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Abstract: In this article, we utilize Digital Twins (DT) with edge networks using blockchain technology
for reliable real-time data processing and provide a secure, scalable solution to bridge the gap between
physical edge networks and digital systems. Then, we suggest a Federated Learning (FL) framework
for collaborative computing that runs on a blockchain and is powered by the DT edge network. This
framework increases data privacy while enhancing system security and reliability. The provision
of sustainable Resource Allocation (RA) and ensure real-time data-processing interaction between
Internet of Things (IoT) devices and edge servers depends on a balance between system latency and
Energy Consumption (EC) based on the proposed DT-empowered Deep Reinforcement Learning
(Deep-RL) agent. The Deep-RL agent evaluates the performance action based on RA actions in DT to
distribute its bandwidth resources to IoT devices based on iteration and the actions taken to generate
the best policy and enhance learning efficiency at every step. The simulation results show that
the proposed Deep-RL-agent-based DT is able to exploit the best policy, select 47.5% of computing
activities that are to be carried out locally with 1 MHz bandwidth and minimize the weighted cost of
the transmission policy of edge-computing strategies.

Keywords: internet of things; digital twins; resource allocation; energy consumption; deep-RL

1. Introduction

Beyond Fifth Generation (B5G) architecture with Digital Twin (DT) is anticipated
to evolve in the network autonomy and generative intelligence properties, which could
optimize and adapt the network. The concept of a DT can be explored to effectively enable
the properties of B5G wireless systems. Enhancing the quality of applications and the user
experience of services such as autonomous vehicles and smart cities, in practice, depends
on evaluating and mining data from the edge network by allocating limited resources and
optimizing the network to deliver high-quality services [1,2]. The DT paradigm is one of
the most exciting technologies, which can offer instantaneous wireless connectivity and
very reliable wireless communication in a B5G network [3]. Due to the huge volume of
sent data and the distance between end users and the server, the DT wireless networks are
proposed to minimize latency and improve reliability for edge-computing applications [4].
Despite these recent advances and supporting technologies, it is still difficult to create
robust control algorithms for physical systems because of the discrepancy between the
results of data analysis and the required level of rapid data on their physical systems’
conditions [5]. At present, the centralized computing model imposes a significant burden
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on communication, which also raises concerns about data security. The Internet of Things
(IoT) framework’s provision of intelligent services is enabled by data processing based
on Artificial Intelligence (AI) algorithms. In IoT networks, the server can gather the
operational states and create behavior models for various environmental conditions to
create DTs. Solving this problem relies on machine learning techniques being applied to
distributed end IoT devices to establish a DT network at the edge. In order to enable secure
collaborative learning and develop trust among untrusting users, blockchain-enabled
Federated Learning (FL) is capable of improving reliability and enhancing data security
in a network. The proposed edge intelligence and a blockchain-powered IoT increase
service capacity while lowering edge service costs by utilizing cross-domain sharing and a
credit-differentiated transaction approval process [6]. Moreover, the distributed content
caching system integrates blockchain technology to improve the efficiency of distributed
learning by addressing the problem of data privacy with high-dimensional and time-
varying characteristics based on the proposed Deep Reinforcement Learning (Deep-RL) [7].

1.1. Related Works

Building DT models requires the synchronization of a massive amount of data, but the
digitization of the IoT is hampered by the limited computing power and communication
ability. Our proposed strategy is a framework based on a number of innovative and
beneficial technologies and algorithms, such as the incorporation of a blockchain and FL
into the DT for edge networks. Many forms of data from a physical entity can be integrated
into a digital space thanks to a DT [8]. The efficiency of DT was determined by the analysis
of a sizable amount of data created and employed in a variety of applications, such as
intelligent scheduling in smart cities, wireless network resources, and industrial real-time
monitoring and optimization [9,10]. Some works concentrated on the subject of wireless
networks. For instance, a DT edge network was proposed by the authors of [11] to provide
a blockchain-enabled Resource Allocation (RA) and scheduling relaying users’ manner.
To reduce the effects of unreliable communication between users and edge servers, the
authors in [12] proposed a DT wireless network to reduce latency and improve reliability
for edge-computing applications by mapping IoT devices to DTs in edge servers to improve
the efficiency of AI algorithms. In addition, combining the strengths of blockchain and AI
has led to significant advances in the delivery of secure and efficient resource management
in wireless networks. By integrating AI and blockchain, the authors of [13] suggested a
reliable and intelligent resource-sharing system to further build a content caching system
using Deep-RL. The authors in [14] proposed a support Vector Machine Training (SVM)
technique that protects privacy, called safe SVM, and used blockchain technology to create
an IoT network data-sharing framework that is reliable and secure for use by multiple data
providers. It is difficult to figure out how to interpret such data using IoT devices with
limited resources. The digitalization of the IoT is restricted by the limited computing power
and communication abilities, which makes it difficult to adopt blockchain to develop DT
models that demand trust and consensus across distributed users. Additionally, blockchain
technology enhances distributed learning’s effectiveness in solving the problem of data
privacy with high-dimensional and time-varying attributes based on the provided Deep-RL.

FL is a new paradigm that is attracting a lot of attention. It offers a brand-new dis-
tributed machine learning approach that can reduce the risk of information leaks and hence
increase data privacy [15]. As the wireless networks research community’s interest in FL
grows, a significant amount of effort [16] has been made in this field to enhance FL perfor-
mance through resource optimization. Based on an empowered FL scheme for DT-edge
networks to improve user learning security and data privacy, the authors in [17] presented
an FL and permissioned blockchain for DT-edge networks to improve effective commu-
nication and information security for IoT applications. To guarantee learning accuracy,
reliability, and security, the other authors proposed a dual-driven learning solution for the
DT-IoT, enabled by blockchain, to ensure real-time interactions for sustainable computing.
This solution depends on combining the DT with an edge network and adopting blockchain
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technology [18]. However, the authors of [19] proposed using FL in wireless networks and
offered the best compromise between Energy Consumption (EC) and the cost of learning
time. In other words, the security of FL has also been discussed in terms of users’ data
privacy and gradient leakage [20,21]. To increase privacy regarding the loss boundaries in
FL and improve security and privacy, the authors in [22] proposed implementing Bayesian
differential privacy by an effective method that enables a learning agent to modify its
policy and improve data-processing efficiency. Th method proposed in [23] applies a
new paradigm of DT networks by applying Deep RL. Most recent works [14–16] employ
blockchain to build consensus and trust among dispersed users, and guarantee the security
and privacy of user data by establishing a distributed ledger amongst users. To fill this
gap, this work focuses on achieving real-time data processing and computing to the edge
plane, based on the introduction of DT wireless networks, by integrating DTs into wireless
networks. Other studies [18–23] did not focus on RA’s relationship with user scheduling
and bandwidth allocation in IoT devices based on the use of Deep-RL in DTs to evaluate
its performance. Moreover, the above studies [18–23] have not investigated sustainable
RA or the optimized data relay challenge, wherein Deep Neural Networks (DNN) are
harnessed as the strategic schedulers within the strategy scheduler in the recommended
solution to balance learning accuracy and time expenditure. The significant contribution
of this framework is to establish an enduring RA system, guaranteeing seamless real-time
communication between IoT devices and edge servers. This accomplishment hinges on
the formulation of an optimized data relay challenge, wherein DNNs are harnessed as the
strategic schedulers within the suggested approach. The objective is to strike a harmo-
nious equilibrium between system responsiveness and EC, orchestrated by the innovative
utilization of the Deep-RL agent empowered by the proposed DT. The Deep-RL agent
evaluates the efficiency of an action by considering RA actions within the DT. According
to the iterations and actions taken, this assessment allocates bandwidth resources to IoT
devices. The main goal is to come up with an ideal policy that increases learning effec-
tiveness at each stage of the procedure. Then, for collaborative computing, we proposed a
blockchain-enabled FL framework running in the DT wireless networks to increase data
privacy while enhancing system security and reliability.

1.2. Motivation and Contributions

To increase the IoT devices’ performance, and boost the system’s reliability, security,
and enhance data privacy, we formulated the DT edge networks’ model optimization
problem and propose a blockchain-enabled FL framework to improve communication
efficiency. Accordingly, by simultaneously considering DT association, training data batch
size, and bandwidth allotment, we design the data-relaying optimization problem and
employ Deep Neural Networks (DNN) as the strategy scheduler in the recommended
solution to balance learning accuracy and time expenditure. The main contributions of this
paper are as follows:

• To effectively and appropriately optimize IoT networks, we proposed a DT-empowered
IoT framework that maps a data-driven DT device’s real-time operation using blockchain
technology.

• We use the FL framework to build the DT edge network models by employing a
gradient descent approach that can lower the overhead of data transfer and safeguard
data privacy. Furthermore, we use asynchronous model aggregation to increase
communication efficiency, which depends on enhancing the target of local computing
by decreasing wait times and keeping track of the training process achievement at
edge servers to reduce redundant user delays.

