,
SMPL (red) and the original H3.6M format (black). This makes explicit the difference in the pose
representations being used by common 3D human pose datasets in the literature.

This issue has already been discussed in the literature [30]. However, the authors
tried to find a harmonization and normalization technique through handcrafted features,
which does not preserve the body proportions after normalization. Thus, we proposed to
create a pose converter to dynamically learn how to convert from one pose representation
to another.

The idea of the proposed converter network is to dynamically find an array, based
on the network weights and the 3D pose input, that is added to the pose results in the
corresponding SMPL format.

The proposed converter network operates by dynamically identifying an array based
on the 3D pose input. In mathematical terms, the mapping function Φ : A 7→ B takes
a set of joints XA represented in pose format A and calculates weights to map XA to a
representation XB in the B pose format.

Instead of directly mapping A to B, the task of converting between representation
spaces of the same semantic skeleton graph involves finding trajectory vectors that describe
the new joint positions and their trajectories in the new pose space. To simplify this process,
we work directly with the joint trajectory vectors by introducing a mapping function
ϕ : A 7→ (B −A), in such a way that:

XB = ϕ(XA) + XA. (1)
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The weights of the mapping function ϕ are obtained through a single-layer residual
neural network using gradient descent. To train this network, a loss function combining
mean squared error and mean average error is employed. The loss is given by:

Lconv = α(XB − XA)2 + (1− α)‖XB − XA‖, (2)

where 0 ≤ α ≤ 1 is a hyperparameter used to impose the importance of each loss term.
Figure 4 illustrates the learning process of the proposed method.

Figure 4. Pose conversion method used to find a unified pose representation.

3.2. Pose Uncertainty

Three-dimensional (3D) human pose estimation presents a challenge in the form of
error propagation within the most extreme kinematic group, compounded by the ill-defined
monocular estimation resulting from self-occlusion during varying camera perspectives. In
order to mitigate this problem, an approach has been devised to quantify and reduce the
uncertainties arising from such scenarios.

Uncertainty in Bayesian networks was defined in two forms: epistemic uncertainty
captures the model’s ignorance despite sufficient training data with well-defined data
distributions, while aleatory uncertainty aims to model unexplained uncertainties within
the current training data [34]. Previous works have explored uncertainty modeling through
Bayesian networks for 3D human pose estimation using different approaches [28,35]. In
this work, we propose a method based on a naïve definition of uncertainty.

To quantify uncertainty, our method utilizes the features extracted from the pose
estimator to predict the probability of a joint being incorrect. A random variable U is
generated by mapping the normalized Euclidean distance of the joint difference, where
joints with small distances are mapped near zero and those with significant distances
are mapped to one. This mapping allows for improved assessment and quantification
of uncertainty associated with individual joints. The Uncertainty Module on Figure 2
illustrates our devised approach using the method proposed by Martinez et al. [9] as
the backbone.

Our method consists of J heads, each representing one joint in the pose represen-
tation. After passing through the sigmoid activation function, each head provides the
probability of a specific joint being incorrect. This probability is learned through supervised
training by comparing the output to the normalized Euclidean distance. The Uncertainty
Error is calculated as the L1 distance between the array composed of the heads and the
normalized distance.

Given the outputs of a pose feature extractor θ for an input x, inserted into each of the J
headsHj, and using a pose estimator head P to obtain the output 3D pose, we define U (x)
as the desired pose uncertainty obtained by concatenating each headHj. In other words,
using the concatenation operation denoted by || and the sigmoid function σ, we have:

U (x) = ||σ(Hj(θ(x))). (3)
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By combining the pose feature extractor and the pose estimator head through the
function Π(x) = P(θ(x)), where P represents the pose estimator, the uncertainty U (x) of
a given pose x can be learned. This is achieved by comparing the normalized Euclidean
distance of each joint in the predicted pose Π(x) to the ground-truth 3D pose y, and
comparing it to the output uncertainty using L1 distance. The loss function for training is
defined as:

Lunc(x) =

∥∥∥∥∥ (
√

Π(x)− y)2

‖Π(x)‖2‖y‖2
−U (x)

∥∥∥∥∥. (4)

3.3. Domain Adaptation

When data spanning from the training dataset and the test dataset show differences
between their data distributions, a problem called domain shift arises. This can cause a
negative impact on the accuracy of classifiers, causing images to be misclassified [36]. One
way to deal with this problem is to use domain adaptation techniques [37].