• We present a unique blockchain-supported DT-IoT framework to reduce the system
delay and EC and provide secure and reliable computing in DNN, as well as new
insight into the impact of the training process achievement requirements on the RA
efficiency. The proposed Deep-RL agent based on DT evaluates the performance action
based on RA for the user scheduling and bandwidth allocation in IoT devices in order



Sensors 2023, 23, 7262 4 of 17

to increase system stability, develop a balance in learning accuracy, and guarantee the
learning accuracy of IoT devices.

2. Materials and Methods

In this study, we present a DT-IoT system that can be integrated with blockchains and
users for edge computing. We suggest a blockchain-powered FL architecture to increase
security and guarantee the performance of edge computing. It has a user plane and an
edge plane that incorporate the DT into the edge network. To achieve secure-aware and
reliable-aware edge intelligence, the proposed approach integrates the blockchain and DT
based on an increase in the output accuracy and reduction in the loss in terms of DNN in IoT
systems. IoT devices receive the aggregated data from DT models following the blockchain
consensus process. In order to achieve sustainable RA in the IoT and address the issue of
poor accuracy, operational IoT devices can submit data that are sent to edge servers for
real-time updates. We set IoT device using the notation ҡ = {1, 2, . . . , Ҡ}. We consider a
set ҡ of Ҡ IoT devices in the user layer and connect them to the edge plane via wireless
communications. The edge layer is made up of multiple edge servers that have base
stations equipped with mobile edge servers. Wireless communications are used by each
edge server with the j = {1, 2, . . . , J } to communicate with the UEs within its coverage.
To ensure secure and reliable data transmission, edge servers are managed as blockchain
nodes. To protect real-time IoT devices, edge servers build DTs on the edge plane [18]. The
IoT device’s data are pre-processed to obtain vectors that reflect the operating state before
being used in the real-time twin modeling process. Then, edge servers collect and process
IoT device operating states to produce DT models, which are indicated as follows:
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written as: 
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ҡ represents their processing capacity,
and ϕҡ represents the performance index weight parameter of the improvement target in
the DT-IoT system.

2.1. Sustainable Blockchain Model for Secure Communication

Data exchange is becoming an essential element of the IoT for DTs and is essential
to maintaining IoT security. Reducing the duration of time required for model training
in various applications is a crucial challenge in the B5G network due to the expansion of
the user devices, the demand for communication with ultra-low latency, and the dynamic
network condition. IoT devices communicate data to edge servers in the DT-IoT system
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To
transmit data, sub-channels
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the noise power. The total time delay that an IoT device’s DT ҡ takes to update its status is
denoted as

Sensors 2023, 23, x FOR PEER REVIEW 5 of 17 
 

 

Ŋ  is the noise power. The total time delay that an IoT device’s DT ҡ takes to update its 
status is denoted as  

Ʈ =
|Ɗҡ(𝜏)|

 Ʀҡ(𝜏)
. (3)

The time of data upload depends on a blockchain delay and a communication delay 
in order to reduce the transmission load as follows:  

Firstly: The blockchain can significantly boost the cost-effectiveness of DTs by up-
dating real-time data. Based on an analysis of the consensus procedure of blockchain 
nodes, the blockchain latency between edge servers consists of the time it takes for infor-
mation to spread across edge servers and for new blocks to be created Ʈ . 

Ʈ = max log  𝒩
ƊҡƮ |ϣ |

Ʀ
, (4)

where 𝒩 represents the number of edge servers, |ϣ | is the level of transmitted model 
parameters of ҡ, and Ʀ  represents the achievable data transmission between edge serv-
ers.  

Secondly: The time for uploaded data depends on communication delays, which de-
pends on the data size of DT Ƣ  stored by edge servers, ʄ ,Ƣ

𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
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From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

upd =

∣∣∣
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Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  
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Ŋ
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where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

ҡ(τ)
. (3)
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The time of data upload depends on a blockchain delay and a communication delay
in order to reduce the transmission load as follows:

Firstly: The blockchain can significantly boost the cost-effectiveness of DTs by updat-
ing real-time data. Based on an analysis of the consensus procedure of blockchain nodes,
the blockchain latency between edge servers consists of the time it takes for information to
spread across edge servers and for new blocks to be created
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data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
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where N represents the number of edge servers, |
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We consider a set ҡ of Ҡ IoT devices in the user layer and connect them to the edge plane 
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where ƿҡ represents the IoT devices’ transmission power, Ʀ ҡ represents their upload 
data rate, Ɗ ҡ represents their pre-processed data set, Ӻ ҡ represents their processing ca-
pacity, and 𝜑ҡ represents the performance index weight parameter of the improvement 
target in the DT-IoT system. 

2.1. Sustainable Blockchain Model for Secure Communication 
Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  

Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

es represents the achievable data transmission between edge servers.
Secondly: The time for uploaded data depends on communication delays, which

depends on the data size of DT
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sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
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to the proliferation of user devices, it is necessary to shorten the amount of time needed 
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𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

i stored by edge servers,

Sensors 2023, 23, x FOR PEER REVIEW 6 of 17 
 

 

Ƒҡ(ϣ) =
Ɗҡ

∑ ∑  ƒҡҡ∈Ɗҡ
ϣ , Ƨ ҡ, Ȥ ҡ ,      ∀ ҡ ∈ Ҡ  (7)

where Ɗҡ =  |Ɗҡ| represents the number of collected data samples by the IoT device, and 
 ƒ  ҡ(ϣ) is the loss function that calculates the error in the local training model for data 
sample 𝑗. In order to train model parameters, we employ a gradient descent approach. 
When iteration begins, edge servers provide the same knowledge to all IoT devices 𝜏. To 
train the model parameter ϣ(𝜏), each IoT device integrates its local dataset Ɗҡ, denoted 
as: 

ϣ (𝜏) = ϣ(𝜏 − 1) − ƛ∇Ƒҡϣ(𝜏 − 1), (8)

where ƛ > 0 is the learning step size, and ∇Ƒҡϣ(𝜏 − 1) indicates the gradient value of 
the parameter’s loss function ϣ(𝜏 − 1). To improve learning accuracy, reducing the EC 
and URLLC of the DT-IoT system depends on enhancing the target of local computing by 
decreasing wait times and minimizing the communication load. This depends on keeping 
track of the training process achievement at edge servers to maintain a global iteration 
that records the aggregation process’ performance in the blockchain. The IoT devices com-
pute updated ϣ (𝜏) in the subsequent iterations by computing the gradient descent of 
the local loss function in iteration 𝜏. The size of the local training data and the loss value, 
represented by ℓ = min

ҡ∈Ҡ
Ɗҡ/Ƒҡ(ϣ), are used to determine the learning accuracy for each 

IoT device. 

2.3. IoT Device for EC 
In this section, local training and data transfer are the two key steps of the EC. The 

computational EC of CPU frequency generated by IoT devices ҡ is denoted by ʄҡ
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For local computation, the EC of device ҡ can be expressed as follows: 

Ԑҡ = 𝛿 𝒞ҡ |Ɗҡ|(ʄҡ) , (9)

where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
sample, 𝛿 = 𝛾 log (

ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

C
j,
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i
, which represent the

computation speed of the CPU cycle frequency at edge servers j, and Cj represents the
number of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption,
which helps to shorten the IoT device communication’s computation times and speed up
the FL training process. The communication delay can be written as
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various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
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ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 
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ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

C
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data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
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to the proliferation of user devices, it is necessary to shorten the amount of time needed 
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maintain secure connections. Depending on the particular components of latency being 
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Reductions in the amount of time needed for model training across a variety of applica-
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i

Cj. (5)
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via wireless communications. The edge layer is made up of multiple edge servers that 
have base stations equipped with mobile edge servers. Wireless communications are used 
by each edge server with the 𝑗 = {1, 2, … , 𝐽 } to communicate with the UEs within its cov-
erage. To ensure secure and reliable data transmission, edge servers are managed as block-
chain nodes. To protect real-time IoT devices, edge servers build DTs on the edge plane 
[18]. The IoT device’s data are pre-processed to obtain vectors that reflect the operating 
state before being used in the real-time twin modeling process. Then, edge servers collect 
and process IoT device operating states to produce DT models, which are indicated as 
follows: 

Ɛ = (ƿҡ, Ʀҡ, Ɗҡ, Ӻҡ, 𝜑ҡ),  (1)

where ƿҡ represents the IoT devices’ transmission power, Ʀ ҡ represents their upload 
data rate, Ɗ ҡ represents their pre-processed data set, Ӻ ҡ represents their processing ca-
pacity, and 𝜑ҡ represents the performance index weight parameter of the improvement 
target in the DT-IoT system. 

2.1. Sustainable Blockchain Model for Secure Communication 
Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  

Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

ҡ(τ)| represents the data size for IoT device updates.

2.2. Learning Accuracy for DT-IoT -FL

The edge association problem is crucial for minimizing the total time cost in DT
edge networks while maintaining the required level of learning accuracy. To evaluate the
decision-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic
load prediction and training independent local models based on the locally collected data
and then shares their model parameters on the edge servers using wireless transmitting
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing
data security in a network to enable secure collaborative learning and foster trust among
untrusted users. The proposed method incorporates blockchain and DT to improve output
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due
to the proliferation of user devices, it is necessary to shorten the amount of time needed for
model training in the various applications, as illustrated in (2) and (3), in order to maintain
secure connections. Depending on the particular components of latency being assessed,
the dataset utilized for latency calculations in a blockchain setting can change. Reductions
in the amount of time needed for model training across a variety of applications due to
the growth in user devices and the necessity of ultra-low latency connection are shown in
(3). The amount of time it takes to upload data is influenced by the blockchain latency (4)
between edge servers and the communication delay for the data size of DT
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2.3. IoT Device for EC 
In this section, local training and data transfer are the two key steps of the EC. The 

computational EC of CPU frequency generated by IoT devices ҡ is denoted by ʄҡ
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Ԑҡ = 𝛿 𝒞ҡ |Ɗҡ|(ʄҡ) , (9)

where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
sample, 𝛿 = 𝛾 log (

ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

C
j,
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Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

ҡ, which is a collection

of data samples with the coordinates
{

Sensors 2023, 23, x FOR PEER REVIEW 5 of 17 
 

 

Ŋ  is the noise power. The total time delay that an IoT device’s DT ҡ takes to update its 
status is denoted as  

Ʈ =
|Ɗҡ(𝜏)|

 Ʀҡ(𝜏)
. (3)

The time of data upload depends on a blockchain delay and a communication delay 
in order to reduce the transmission load as follows:  

Firstly: The blockchain can significantly boost the cost-effectiveness of DTs by up-
dating real-time data. Based on an analysis of the consensus procedure of blockchain 
nodes, the blockchain latency between edge servers consists of the time it takes for infor-
mation to spread across edge servers and for new blocks to be created Ʈ . 

Ʈ = max log  𝒩
ƊҡƮ |ϣ |

Ʀ
, (4)

where 𝒩 represents the number of edge servers, |ϣ | is the level of transmitted model 
parameters of ҡ, and Ʀ  represents the achievable data transmission between edge serv-
ers.  

Secondly: The time for uploaded data depends on communication delays, which de-
pends on the data size of DT Ƣ  stored by edge servers, ʄ ,Ƣ

𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption, 
which helps to shorten the IoT device communication’s computation times and speed up 
the FL training process. The communication delay can be written as 

Ʈ = max ∑
ƊƢ  

ʄ ,Ƣ
𝒞

Ƣ
𝒞 . (5)

From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

j ,

Sensors 2023, 23, x FOR PEER REVIEW 5 of 17 
 

 

Ŋ  is the noise power. The total time delay that an IoT device’s DT ҡ takes to update its 
status is denoted as  

Ʈ =
|Ɗҡ(𝜏)|

 Ʀҡ(𝜏)
. (3)

The time of data upload depends on a blockchain delay and a communication delay 
in order to reduce the transmission load as follows:  

Firstly: The blockchain can significantly boost the cost-effectiveness of DTs by up-
dating real-time data. Based on an analysis of the consensus procedure of blockchain 
nodes, the blockchain latency between edge servers consists of the time it takes for infor-
mation to spread across edge servers and for new blocks to be created Ʈ . 

Ʈ = max log  𝒩
ƊҡƮ |ϣ |

Ʀ
, (4)

where 𝒩 represents the number of edge servers, |ϣ | is the level of transmitted model 
parameters of ҡ, and Ʀ  represents the achievable data transmission between edge serv-
ers.  

Secondly: The time for uploaded data depends on communication delays, which de-
pends on the data size of DT Ƣ  stored by edge servers, ʄ ,Ƣ

𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption, 
which helps to shorten the IoT device communication’s computation times and speed up 
the FL training process. The communication delay can be written as 

Ʈ = max ∑
ƊƢ  

ʄ ,Ƣ
𝒞

Ƣ
𝒞 . (5)

From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

j

}
j=1

, where

Sensors 2023, 23, x FOR PEER REVIEW 5 of 17 
 

 

Ŋ  is the noise power. The total time delay that an IoT device’s DT ҡ takes to update its 
status is denoted as  

Ʈ =
|Ɗҡ(𝜏)|

 Ʀҡ(𝜏)
. (3)

The time of data upload depends on a blockchain delay and a communication delay 
in order to reduce the transmission load as follows:  

Firstly: The blockchain can significantly boost the cost-effectiveness of DTs by up-
dating real-time data. Based on an analysis of the consensus procedure of blockchain 
nodes, the blockchain latency between edge servers consists of the time it takes for infor-
mation to spread across edge servers and for new blocks to be created Ʈ . 

Ʈ = max log  𝒩
ƊҡƮ |ϣ |

Ʀ
, (4)

where 𝒩 represents the number of edge servers, |ϣ | is the level of transmitted model 
parameters of ҡ, and Ʀ  represents the achievable data transmission between edge serv-
ers.  

Secondly: The time for uploaded data depends on communication delays, which de-
pends on the data size of DT Ƣ  stored by edge servers, ʄ ,Ƣ

𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption, 
which helps to shorten the IoT device communication’s computation times and speed up 
the FL training process. The communication delay can be written as 

Ʈ = max ∑
ƊƢ  

ʄ ,Ƣ
𝒞

Ƣ
𝒞 . (5)

From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

j is sample j− th input and

Sensors 2023, 23, x FOR PEER REVIEW 5 of 17 
 

 

Ŋ  is the noise power. The total time delay that an IoT device’s DT ҡ takes to update its 
status is denoted as  

Ʈ =
|Ɗҡ(𝜏)|

 Ʀҡ(𝜏)
. (3)

The time of data upload depends on a blockchain delay and a communication delay 
in order to reduce the transmission load as follows:  

Firstly: The blockchain can significantly boost the cost-effectiveness of DTs by up-
dating real-time data. Based on an analysis of the consensus procedure of blockchain 
nodes, the blockchain latency between edge servers consists of the time it takes for infor-
mation to spread across edge servers and for new blocks to be created Ʈ . 

Ʈ = max log  𝒩
ƊҡƮ |ϣ |

Ʀ
, (4)

where 𝒩 represents the number of edge servers, |ϣ | is the level of transmitted model 
parameters of ҡ, and Ʀ  represents the achievable data transmission between edge serv-
ers.  

Secondly: The time for uploaded data depends on communication delays, which de-
pends on the data size of DT Ƣ  stored by edge servers, ʄ ,Ƣ

𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption, 
which helps to shorten the IoT device communication’s computation times and speed up 
the FL training process. The communication delay can be written as 

Ʈ = max ∑
ƊƢ  

ʄ ,Ƣ
𝒞

Ƣ
𝒞 . (5)

From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

j is



Sensors 2023, 23, 7262 6 of 17

sample j− th output. Using the data set from IoT device ҡ, the local loss function can be
calculated as
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maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  

Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

ҡ(
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where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 
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ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

ҡ

(
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Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 
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IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

ҡ

∣∣∣ represents the number of collected data samples by the IoT device, and

Sensors 2023, 23, x FOR PEER REVIEW 6 of 17 
 

 

Ƒҡ(ϣ) =
Ɗҡ

∑ ∑  ƒҡҡ∈Ɗҡ
ϣ , Ƨ ҡ, Ȥ ҡ ,      ∀ ҡ ∈ Ҡ  (7)

where Ɗҡ =  |Ɗҡ| represents the number of collected data samples by the IoT device, and 
 ƒ  ҡ(ϣ) is the loss function that calculates the error in the local training model for data 
sample 𝑗. In order to train model parameters, we employ a gradient descent approach. 
When iteration begins, edge servers provide the same knowledge to all IoT devices 𝜏. To 
train the model parameter ϣ(𝜏), each IoT device integrates its local dataset Ɗҡ, denoted 
as: 

ϣ (𝜏) = ϣ(𝜏 − 1) − ƛ∇Ƒҡϣ(𝜏 − 1), (8)

where ƛ > 0 is the learning step size, and ∇Ƒҡϣ(𝜏 − 1) indicates the gradient value of 
the parameter’s loss function ϣ(𝜏 − 1). To improve learning accuracy, reducing the EC 
and URLLC of the DT-IoT system depends on enhancing the target of local computing by 
decreasing wait times and minimizing the communication load. This depends on keeping 
track of the training process achievement at edge servers to maintain a global iteration 
that records the aggregation process’ performance in the blockchain. The IoT devices com-
pute updated ϣ (𝜏) in the subsequent iterations by computing the gradient descent of 
the local loss function in iteration 𝜏. The size of the local training data and the loss value, 
represented by ℓ = min

ҡ∈Ҡ
Ɗҡ/Ƒҡ(ϣ), are used to determine the learning accuracy for each 

IoT device. 

2.3. IoT Device for EC 
In this section, local training and data transfer are the two key steps of the EC. The 

computational EC of CPU frequency generated by IoT devices ҡ is denoted by ʄҡ
𝒞  [20,25]. 