Domain adaptation refers to a sub-area of transfer learning, whose goal is to use data
from a domain other than the one used for training, in order to improve the accuracy of the
classifier when applied to an alternative dataset [15]. The formal definition of the concepts
that compose the basis of domain adaptation theory, according to Pan and Yang [38] are
exposed hereafter.

Definition 1 (Domain). A domain D is composed of a feature space F with d dimensions and a
marginal probability function P(x), which means that D = {F , P(x)}, with x ∈ F .

Definition 2 (Task). A domain D, a task T consists of a set of labels Y and a classifier f (x), which
means that T = {Y , f (x)}, with y ∈ Y and f (x) = P(y|x).

Definition 3 (Domain Adaptation). Given a source domain DS and a target domain DT , and
assuming that DS 6= DT regarding their marginal probabilities P(XS ) 6= P(XT ), and two tasks
TS ≈ TT , with conditional distribution P(YS |XS ) ≈ P(YT |XT ), the goal of domain adaptation
is to improve the prediction fT (·) in the target domain DT using the source domain DS data.

3.4. Domain-Unified Approach (DUA)

Recent advancements in deep learning enabled the development of architectures
and training protocols specifically focused on domain adaptation in the deep learning
setting [15]. Initially, deep neural networks were used solely as feature extractors, followed
by the application of traditional domain adaptation techniques. However, advancements
in the field led to architectures that directly address domain adaptation challenges.

These architectures take various forms, including methods based on domain dis-
crepancy, adversarial training, autoencoders, and spatial relationships within the data.
Considering the context of pose estimation, our objective is to tackle the following problem:

Problem 1 (Domain-Adaptive 3D Human Pose Estimation). Given a source domain DS
composed of a set of poses X, Y and an unsupervised target domain DT consisting of a set of pose
annotations X, with distinct marginal probabilities DS 6= DT , the goal is to find a feature map θ
and a pose estimator head P such that the conditional probability P(θ(XS )|XS ) ≈ P(θ(XT )|XT )
without negatively affecting the efficacy of the pose regressor head P .

In this context, our pose estimator should be capable of accurately inferring poses
from both domains with minimal error. In order to address the Problem 1, we proposed
the Domain-Unified Approach (DUA), a method capable of accurately inferring poses
from source and target domains with minimal error, by combining a pose conversion unit,
presented in Section 3.1, and the uncertainty loss mechanism, described in Section 3.2,
with a domain adaptation module. The general idea of DUA is to maximize the distance
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between 3D human poses using a domain discriminator that is jointly optimized with the
entire deep learning system.

To achieve this, we employ an architecture inspired by domain adversarial neural
networks (DANNs) [39]. To find the desired pose, given a pose estimator Π, the following
pose loss is used:

Lpose(x) = β(y−Π(x))2 + (1− β)‖y−Π(x)‖, (5)

where 0 ≤ β ≤ 1 is a hyperparameter that controls the importance of each part of the
pose loss.

The pose estimator is engaged in a minimax game, aiming to minimize Lpose while
simultaneously maximizing the domain discrepancy of the joints to find the optimal
representation from the pose feature extractor θ. This is achieved using a domain classifier
G, trained with the loss:

Ld(x) = G(θ(x)) log(G(θ(x))) + (1− G(θ(x)))log(1− G(θ(x))). (6)

In our approach, the unified pose representation obtained by the converter is pre-
trained, and its weights remain frozen during training. On the other hand, the other
components of the method are trained in an online mode. The overall training loss is
given by:

L = λLd + γLunc + Lpose , (7)

where 0 < λ < 1 and 0 < γ < 1 are regularization parameters.

4. Experimental Setting

This section aims to present the training and evaluation protocol, as well as the
experimental environment in which our method was assessed. Furthermore, this section
highlights the specific metrics and datasets utilized to conduct the experiments.