For local computation, the EC of device ҡ can be expressed as follows: 

Ԑҡ = 𝛿 𝒞ҡ |Ɗҡ|(ʄҡ) , (9)

where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
sample, 𝛿 = 𝛾 log (

ѱ
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Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

ҡ(
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) is the loss function that calculates the error in the local training model for data
sample j. In order to train model parameters, we employ a gradient descent approach.
When iteration begins, edge servers provide the same knowledge to all IoT devices τ. To
train the model parameter
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Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)
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where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 
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networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
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𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
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(τ − 1), (8)
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Ԑҡ =
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Ŋ
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The total EC of the DT-IoT devices connected to FL can be calculated as: 
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3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)
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tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
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(τ − 1). To improve learning accuracy, reducing the EC
and URLLC of the DT-IoT system depends on enhancing the target of local computing by
decreasing wait times and minimizing the communication load. This depends on keeping
track of the training process achievement at edge servers to maintain a global iteration that
records the aggregation process’ performance in the blockchain. The IoT devices compute
updated
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j(τ) in the subsequent iterations by computing the gradient descent of the local
loss function in iteration τ. The size of the local training data and the loss value, represented
by
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defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

= min
ҡ∈Ҡ
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Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 
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Ʀ
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𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption, 
which helps to shorten the IoT device communication’s computation times and speed up 
the FL training process. The communication delay can be written as 

Ʈ = max ∑
ƊƢ  

ʄ ,Ƣ
𝒞

Ƣ
𝒞 . (5)

From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

), are used to determine the learning accuracy for each IoT device.

2.3. IoT Device for EC

In this section, local training and data transfer are the two key steps of the EC. The

computational EC of CPU frequency generated by IoT devices ҡ is denoted by
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ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

C
ҡ [20,25].

For local computation, the EC of device ҡ can be expressed as follows:
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ҡ = δ Cҡ
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3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
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∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

ҡ

)2
, (9)

where Cҡ is the total amount of processing CPU cycles for IoT devices to train a data sample,
δ = γ log2(

1
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) represents the effective switched capacitance, γ represents a constant related
to the data size and
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is the minimum loss at this rate. The local model upload requires the
following EC:
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The amount of energy consumed in terms of DT when using an edge server can be
written as:
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The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

c
j =δ Cj ∑
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load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
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DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ
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𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
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i
)

2

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as:
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3. Formulation of the Communication Effectiveness Problem for DT-IoT Using FL

In this section, our goal is to develop a federated model that minimizes the weighted
cost and enhances learning accuracy from distributed IoT devices. So, the FL model
must be trained with minimal resource consumption due to the limited computing and
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communication resources of IoT devices. A trade-off between learning accuracy and
resource efficiency is established by the combinatorial problem of resource optimization.
The optimization problem can be expressed as:

min
1∣∣∣
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2.1. Sustainable Blockchain Model for Secure Communication 
Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
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of an IoT device ҡ is written as  

Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

∣∣∣
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be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)
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s. t. O ∈ {0, 1}, (13a)
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trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
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ҡ , ∀ ҡ ∈ Ҡ (13c)

Pmin
ҡ ≤ Pҡ ≤ Pmax

ҡ , ∀ ҡ ∈ Ҡ (13d)

0 ≤ σ ≤ 1, (13e)

where O is the controlling factor that determines how the loss function and cost functions
are balanced, as shown in (13a). The time for uploaded data depends on a number of DT
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that represent the IoT device behaviour model created by examining their previous running
data during the time slots given to IoT devices at iteration τ by DT
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less than the upper or maximum bounds
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3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

C
j and can be solved according to [23]. From

(13d), edge servers are shown to have a sufficient power supply compared to IoT devices.
From (13e), the scheduling policy vector for IoT devices σ is shown to be able to determine
which relay IoT devices will send the nearest training parameter. The transmission time
for uploaded data is determined by a number of
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i that indicate the behaviour model
developed by analysing their historical operating data throughout the time slots provided
at iteration by
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to cycle CPU frequency, which are fewer than the upper or maximum constraints
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3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

C
j . In

contrast to IoT devices, edge servers from (13d) have a suitable power. As seen in (13c) and
(13d), when resources are limited, blockchain technology can be included in both edge and
IoT devices. It is difficult to use conventional convex optimization algorithms to successfully
solve problems in (13), which is an NP-hard optimization issue. Updates to the global model

depend on the minimization of the problem in (13) 1
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Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
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ƈ log
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Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

ҡ
∑J

j=1 ∑
ҡ∈
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where ƿҡ represents the IoT devices’ transmission power, Ʀ ҡ represents their upload 
data rate, Ɗ ҡ represents their pre-processed data set, Ӻ ҡ represents their processing ca-
pacity, and 𝜑ҡ represents the performance index weight parameter of the improvement 
target in the DT-IoT system. 

2.1. Sustainable Blockchain Model for Secure Communication 
Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  

Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

Ҡ
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ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

ҡ

(
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Ŋ
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where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

ҡ(
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), and the ability to
obtain the exact learning used on training data and the accuracy of the local data. The
objective of communication improvements to edge servers is explained by the equation in
the second term (13), as follows:

min
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load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
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DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ
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𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 
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Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
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efficiency is established by the combinatorial problem of resource optimization. The opti-
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min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

total

)
(14)

s. t. O ∈ {0, 1}, (14a)

∑
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to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
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𝒞  [20,25]. 
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Ԑҡ = 𝛿 𝒞ҡ |Ɗҡ|(ʄҡ) , (9)

where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
sample, 𝛿 = 𝛾 log (

ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

th represent the estimated threshold for all IoT devices in the DT for delay
and EC respectively. As all edge servers have DT models
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i, the number of IoT devices is
equal to the number of edge servers according to (14b). Maintaining DTs and training data
in real-time would be difficult because of the predicted growth in IoT devices and data
traffic in B5G networks, which means that providing sustainable RA and processing large
amounts of data become considerably more complicated. Each device needs to reduce the
EC of devices and the costs of system delays. In addition, the efficiency of the learning
accuracy and sustainability of the DT-IoT system should be guaranteed by maintaining
an appropriate level of URLLC and ensuring the learning accuracy of IoT devices. In
order to provide sustainable intelligent contact between IoT devices and edge servers,
and to increase the effectiveness of integrated DTs with edge networks, real-time data
processing must strike a balance between system delays and EC. To provide sustainable
RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and generate
the policy for each IoT device.

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT

The DNN can explore the DT to avoid the loss of training caused by exploration-
intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model
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j that was trained by
ҡ has insufficient communication abilities; to improve the communication efficiency, we
propose an IoT device
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defined as: 
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ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

that might be used to relay the transmission activities of the
model ҡ. The potential IoT devices
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can perform all the transmission requirements of ҡ to
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j should be transmitted from ҡ to
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, and decide on the responsibility
of the scheduling policy to obtain the value of O ∈ {0, 1}. After that, IoT devices with
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i designation are provided with bandwidth resources based on their statuses. Using
DNN, IoT devices can become more responsive to their surroundings and use less network
capacity by uploading fewer pieces of data to edge servers and saving valuable network

bandwidth [26,27]. The DNN is represented as φ =

{
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From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
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𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

(

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

+

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

)
. (15)

Let

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

represent the input to the

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

− th layer of the network, and

Sensors 2023, 23, x FOR PEER REVIEW 5 of 17 
 

 

Ŋ  is the noise power. The total time delay that an IoT device’s DT ҡ takes to update its 
status is denoted as  

Ʈ =
|Ɗҡ(𝜏)|

 Ʀҡ(𝜏)
. (3)

The time of data upload depends on a blockchain delay and a communication delay 
in order to reduce the transmission load as follows:  

Firstly: The blockchain can significantly boost the cost-effectiveness of DTs by up-
dating real-time data. Based on an analysis of the consensus procedure of blockchain 
nodes, the blockchain latency between edge servers consists of the time it takes for infor-
mation to spread across edge servers and for new blocks to be created Ʈ . 

Ʈ = max log  𝒩
ƊҡƮ |ϣ |

Ʀ
, (4)

where 𝒩 represents the number of edge servers, |ϣ | is the level of transmitted model 
parameters of ҡ, and Ʀ  represents the achievable data transmission between edge serv-
ers.  

Secondly: The time for uploaded data depends on communication delays, which de-
pends on the data size of DT Ƣ  stored by edge servers, ʄ ,Ƣ

𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption, 
which helps to shorten the IoT device communication’s computation times and speed up 
the FL training process. The communication delay can be written as 

Ʈ = max ∑
ƊƢ  
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𝒞

Ƣ
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From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 
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Ɛ = (ƿҡ, Ʀҡ, Ɗҡ, Ӻҡ, 𝜑ҡ),  (1)

where ƿҡ represents the IoT devices’ transmission power, Ʀ ҡ represents their upload 
data rate, Ɗ ҡ represents their pre-processed data set, Ӻ ҡ represents their processing ca-
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2.1. Sustainable Blockchain Model for Secure Communication 
Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  

Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 
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where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
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ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)
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sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
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). In order to reduce the training
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the
scale of training data, so that they are be smaller in volume and resource-efficient.

3.2. Deep-RL Agent for RA

Reinforcement learning has been successfully used to handle RA and task resource
scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on RA
actions (Oτ ,
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τ), where each agent is optimally assigned in DT to distribute its bandwidth
resources to IoT devices based on iteration and the actions taken to distribute resources
(Oτ ,
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vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 
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Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

, state-space δ, and reward K of the Deep-RL
framework are all explicitly defined. Furthermore, the Deep-RL framework takes the
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𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

, which consists of bandwidth RA
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O at every state sτ ∈ δ. The state environment can be defined as sτ =
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Ŋ
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) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)
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3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  
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ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

τ is the speed of the CPU cycle frequency at edge servers,
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in order to increase system stability, develop a balance in learning accuracy, and 
guarantee the learning accuracy of IoT devices. 

2. Materials and Methods 
In this study, we present a DT-IoT system that can be integrated with blockchains 

and users for edge computing. We suggest a blockchain-powered FL architecture to in-
crease security and guarantee the performance of edge computing. It has a user plane and 
an edge plane that incorporate the DT into the edge network. To achieve secure-aware 
and reliable-aware edge intelligence, the proposed approach integrates the blockchain 
and DT based on an increase in the output accuracy and reduction in the loss in terms of 
DNN in IoT systems. IoT devices receive the aggregated data from DT models following 
the blockchain consensus process. In order to achieve sustainable RA in the IoT and ad-
dress the issue of poor accuracy, operational IoT devices can submit data that are sent to 
edge servers for real-time updates. We set IoT device using the notation ҡ = {1, 2, … , Ҡ}. 
We consider a set ҡ of Ҡ IoT devices in the user layer and connect them to the edge plane 
via wireless communications. The edge layer is made up of multiple edge servers that 
have base stations equipped with mobile edge servers. Wireless communications are used 
by each edge server with the 𝑗 = {1, 2, … , 𝐽 } to communicate with the UEs within its cov-
erage. To ensure secure and reliable data transmission, edge servers are managed as block-
chain nodes. To protect real-time IoT devices, edge servers build DTs on the edge plane 
[18]. The IoT device’s data are pre-processed to obtain vectors that reflect the operating 
state before being used in the real-time twin modeling process. Then, edge servers collect 
and process IoT device operating states to produce DT models, which are indicated as 
follows: 

Ɛ = (ƿҡ, Ʀҡ, Ɗҡ, Ӻҡ, 𝜑ҡ),  (1)

where ƿҡ represents the IoT devices’ transmission power, Ʀ ҡ represents their upload 
data rate, Ɗ ҡ represents their pre-processed data set, Ӻ ҡ represents their processing ca-
pacity, and 𝜑ҡ represents the performance index weight parameter of the improvement 
target in the DT-IoT system. 

2.1. Sustainable Blockchain Model for Secure Communication 
Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  

Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

τ is the data rate vector that can be achieved and regulated by the bandwidth allocation
policy, and
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Ŋ  is the noise power. The total time delay that an IoT device’s DT ҡ takes to update its 
status is denoted as  

Ʈ =
|Ɗҡ(𝜏)|

 Ʀҡ(𝜏)
. (3)

The time of data upload depends on a blockchain delay and a communication delay 
in order to reduce the transmission load as follows:  

Firstly: The blockchain can significantly boost the cost-effectiveness of DTs by up-
dating real-time data. Based on an analysis of the consensus procedure of blockchain 
nodes, the blockchain latency between edge servers consists of the time it takes for infor-
mation to spread across edge servers and for new blocks to be created Ʈ . 

Ʈ = max log  𝒩
ƊҡƮ |ϣ |

Ʀ
, (4)

where 𝒩 represents the number of edge servers, |ϣ | is the level of transmitted model 
parameters of ҡ, and Ʀ  represents the achievable data transmission between edge serv-
ers.  

Secondly: The time for uploaded data depends on communication delays, which de-
pends on the data size of DT Ƣ  stored by edge servers, ʄ ,Ƣ

𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption, 
which helps to shorten the IoT device communication’s computation times and speed up 
the FL training process. The communication delay can be written as 

Ʈ = max ∑
ƊƢ  

ʄ ,Ƣ
𝒞

Ƣ
𝒞 . (5)

From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

τ represents the learning for IoT device [25,28]. To achieve high efficiency in
the learning accuracy and sustainability of the DT-IoT, the agent continues to the next state
and receives a reward immediately. The reward function Kτ can be defined as:

Kτ =

{
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devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

tot + C i f
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where Ɗҡ =  |Ɗҡ| represents the number of collected data samples by the IoT device, and 
 ƒ  ҡ(ϣ) is the loss function that calculates the error in the local training model for data 
sample 𝑗. In order to train model parameters, we employ a gradient descent approach. 
When iteration begins, edge servers provide the same knowledge to all IoT devices 𝜏. To 
train the model parameter ϣ(𝜏), each IoT device integrates its local dataset Ɗҡ, denoted 
as: 

ϣ (𝜏) = ϣ(𝜏 − 1) − ƛ∇Ƒҡϣ(𝜏 − 1), (8)

where ƛ > 0 is the learning step size, and ∇Ƒҡϣ(𝜏 − 1) indicates the gradient value of 
the parameter’s loss function ϣ(𝜏 − 1). To improve learning accuracy, reducing the EC 
and URLLC of the DT-IoT system depends on enhancing the target of local computing by 
decreasing wait times and minimizing the communication load. This depends on keeping 
track of the training process achievement at edge servers to maintain a global iteration 
that records the aggregation process’ performance in the blockchain. The IoT devices com-
pute updated ϣ (𝜏) in the subsequent iterations by computing the gradient descent of 
the local loss function in iteration 𝜏. The size of the local training data and the loss value, 
represented by ℓ = min

ҡ∈Ҡ
Ɗҡ/Ƒҡ(ϣ), are used to determine the learning accuracy for each 

IoT device. 

2.3. IoT Device for EC 
In this section, local training and data transfer are the two key steps of the EC. The 

computational EC of CPU frequency generated by IoT devices ҡ is denoted by ʄҡ
𝒞  [20,25]. 

For local computation, the EC of device ҡ can be expressed as follows: 

Ԑҡ = 𝛿 𝒞ҡ |Ɗҡ|(ʄҡ) , (9)

where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
sample, 𝛿 = 𝛾 log (

ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

, P,

Sensors 2023, 23, x FOR PEER REVIEW 6 of 17 
 

 

Ƒҡ(ϣ) =
Ɗҡ

∑ ∑  ƒҡҡ∈Ɗҡ
ϣ , Ƨ ҡ, Ȥ ҡ ,      ∀ ҡ ∈ Ҡ  (7)

where Ɗҡ =  |Ɗҡ| represents the number of collected data samples by the IoT device, and 
 ƒ  ҡ(ϣ) is the loss function that calculates the error in the local training model for data 
sample 𝑗. In order to train model parameters, we employ a gradient descent approach. 
When iteration begins, edge servers provide the same knowledge to all IoT devices 𝜏. To 
train the model parameter ϣ(𝜏), each IoT device integrates its local dataset Ɗҡ, denoted 
as: 

ϣ (𝜏) = ϣ(𝜏 − 1) − ƛ∇Ƒҡϣ(𝜏 − 1), (8)

where ƛ > 0 is the learning step size, and ∇Ƒҡϣ(𝜏 − 1) indicates the gradient value of 
the parameter’s loss function ϣ(𝜏 − 1). To improve learning accuracy, reducing the EC 
and URLLC of the DT-IoT system depends on enhancing the target of local computing by 
decreasing wait times and minimizing the communication load. This depends on keeping 
track of the training process achievement at edge servers to maintain a global iteration 
that records the aggregation process’ performance in the blockchain. The IoT devices com-
pute updated ϣ (𝜏) in the subsequent iterations by computing the gradient descent of 
the local loss function in iteration 𝜏. The size of the local training data and the loss value, 
represented by ℓ = min

ҡ∈Ҡ
Ɗҡ/Ƒҡ(ϣ), are used to determine the learning accuracy for each 

IoT device. 

2.3. IoT Device for EC 
In this section, local training and data transfer are the two key steps of the EC. The 

computational EC of CPU frequency generated by IoT devices ҡ is denoted by ʄҡ
𝒞  [20,25]. 