All our experiments were conducted using a computer with two Intel Xeon E5620
CPUs (Santa Clara, CA, USA), 48 GB of RAM, and an NVIDIA TitanXP GPU with 12 GB of
VRAM (Santa Clara, CA, USA). During training, a batch size of 2048 was employed, with a
learning rate of 1× 10−3 paired with the Adam optimizer. For hyperparameters, α = 0.5
were employed in the pose conversion scenario, for the pose estimator, λ = 0.01, γ = 0.1,
and β = 0.4 were chosen via empiric evaluation. The pose conversion was pre-trained and
its weights were frozen on the DUA method. Further details on each module can be found
in Section 5.

4.1. Evaluation Protocol

Cross-dataset evaluation in 3D human pose estimation shows a significant challenge
due to the inherent misalignment of target distributions, especially when synthetic data are
involved. The scarcity of literature addressing this specific scenario has motivated only a
few authors to explore the evaluation protocol for assessing cross-domain generalization
when synthetic data are involved [28,29].

In this work, our focus lies on evaluating the performance of synthetic to real cross-
domain pose estimation. Building upon previous works, we adopt a widely used general
domain adaptation evaluation protocol to assess the effectiveness of domain generalization.
Specifically, we employ an unsupervised training approach using the target dataset training
split, while utilizing the supervised source data for training. The evaluation is conducted
using both synthetic and real datasets as source data.

For the purpose of comparison, we adopt the unified pose representation of the Hu-
man3.6M model as our baseline, with the pose converter trained to transform the SMPL
pose representation of the dataset into the Human3.6M representation. By employing this
unified pose representation, we aim to facilitate meaningful comparisons with existing ap-
proaches.



Sensors 2023, 23, 7312 10 of 19

In the following sections, we will provide a description of the datasets and metrics
utilized in our experimental evaluation.

4.2. Datasets

We employed two datasets in our cross-domain experiments: SURREAL [40] and
Human3.6M [41]. In particular, the SURREAL dataset was used to represent the synthetic
image domain, while the Human3.6M dataset was used to represent the real people image
domain. Figure 5 shows examples of images found in both datasets.

Figure 5. Example images found in the SURREAL (first row) and Human3.6M (second row) datasets.

SURREAL: It is a large-scale dataset containing more than 6 million photorealistic synthetic
image frames found in real environments with large variations in texture, body time, camera
positioning, and pose actions. The dataset contains information about the depth map, body
parts, optical flow, and 2D and 3D joints;
Human3.6M: The Human3.6M dataset is composed of real people images obtained from
a Motion Capture system based on markers. It contains scenes of 11 professional actors
obtained in a controlled environment. The dataset has about 3.6 million annotations of 3D
poses, considering four different angles. This dataset also has three evaluation protocols
with different data for training and testing.

4.3. Metrics

The methods proposed and developed in this work were evaluated by the standard
metrics applied in the literature in the 3D human pose estimation problem. Among those
metrics, we mention:

MPJPE: The mean per-joint position error (MPJPE) represents the mean error, in millimeters,
between the estimated points and the real points after the root joint alignment;
P-MPJPE: The Procrustes-aligned mean per-joint position error (P-MPJPE) represents
the mean error, in millimeters, between the estimated points and the real points after Pro-
crustes alignment.

5. Results

In this section, we present the results of our 3D human pose estimation method,
which was evaluated using the protocol discussed in Section 4. Our method consists
of three essential modules: pose conversion, pose uncertainty, and a domain-unified
approach. To provide a comprehensive analysis, we showcase the results of each module
in their respective subsections. By evaluating the performance of each module individually,
we gain insights into their effectiveness and contribution toward accurate and robust
pose estimation.
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5.1. Unified Pose Representation

Our Unified Pose Representation technique described in Section 3.1 was trained for
100 epochs, and the converted poses were evaluated using the MPJPE (Protocol 1) and
P-MPJPE (Protocol 2) metrics on the Human3.6M dataset. We conducted evaluations
by joint and by action. The results, shown in Tables 1 and 2, clearly demonstrate the
significant error reduction achieved by the conversion method when compared to SMPL
poses without conversion. This error reduction has a particular impact when predicting
poses from different domains.