For local computation, the EC of device ҡ can be expressed as follows: 

Ԑҡ = 𝛿 𝒞ҡ |Ɗҡ|(ʄҡ) , (9)

where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
sample, 𝛿 = 𝛾 log (

ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

≤

Sensors 2023, 23, x FOR PEER REVIEW 6 of 17 
 

 

Ƒҡ(ϣ) =
Ɗҡ

∑ ∑  ƒҡҡ∈Ɗҡ
ϣ , Ƨ ҡ, Ȥ ҡ ,      ∀ ҡ ∈ Ҡ  (7)

where Ɗҡ =  |Ɗҡ| represents the number of collected data samples by the IoT device, and 
 ƒ  ҡ(ϣ) is the loss function that calculates the error in the local training model for data 
sample 𝑗. In order to train model parameters, we employ a gradient descent approach. 
When iteration begins, edge servers provide the same knowledge to all IoT devices 𝜏. To 
train the model parameter ϣ(𝜏), each IoT device integrates its local dataset Ɗҡ, denoted 
as: 

ϣ (𝜏) = ϣ(𝜏 − 1) − ƛ∇Ƒҡϣ(𝜏 − 1), (8)

where ƛ > 0 is the learning step size, and ∇Ƒҡϣ(𝜏 − 1) indicates the gradient value of 
the parameter’s loss function ϣ(𝜏 − 1). To improve learning accuracy, reducing the EC 
and URLLC of the DT-IoT system depends on enhancing the target of local computing by 
decreasing wait times and minimizing the communication load. This depends on keeping 
track of the training process achievement at edge servers to maintain a global iteration 
that records the aggregation process’ performance in the blockchain. The IoT devices com-
pute updated ϣ (𝜏) in the subsequent iterations by computing the gradient descent of 
the local loss function in iteration 𝜏. The size of the local training data and the loss value, 
represented by ℓ = min

ҡ∈Ҡ
Ɗҡ/Ƒҡ(ϣ), are used to determine the learning accuracy for each 

IoT device. 

2.3. IoT Device for EC 
In this section, local training and data transfer are the two key steps of the EC. The 

computational EC of CPU frequency generated by IoT devices ҡ is denoted by ʄҡ
𝒞  [20,25]. 

For local computation, the EC of device ҡ can be expressed as follows: 

Ԑҡ = 𝛿 𝒞ҡ |Ɗҡ|(ʄҡ) , (9)

where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
sample, 𝛿 = 𝛾 log (

ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

total

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
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RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

tot − C otherwise
, (16)

where C represents the number of CPU cycles executed to train data for IoT devices. From
(16), a positive reward
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ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

tot + C will be added and encouraged as a suitable trade-off to
balance the RA between computing and communication resources if all metrics following
the action pass the constraint check. Using a positive reward
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ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  
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 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

tot + C in combination with
an active learning technique can greatly reduce the cost of training a model. Based on the
current states obtained from DT, the performance of the action is quantified by the reward
function at the end of the iteration. The constraints in (16) i f
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ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

≤
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total will also reduce
system time costs and every agent attempts to utilize the optimum policy to maximize an
accumulative reward based on frequently updated O and
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, minimizing the weighted
cost of the transmission policy and enhancing learning efficiency at every step. Otherwise,
when the training sample for CPU C was negative, the iteration completion time and the
reward K(τ) have a negative relationship. To evaluate and improve the reward function of
in DT-IoT, the future cumulative discounted reward at a time slot can be defined as follows:

rҡ,τ = Kτ+1 +∅Kτ+2 + · · · = ∑
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𝒪 = ∑ ƒ ƜℓƳℓ + ɓℓℒ
ℓ . (18)

Minimizing the weighted cost of transmission policy for distributed IoT devices in 
(13) depends on adjusting the values of 𝒪 ҡ ∈ 𝒪, assigning the relevant transmission time 
Ƣ  and saving this into replay memory as training samples when  Ʀҡ ≤ Ʀ  and ʄҡ  ≥ ʄ . 
The minimization of the cost necessary to provide the optimal relaying strategy for state 
𝔰  can be achieved as follows: 

                               𝒪max
𝒪ҡ

∑ ∑ 𝒪 ҡ × Ƣ ×
𝒞

ʄ ҡ×Ʀ ҡ

Ҡ
ҡ  

                                    s.t. 𝒪 ҡ ∈ {0, 1},  

                                                  ∑  Ƣ
Ƣ

= Ҡ, 

                                    𝒫ҡ ≤ 𝒪 ҡ ×  Ƣ ҡ × ʄ ҡ, 

                     𝒫ҡ ≤ 𝒪 ҡ ×  Ƣ ҡ × ʄ ҡ ≤ 𝒫ҡ , 

(19)

In (19), every agent attempts to utilize the optimum policy to maximize the accumu-
lative reward based on frequently updated 𝒪 and Ƣ, minimizing the weighted cost of 
transmission policy and enhancing learning efficiency at every step, as shown in Algo-
rithm 1 and Figure 1 [12,20].  

  

ҡ
Kτ+ҡ+1 , (17)

where ∅ ∈ [0, 1] represents the discount factor. Based on the appropriate running states
from the DT-enabled exploration, the DNN experience training data are obtained sτ ={
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by each edge server with the 𝑗 = {1, 2, … , 𝐽 } to communicate with the UEs within its cov-
erage. To ensure secure and reliable data transmission, edge servers are managed as block-
chain nodes. To protect real-time IoT devices, edge servers build DTs on the edge plane 
[18]. The IoT device’s data are pre-processed to obtain vectors that reflect the operating 
state before being used in the real-time twin modeling process. Then, edge servers collect 
and process IoT device operating states to produce DT models, which are indicated as 
follows: 
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2.1. Sustainable Blockchain Model for Secure Communication 
Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  
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Ŋ
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where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 
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Ŋ
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The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
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The total EC of the DT-IoT devices connected to FL can be calculated as: 
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3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

τ ,

Sensors 2023, 23, x FOR PEER REVIEW 4 of 17 
 

 

computing by decreasing wait times and keeping track of the training process 
achievement at edge servers to reduce redundant user delays. 

 We present a unique blockchain-supported DT-IoT framework to reduce the system 
delay and EC and provide secure and reliable computing in DNN, as well as new 
insight into the impact of the training process achievement requirements on the RA 
efficiency. The proposed Deep-RL agent based on DT evaluates the performance 
action based on RA for the user scheduling and bandwidth allocation in IoT devices 
in order to increase system stability, develop a balance in learning accuracy, and 
guarantee the learning accuracy of IoT devices. 

2. Materials and Methods 
In this study, we present a DT-IoT system that can be integrated with blockchains 

and users for edge computing. We suggest a blockchain-powered FL architecture to in-
crease security and guarantee the performance of edge computing. It has a user plane and 
an edge plane that incorporate the DT into the edge network. To achieve secure-aware 
and reliable-aware edge intelligence, the proposed approach integrates the blockchain 
and DT based on an increase in the output accuracy and reduction in the loss in terms of 
DNN in IoT systems. IoT devices receive the aggregated data from DT models following 
the blockchain consensus process. In order to achieve sustainable RA in the IoT and ad-
dress the issue of poor accuracy, operational IoT devices can submit data that are sent to 
edge servers for real-time updates. We set IoT device using the notation ҡ = {1, 2, … , Ҡ}. 
We consider a set ҡ of Ҡ IoT devices in the user layer and connect them to the edge plane 
via wireless communications. The edge layer is made up of multiple edge servers that 
have base stations equipped with mobile edge servers. Wireless communications are used 
by each edge server with the 𝑗 = {1, 2, … , 𝐽 } to communicate with the UEs within its cov-
erage. To ensure secure and reliable data transmission, edge servers are managed as block-
chain nodes. To protect real-time IoT devices, edge servers build DTs on the edge plane 
[18]. The IoT device’s data are pre-processed to obtain vectors that reflect the operating 
state before being used in the real-time twin modeling process. Then, edge servers collect 
and process IoT device operating states to produce DT models, which are indicated as 
follows: 

Ɛ = (ƿҡ, Ʀҡ, Ɗҡ, Ӻҡ, 𝜑ҡ),  (1)

where ƿҡ represents the IoT devices’ transmission power, Ʀ ҡ represents their upload 
data rate, Ɗ ҡ represents their pre-processed data set, Ӻ ҡ represents their processing ca-
pacity, and 𝜑ҡ represents the performance index weight parameter of the improvement 
target in the DT-IoT system. 

2.1. Sustainable Blockchain Model for Secure Communication 
Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  

Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

τ ,

Sensors 2023, 23, x FOR PEER REVIEW 5 of 17 
 

 

Ŋ  is the noise power. The total time delay that an IoT device’s DT ҡ takes to update its 
status is denoted as  

Ʈ =
|Ɗҡ(𝜏)|

 Ʀҡ(𝜏)
. (3)

The time of data upload depends on a blockchain delay and a communication delay 
in order to reduce the transmission load as follows:  

Firstly: The blockchain can significantly boost the cost-effectiveness of DTs by up-
dating real-time data. Based on an analysis of the consensus procedure of blockchain 
nodes, the blockchain latency between edge servers consists of the time it takes for infor-
mation to spread across edge servers and for new blocks to be created Ʈ . 

Ʈ = max log  𝒩
ƊҡƮ |ϣ |

Ʀ
, (4)

where 𝒩 represents the number of edge servers, |ϣ | is the level of transmitted model 
parameters of ҡ, and Ʀ  represents the achievable data transmission between edge serv-
ers.  