Table 1. Comparison of the MPJPE and P-MPJPE performance error by action (mm—the lower the
better) of the SMPL model without conversion (right) in comparison to the converted pose obtained
with our method (left), when overlapped to the original Human3.6M pose.

Action MPJPE SMPL P-MPJPE SMPL MPJPE Conversion P-MPJPE Conversion

Direct. 63.84 60.66 28.95 21.81
Discuss 69.74 60.04 35.19 26.59
Eating 70.95 60.04 33.72 26.07
Greet 63.18 59.99 28.90 23.13
Phone 71.20 61.81 36.77 29.83
Photo 68.89 62.11 32.77 26.06
Pose 63.29 60.25 29.68 23.77
Purch. 72.37 60.47 34.97 24.33
Sitting 77.79 62.63 38.93 31.20
SittingD. 81.35 64.39 42.91 32.94
Smoke 71.38 62.59 34.29 27.42
Wait 66.40 60.06 33.23 26.12
WalkD. 69.82 60.01 35.47 26.16
Walk 62.24 59.10 30.51 24.24
WalkT. 61.74 59.15 29.05 23.86
Avg. 68.95 60.89 33.70 26.24

The results presented in Table 1 demonstrate a notable reduction in the mean per-joint
position error (MPJPE) across all action groups when comparing the converted poses with
their original counterparts. This significant decrease highlights the detrimental effects
of pose misrepresentation and the positive impact of utilizing a properly converted pose
through our method. By effectively converting the poses to a more appropriate representa-
tion, our method successfully mitigates the negative effects of misrepresentation, leading
to improved pose estimation performance.

Furthermore, the results presented in Table 2 demonstrate the effectiveness of our
method in achieving a proper pose representation across all individual joints. The observed
reduction in error for each joint indicates the successful correction of mispositioning issues
and highlights the ability of our approach to mitigate error propagation from previous
representations. The largest errors per joint, previously contained within misrepresented
poses are now dislocated to edge joints, which aligns with the expected behavior in normal
pose estimation.

In Figure 6, we provide visual comparisons to illustrate the effectiveness of our pose
conversion method. On the left, a Human3.6M pose (depicted by red dots) is superimposed
on the SMPL pose without conversion (depicted by blue dots). In the middle, the resulting
conversion (depicted by black dots) is superimposed on the original SMPL pose (blue dots).
On the right, we compare the Human3.6M pose (red dots) to the SMPL pose converted to
the Human3.6M format using our method (black dots). It can be noted that the conversion
of the SMPL pose to the Human3.6M pose model helps to reduce errors, particularly in
the hip area, thus improving the overall pose estimation accuracy and alignment with the
target pose format.
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Table 2. Per-joint error (mm—the lower the better) when comparing the converted pose using our
method (left side) and the unconvertedSMPL poses (right side) with the original Human3.6M pose.

Joint MPJPE SMPL P-MPJPE SMPL MPJPE Conversion P-MPJPE Conversion

Hip 00.00 20.89 00.00 18.09
Right Hip 125.03 122.87 14.81 26.84
Right Knee 44.73 44.61 34.72 29.37
Right Foot 47.09 29.11 41.28 28.71
Left Hip 104.66 104.26 18.62 19.88
Left Knee 49.04 47.62 39.96 34.10
Left Foot 63.97 46.92 49.60 31.48
Spine 67.05 89.22 28.48 16.83
Thorax 71.94 62.84 35.18 24.20
Head 118.46 99.80 54.31 44.69
Left Shoulder 106.59 88.95 39.91 31.98
Left Elbow 60.27 35.68 41.93 23.66
Left Wrist 44.09 28.21 27.07 15.80
Right Shoulder 105.49 90.97 43.43 31.86
Right Elbow 55.11 37.31 42.07 26.76
Right Wrist 39.19 28.52 29.89 17.91

(a) (b) (c)
Figure 6. Overlapping of the different pose representations available, Human3.6M (red), SMPL
ground-truth (blue), converted pose (black). Item (a) shows a Human3.6M (red dots) pose super-
imposed on the original SMPL pose (blue dots). Item (b) shows the resulting pose after conversion
(black dots) superimposed to the original SMPL pose (blue dots). Item (c) shows the converted pose
(black dots) superimposed to the original Human3.6m pose (red dots).

It is evident from the visual comparisons that the pose conversion successfully aligns
the SMPL poses with the target format, effectively capturing the key joint positions and
maintaining the overall pose structure. The converted poses exhibit improved similarity to
the ground-truth poses, indicating the accuracy and fidelity of the conversion process. This
qualitative analysis further corroborates the quantitative results, demonstrating the efficacy
of the pose conversion method in achieving a more accurate and compatible representation
for 3D human pose estimation tasks.

5.2. Pose Uncertainty

Our proposed approach was trained on 200 epochs for each representation. The results
obtained are shown in Table 3. Results were evaluated in two scenarios, using a linear
backbone and a graph-based backbone, and with three types of 2D input information:
ground truth, stacked hourglass, and a more robust 2D pose extractor based on cascaded
pyramid networks.
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Table 3. Results of the MPJPE error (mm—the lower the better) obtained from the 3D human pose
considering all of the established scenarios with distinct 2D pose sources: stacked hourglass (HG)
(denoted by ∗), cascaded pyramid networks (CPNs) (denoted by †), and ground truth (GT) (denoted
by ‡). Experiments were performed using a linear backbone (indicated by ?) and a graph-based
backbone (indicated by §). The best results are presented in bold.

[9] ∗ [18] ∗ Ours ∗ Ours ∗ Ours †? Ours †§ [18] ‡ Ours ‡? Ours ‡§

Direct. 51.8 48.2 50.9 50.1 46.2 46.4 37.8 34.8 41.0
Discuss 56.2 60.8 54.5 56.1 50.4 52.1 49.4 42.4 46.2
Eating 58.1 51.8 56.0 58.0 51.1 51.8 37.6 35.6 34.4
Greet 59.0 64.0 57.0 56.7 52.7 52.2 40.9 39.9 39.9
Phone 69.5 64.6 65.7 63.5 57.3 56.5 45.1 42.2 38.1
Photo 78.4 53.6 72.6 73.1 67.8 67.0 41.4 50.3 46.6
Pose 55.2 51.1 52.6 52.4 50.5 51.5 40.1 42.6 44.3
Purch. 58.1 67.4 54.5 54.4 48.2 49.0 48.3 37.0 39.1
Sitting 74.0 88.7 70.2 71.1 64.1 64.7 50.1 49.5 46.0
SittingD. 94.6 57.7 89.4 93.5 72.6 73.7 42.2 54.0 52.4
Smoke 62.3 73.2 59.7 60.2 53.7 53.3 53.5 40.3 39.5
Wait 59.1 65.6 57.4 57.8 51.3 51.4 44.3 41.6 43.5
WalkD. 65.1 48.9 62.9 61.7 57.2 55.1 40.5 42.6 40.4
Walk 49.5 64.8 47.3 47.8 41.8 41.5 47.3 32.1 31.5
WalkT. 52.4 51.9 51.5 51.9 46.7 45.2 39.0 35.0 34.2
Avg. 62.9 60.8 60.2 60.6 54.1 54.1 43.8 41.3 41.1

The experimental results demonstrate that our approach surpasses the performance
of their respective backbones, providing better results in almost all the action groups,
and effectively mitigating the performance gap between graph-based and linear methods.
However, it is important to note that our method is still dependent on the choice of a
backbone architecture, as it inherits and improves upon the errors already present in
certain action groups from the backbone. In some cases, the original backbones still
outperformed our method, but on average, our approach resulted in lower errors. Moreover,
we observed that selecting a more accurate 2D human pose estimator significantly enhanced
the performance of our method, indicating the importance of leveraging reliable 2D pose
information in the overall pose estimation process.

Overall, our results validate the effectiveness of incorporating pose uncertainty esti-
mation into the 3D human pose estimation pipeline, leading to enhanced accuracy and
robustness in capturing human poses across different action categories.

5.3. Domain-Unified Approach

Our proposed technique aims to unify our previously proposed methods by combining
the pre-trained pose converter (with frozen weights), the pose uncertainty module, and
the domain adaptation protocol. The domain adaptation method was trained online for
300 epochs, and an evaluation was conducted using both the SURREAL and Human3.6M
datasets as source data. Results of the domain adaptation method are presented in Table 4.