Secondly: The time for uploaded data depends on communication delays, which de-
pends on the data size of DT Ƣ  stored by edge servers, ʄ ,Ƣ

𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption, 
which helps to shorten the IoT device communication’s computation times and speed up 
the FL training process. The communication delay can be written as 

Ʈ = max ∑
ƊƢ  

ʄ ,Ƣ
𝒞

Ƣ
𝒞 . (5)
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Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

τ

}
. The final output is obtained by applying the activation function
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able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 
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where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 
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2.3. IoT Device for EC 
In this section, local training and data transfer are the two key steps of the EC. The 

computational EC of CPU frequency generated by IoT devices ҡ is denoted by ʄҡ
𝒞  [20,25]. 

For local computation, the EC of device ҡ can be expressed as follows: 

Ԑҡ = 𝛿 𝒞ҡ |Ɗҡ|(ʄҡ) , (9)

where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
sample, 𝛿 = 𝛾 log (

ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)
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tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
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the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 
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where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 
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From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

are the output for the relaying strategies towards
network states, which are investigated and generated as:

O = ∑L
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ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

(
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sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈
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Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =
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ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 
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)
. (18)

Minimizing the weighted cost of transmission policy for distributed IoT devices in
(13) depends on adjusting the values of Ojҡ ∈ O, assigning the relevant transmission time
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Secondly: The time for uploaded data depends on communication delays, which de-
pends on the data size of DT Ƣ  stored by edge servers, ʄ ,Ƣ

𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption, 
which helps to shorten the IoT device communication’s computation times and speed up 
the FL training process. The communication delay can be written as 

Ʈ = max ∑
ƊƢ  

ʄ ,Ƣ
𝒞

Ƣ
𝒞 . (5)

From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

j and saving this into replay memory as training samples when
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Ɛ = (ƿҡ, Ʀҡ, Ɗҡ, Ӻҡ, 𝜑ҡ),  (1)

where ƿҡ represents the IoT devices’ transmission power, Ʀ ҡ represents their upload 
data rate, Ɗ ҡ represents their pre-processed data set, Ӻ ҡ represents their processing ca-
pacity, and 𝜑ҡ represents the performance index weight parameter of the improvement 
target in the DT-IoT system. 

2.1. Sustainable Blockchain Model for Secure Communication 
Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  

Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

ҡ ≤
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IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

j and

Sensors 2023, 23, x FOR PEER REVIEW 6 of 17 
 

 

Ƒҡ(ϣ) =
Ɗҡ

∑ ∑  ƒҡҡ∈Ɗҡ
ϣ , Ƨ ҡ, Ȥ ҡ ,      ∀ ҡ ∈ Ҡ  (7)

where Ɗҡ =  |Ɗҡ| represents the number of collected data samples by the IoT device, and 
 ƒ  ҡ(ϣ) is the loss function that calculates the error in the local training model for data 
sample 𝑗. In order to train model parameters, we employ a gradient descent approach. 
When iteration begins, edge servers provide the same knowledge to all IoT devices 𝜏. To 
train the model parameter ϣ(𝜏), each IoT device integrates its local dataset Ɗҡ, denoted 
as: 

ϣ (𝜏) = ϣ(𝜏 − 1) − ƛ∇Ƒҡϣ(𝜏 − 1), (8)

where ƛ > 0 is the learning step size, and ∇Ƒҡϣ(𝜏 − 1) indicates the gradient value of 
the parameter’s loss function ϣ(𝜏 − 1). To improve learning accuracy, reducing the EC 
and URLLC of the DT-IoT system depends on enhancing the target of local computing by 
decreasing wait times and minimizing the communication load. This depends on keeping 
track of the training process achievement at edge servers to maintain a global iteration 
that records the aggregation process’ performance in the blockchain. The IoT devices com-
pute updated ϣ (𝜏) in the subsequent iterations by computing the gradient descent of 
the local loss function in iteration 𝜏. The size of the local training data and the loss value, 
represented by ℓ = min

ҡ∈Ҡ
Ɗҡ/Ƒҡ(ϣ), are used to determine the learning accuracy for each 

IoT device. 

2.3. IoT Device for EC 
In this section, local training and data transfer are the two key steps of the EC. The 

computational EC of CPU frequency generated by IoT devices ҡ is denoted by ʄҡ
𝒞  [20,25]. 

For local computation, the EC of device ҡ can be expressed as follows: 

Ԑҡ = 𝛿 𝒞ҡ |Ɗҡ|(ʄҡ) , (9)

where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
sample, 𝛿 = 𝛾 log (

ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)
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The minimization of the cost necessary to provide the optimal relaying strategy for state sτ

can be achieved as follows:

Omax
Oҡj

∑Ҡ
ҡ ∑J

j Ojҡ ×
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The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 
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Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

jҡ

s.t. Ojҡ ∈ {0, 1},

∑
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Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ
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|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

jҡ,

Pmin
ҡ ≤ Ojҡ ×
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jҡ ≤ Pmax
ҡ ,

(19)

In (19), every agent attempts to utilize the optimum policy to maximize the accumu-
lative reward based on frequently updated O and
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, minimizing the weighted cost of
transmission policy and enhancing learning efficiency at every step, as shown in Algorithm
1 and Figure 1 [12,20].

Algorithm 1: Deep-RL Agent for RA Scheduling Algorithm in DT-IoT

1. Input Set

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

devices. In order to provide sustainable intelligent contact between IoT devices and edge 
servers, and to increase the effectiveness of integrated DTs with edge networks, real-time 
data processing must strike a balance between system delays and EC. To provide sustain-
able RA, we proposed a DT-empowered Deep-RL-based algorithm to train DNN and gen-
erate the policy for each IoT device. 

3.1. DNN-Train-Based Resource Scheduling Algorithm in DT-IoT 
The DNN can explore the DT to avoid the loss of training caused by exploration-

intensive resource consumption in real-time based on transmitting the “straggler’s” trans-
mission tasks to the users with higher connectivity. The model ϣ  that was trained by ҡ 
has insufficient communication abilities; to improve the communication efficiency, we 
propose an IoT device ӄ that might be used to relay the transmission activities of the 
model ҡ. The potential IoT devices ӄ can perform all the transmission requirements of 
ҡ to determine whether ϣ  should be transmitted from ҡ to ӄ, and decide on the re-
sponsibility of the scheduling policy to obtain the value of 𝒪 ∈ {0, 1}. After that, IoT de-
vices with the Ƣ  designation are provided with bandwidth resources based on their sta-
tuses. Using DNN, IoT devices can become more responsive to their surroundings and 
use less network capacity by uploading fewer pieces of data to edge servers and saving 
valuable network bandwidth [26,27]. The DNN is represented as ф = {Ɯℓ, ɓℓ}, where ℓ ∈

{1, … . , ℒ} represents the DNN’s ℓ − 𝑡ℎ layer. Using the weight vectors Ɯℓand bias in 
vector ɓℓ, the DNN can be written as: 

Ȥℓ = ƒ ƜℓƳℓ + ɓℓ . (15)

Let Ƴℓ represent the input to the  ℓ − 𝑡ℎ layer of the network, and Ȥℓ is the output 
of neuron ᴎ in layer 𝑙. The system’s states, such as the transmission rate that can be 
achieved and the computational power of each IoT device, are input into the DNN during 
the learning process. The output of the DNN is the best relay policy. The DNN models are 
trained using the training data in each epoch (Ʀ, ʄ, Ƣ, Ʈ). In order to reduce the training 
complexity in DNN, we proposed using a Deep-RL agent to train the policy to reduce the 
scale of training data, so that they are be smaller in volume and resource-efficient. 

3.2. Deep-RL Agent for RA 
Reinforcement learning has been successfully used to handle RA and task resource 

scheduling problems in the DT-IoT. Deep-RL evaluates the performance action based on 
RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 
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where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 
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ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

ҡand
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;
2. Output: value O satisfying (19);
3. For each edge server j ≤ J, complete the following;
4. Initialize DT-IoT environment setup;
5. For each time slot τ, complete the following;

6. Evaluate the performance action based on RA actions (Oτ ,
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τ);
7. Check the suitable trade-off to balance the RA between computing and communication

according to (16);
8. End for;
9. Compute cumulative discounted reward at a time slot and transit to the next state

sτ in DNN based on the actions taken to distribute resources (Oτ ,
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τ);

10. Store states and optimal allocation (Oτ ,
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Ŋ
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where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

ҡ ≤

Sensors 2023, 23, x FOR PEER REVIEW 4 of 17 
 

 

computing by decreasing wait times and keeping track of the training process 
achievement at edge servers to reduce redundant user delays. 

 We present a unique blockchain-supported DT-IoT framework to reduce the system 
delay and EC and provide secure and reliable computing in DNN, as well as new 
insight into the impact of the training process achievement requirements on the RA 
efficiency. The proposed Deep-RL agent based on DT evaluates the performance 
action based on RA for the user scheduling and bandwidth allocation in IoT devices 
in order to increase system stability, develop a balance in learning accuracy, and 
guarantee the learning accuracy of IoT devices. 