Notably, the utilization of domain adaptation significantly mitigates the problem
caused by domain discrepancy, when evaluating the most practical scenario, of training
with a huge synthetic dataset and applying it to a real-world scenario (SURREAL→ Hu-
man3.6M), our method leads to a reduction of 44.1 mm in the mean per-joint position error
(MPJPE). This improvement surpasses the current state-of-the-art in the task. Addition-
ally, we included the SURREAL data without conversion only in the domain adaptation
scenario to compare and evaluate the effectiveness of the converted pose in the overall
method results.
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Table 4. Results from the MPJPE metric (mm—the lower the better) obtained from different domain
adaptation scenarios.

Target Dataset

Source Dataset SURREAL Converted SURREAL Human3.6M

MPJPE P-MPJPE MPJPE P-MPJPE MPJPE P-MPJPE

Human3.6M (No DA) 107.6 mm 65.7 mm 100.3 mm 62.6 mm 41.3 mm 32.7 mm
SURREAL (No DA) - - 40.4 mm 29.0 mm 150.8 mm 88.2 mm
Human3.6M + DUA 108.9 mm 70.1 mm 96.1 mm 57.9 mm 74.0 mm 52.2 mm
SURREAL + DUA - - 55.8 mm 37.7 mm 106.7 mm 65.6 mm

The impact of employing pose conversions is evident in the Human3.6M→ SURREAL
scenario, where the evaluation is conducted on a larger dataset comprising a distinct subset
of actions. In this challenging scenario, the performance of our method with domain
adaptation experiences a slight decrease with domain adaptation. This can be attributed
to the misrepresentation of poses, which results in difficulty in the optimization of our
domain discriminator. However, by incorporating pose conversion into our method, we
are able to mitigate this discrepancy and observe a performance improvement effectively.

Furthermore, when compared to other state-of-the-art methods employed in the real-
to-synthetic cross-dataset scenario (as shown in Table 5), our method outperforms all
previously proposed techniques. One significant advantage of our approach is the use of a
universal pose representation, wherein the conversion step mitigates issues arising from
variations in body capture sensors across different datasets.

Table 5. Quantitative results obtained on the H3.6M→SURREAL evaluation. Table results and layout
are obtained from experiments conducted by [28,29], and bold indicates the best result.

Method
H3.6M→SURREAL

MPJPE P-MPJPE

DDC [42] 117.5 80.1
DAN [43] 114.2 78.4
DANN [39] 113.6 77.2
Zhang et al. [29] 103.3 69.1
Kundu et al. [28] 99.6 67.2
Kundu et al. [28] * 96.4 65.1
DUA (Ours) 96.1 57.9

* Denotes an alternative approach for cross-domain evaluation conducted using test-time adaptation.

Ablation results are made explicit in Table 6. This table effectively illustrates the
importance of each component of our method. Specifically, the unified pose representation
emerges as the primary contributor to addressing the problem. Conversely, adopting
domain adaptation in isolation, without a common representation causes a negative impact
on the results. Interestingly, no such adverse influence is observed when solely employing
the shared pose representation. However, this negative impact is not seen when both
methods are combined, with a clear enhancement in results becoming evident.

Table 6. Explicit ablation results of our method evaluated on the Human3.6M→SURREAL scenario.

Method MPJPE

w/o Unified Pose Representation and DA 107.6 mm
w/o Unified Pose Representation 108.9 mm
w/o DA 100.3 mm
DUA 96.1 mm
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We also observed that the pose conversion step substantially impacts our method’s
overall performance. This finding highlights the importance of finding a unified pose
representation to mitigate domain discrepancy. Qualitative results are presented in Figure 7,
which clearly demonstrates the consequences of not applying domain adaptation, resulting
in significant distortions in certain pose regions, including body proportion loss and
mispositioning of joints, such as the hips.

Figure 7. Qualitative comparison of the results obtained by our method (DUA) in the Human3.6M
dataset, in comparison to a cross-dataset scenario without the proposed domain adaptation technique.

It is worth noting that the performance of the same-domain scenario exhibits a slight
decrease in efficacy when employing domain adaptation techniques. This can be attributed
to the objective of our approach, which aims to obtain a more generalized set of pose fea-
tures through domain adaptation. By doing so, our method mitigates the risk of overfitting
to specific actions or camera angles, as previously discussed in the literature [14].

Although there is a slight decrease in performance in the same-domain scenario,
the overall benefit of achieving improved generalization and robustness across different
domains outweighs this slight trade-off.
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6. Conclusions

In conclusion, our proposed technique successfully addressed key challenges in 3D
human pose estimation by integrating the pre-trained pose converter, the pose uncertainty
module, and the domain adaptation protocol. Through the application of domain adapta-
tion, we have effectively tackled the issue of domain discrepancy, leading to a remarkable
reduction of 44.1mm (29.24%) in mean per-joint position error MPJPE, when training with
the synthetic dataset SURREAL and evaluating with Human3.6M. This substantial im-
provement surpasses the current state-of-the-art in the task, highlighting the efficacy of our
domain adaptation method.

By utilizing a universal pose representation and incorporating the pose conversion
step, we effectively addressed challenges arising from variations in body capture sensors
across different datasets. This capability enhances the adaptability and generalization of
our approach, providing robust and accurate pose estimation results.

Our method corroborates with results from previous works [28,29], which assert the
existence of a problem regarding out-of-distribution unseen data and the possibility of
using domain adaptation as a way to increase robustness in these scenarios. Furthermore,
our method expands on existing techniques by not only tackling the challenge of domain
adaptation but also by addressing the intricacies of pose misrepresentation. By estab-
lishing a Unified Pose Representation for cross-domain data and effectively integrating
domain adaptation, we substantively enhance the outcomes, thereby contributing to the
advancement of the field.

Although there is still room for further advancements in the field of 3D human
pose estimation, such as improving the backbone estimation or enhancing the quality of
uncertainty estimation, our method represents a significant step forward in improving the
accuracy and robustness of pose estimation by the combination of our pose conversion,
pose uncertainty estimation, and domain adaptation modules.

Author Contributions: Conceptualization, J.R.R.M. and A.N.M.; methodology, J.R.R.M., A.N.M. and
S.B.; software, J.R.R.M.; validation, J.R.R.M.; formal analysis, J.R.R.M., A.N.M. and S.B.; investigation,
J.R.R.M.; resources, A.N.M. and S.B.; data curation, J.R.R.M.; writing—original draft preparation,
J.R.R.M.; writing—review and editing, A.N.M. and S.B.; visualization, J.R.R.M.; supervision, A.N.M.
and S.B.; project administration, A.N.M. and S.B.; funding acquisition, J.R.R.M. and A.N.M. All
authors have read and agreed to the published version of the manuscript.

Funding: Research funded by São Paulo Research Foundation (FAPESP) (grants 2022/07055-4 and
2021/02028-6) and Petrobras/Fundunesp (Process 2662/2017).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We will provide links to the datasets used in our experiments. Hu-
man3.6M: http://vision.imar.ro/human3.6m/description.php (accessed on 18 June 2023). SURREAL:
https://www.di.ens.fr/willow/research/surreal/data/ (accessed on 18 June 2023). Further data can
be made available on request.

Acknowledgments: This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior—Brasil (CAPES). The TitanXp used for this research was donated by the
NVIDIA Corporation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

http://vision.imar.ro/human3.6m/description.php
https://www.di.ens.fr/willow/research/surreal/data/


Sensors 2023, 23, 7312 17 of 19

AMASS Archive of Motion Capture As Surface Shapes
CPN Cascaded Pyramid Network
CVAE Conditional Variational Auto Encoder
DA Domain Adaptation
DAN Deep Adaptation Network

DANN Domain Adversarial Neural Network
DDC Deep Domain Confusion
DUA Domain Unified Approach
GT Ground Truth
H3.6M Human3.6M
HG Stacked Hourglass
MoSh Motion and Shape capture
MPJPE Mean Per-Joint Position Error
P-MPJPE Procrustes-Aligned Mean Per-Joint Position Error
SemGCN Semantic Graph Convolutional Network
SMPL Skinned Multi-Person Linear Model
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