2. Materials and Methods 
In this study, we present a DT-IoT system that can be integrated with blockchains 

and users for edge computing. We suggest a blockchain-powered FL architecture to in-
crease security and guarantee the performance of edge computing. It has a user plane and 
an edge plane that incorporate the DT into the edge network. To achieve secure-aware 
and reliable-aware edge intelligence, the proposed approach integrates the blockchain 
and DT based on an increase in the output accuracy and reduction in the loss in terms of 
DNN in IoT systems. IoT devices receive the aggregated data from DT models following 
the blockchain consensus process. In order to achieve sustainable RA in the IoT and ad-
dress the issue of poor accuracy, operational IoT devices can submit data that are sent to 
edge servers for real-time updates. We set IoT device using the notation ҡ = {1, 2, … , Ҡ}. 
We consider a set ҡ of Ҡ IoT devices in the user layer and connect them to the edge plane 
via wireless communications. The edge layer is made up of multiple edge servers that 
have base stations equipped with mobile edge servers. Wireless communications are used 
by each edge server with the 𝑗 = {1, 2, … , 𝐽 } to communicate with the UEs within its cov-
erage. To ensure secure and reliable data transmission, edge servers are managed as block-
chain nodes. To protect real-time IoT devices, edge servers build DTs on the edge plane 
[18]. The IoT device’s data are pre-processed to obtain vectors that reflect the operating 
state before being used in the real-time twin modeling process. Then, edge servers collect 
and process IoT device operating states to produce DT models, which are indicated as 
follows: 

Ɛ = (ƿҡ, Ʀҡ, Ɗҡ, Ӻҡ, 𝜑ҡ),  (1)

where ƿҡ represents the IoT devices’ transmission power, Ʀ ҡ represents their upload 
data rate, Ɗ ҡ represents their pre-processed data set, Ӻ ҡ represents their processing ca-
pacity, and 𝜑ҡ represents the performance index weight parameter of the improvement 
target in the DT-IoT system. 

2.1. Sustainable Blockchain Model for Secure Communication 
Data exchange is becoming an essential element of the IoT for DTs and is essential to 

maintaining IoT security. Reducing the duration of time required for model training in 
various applications is a crucial challenge in the B5G network due to the expansion of the 
user devices, the demand for communication with ultra-low latency, and the dynamic 
network condition. IoT devices communicate data to edge servers in the DT-IoT system 
enabled by blockchain via orthogonal frequency division multiple access (OFDMA). To 
transmit data, sub-channels Ƈ are shared with the IoT device ҡ. The maximal data rate 
of an IoT device ҡ is written as  

Ʀҡ(𝜏) = ∑ 𝛽𝜁ҡ,ƈ
Ƈ
ƈ log

𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ
,  (2)

where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
IoT device ҡ, 𝒫ҡ,ƈ(𝜏) is the IoT device’s ҡ for transmission power in subchannel ƈ, and 

j
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Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)
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j;
11. Minimize the cost necessary to obtain the optimal relaying strategy according to (18) and

(19);
12. End for;
13. Train the DNN model using the previously saved samples (sτ , Oτ).
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4. Discussion

This section in the DT-IoT system proposes the evaluated methods for the Proposed
Deep-RL agent based on the DT- RA algorithm. Here, a DT-IoT system with 4 edge servers
and 16 IoT devices is built with help from the blockchain. We evenly divide the channel gain
(
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where 𝛽 represents the transmission bandwidth, 𝒽ҡ,ƈ(𝜏) represents the IoT device’s ҡ 
for channel gain at time slot 𝜏, 𝜁ҡ,ƈ represents the number of sub-channels allocated to 
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(τ)) into 11 levels and quantize it as [30] before determining the boundary values.

FL efficiency is measured using the MNIST real-world dataset [31] and the Fashion-MNIST
dataset [32]. Each dataset has a training set with 60,000 examples and a testing set with
10,000 examples as show in Table 1 [20,26].

Table 1. Simulation parameters.

Parameter Value

Communication bandwidth 30 MHz
Transmit power P 20 dBm

Adjusting the target weight [1,6,12] 0.8
CPU clock speed mobile edge server [17,19] 1.2× 1012 Hz

Discount factor [25–27] 0.5
Time slot duration τ [1,3,10] 0.05

Noise figure 5 dB
The data size of each IoT device [25,28] [0∼ 50] MB

In comparison to other methods, the proposed Deep-RL agent based on DT offers
the best reward performance, quickest convergence, and most stable learning process.
Exploring various data-relaying policies tells the agent how to maximize the overall reward,
as shown in (16).

The size of the steps taken to update the model parameters during training is deter-
mined by the learning step size, which is an important variable shown in Figure 2. Con-
vergence speed and stability are impacted. A new transaction is added to the blockchain
every time a learning step involves changing the learning step size. The iteration number,
learning step size, and possibly other pertinent metadata are all recorded in this transaction,
along with other pertinent information. The best reward value for user scheduling and
bandwidth allocation is attained when the learning accuracy is
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= 0.003. From Figure 2, the best reward is obtained when the learning strategy
maximizes the learning accuracy through more than 4000 iterations. The stringent latency
requirements of the increasing number of IoT devices may make delayed convergence
impossible to achieve. As training iterations are extended, the worst performance only
depends on the immediate reward based on RA for the user scheduling and bandwidth
allocation, which increases overall loss.

Figure 3 shows the time cost related to the increasing number of iterations. The
discount factor in Deep-RL, as seen in Figure 3, symbolises the preference for future
benefits over present ones. Through the blockchain, transactions on a distributed network
are verified and agreed upon. Due to the increase in training from ∅ = 0.6 to ∅ = 0.8,
this process naturally generates time delays. The blockchain has the ability to contribute
value in terms of data openness to avoid limiting the effectiveness of Deep-RL training. It
is directly able to reduce the time required to train a Deep-RL agent. When the discount
factor is ∅ = 0.6, the time required to run our Deep-RL-based agent is substantially lower;
this is because of the process of iterative exploration. Using a positive reward
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RA actions (𝒪 , Ƣ ), where each agent is optimally assigned in DT to distribute its band-
width resources to IoT devices based on iteration and the actions taken to distribute re-
sources (𝒪 , Ƣ ). Thus, the action-value function Ѧ, state-space 𝛿, and reward 𝔎 of the 
Deep-RL framework are all explicitly defined. Furthermore, the Deep-RL framework 
takes the required action 𝔞 ∈ Ѧ, which consists of bandwidth RA Ƣ and IoT devices 
scheduling 𝒪 at every state 𝔰 ∈ 𝛿 . The state environment can be defined as 𝔰 =

{Ƒ , ʄ , Ʀ , ϣ }, where Ƒ  represents loss value, ʄ  is the speed of the CPU cycle frequency 
at edge servers, Ʀ  is the data rate vector that can be achieved and regulated by the band-
width allocation policy, and ϣ  represents the learning for IoT device [25,28]. To achieve 
high efficiency in the learning accuracy and sustainability of the DT-IoT, the agent contin-
ues to the next state and receives a reward immediately. The reward function 𝔎  can be 
defined as: 

𝔎  =
ƛƮ + 𝒞          𝑖𝑓   ʄ, 𝒫, Ԑ ≤ Ԑ  

ƛƮ − 𝒞                          otherwise
 , (16)

where 𝒞 represents the number of CPU cycles executed to train data for IoT devices. 
From (16), a positive reward ƛƮ + 𝒞 will be added and encouraged as a suitable trade-
off to balance the RA between computing and communication resources if all metrics fol-
lowing the action pass the constraint check. Using a positive reward ƛƮ + 𝒞  in 

tot + C
in combination with an active learning technique can greatly reduce the cost of training a
model. This will also reduce system time costs and promote appropriate trade-offs between
RA and communication resources. To learn the best policies, the agents must interact with
the environment for a long time. The overall time investment for training or testing in
each iteration is comparable, despite occasional variations in the outcome curves, as shown
in Figure 3. An increased discount factor somewhat results in an increase in time costs
in each iteration; this is due to the fact that the policy-training procedure requires more
computation when the discount factor is large.
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In Figure 4, the proposed Deep-RL agent based on DT and the learning-agent-based
random policy with random edge association are compared in terms of latency performance
with respect to training rounds. Comparing the proposed Deep-RL agent to the RA strategy,
it is found that the proposed Deep-RL agent greatly lowers the system time cost compared
to the RA policy [D. Yueyue 2020]. In order to increase operational efficiency and decrease
system latency for our scheme, the Deep-RL agent optimizes DT associations and optimally
distributes communication resources. In addition, the learning agent based on random
policy leads to a larger time cost compared to the proposed RA policy [D. Yueyue 2020]. The
Deep-RL-agent-based DT can produce trained learning accuracy with good performance
and use the best policy to maximize an accumulative reward based on an O that is updated
on a regular basis, and
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status is denoted as  

Ʈ =
|Ɗҡ(𝜏)|

 Ʀҡ(𝜏)
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Firstly: The blockchain can significantly boost the cost-effectiveness of DTs by up-
dating real-time data. Based on an analysis of the consensus procedure of blockchain 
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where 𝒩 represents the number of edge servers, |ϣ | is the level of transmitted model 
parameters of ҡ, and Ʀ  represents the achievable data transmission between edge serv-
ers.  

Secondly: The time for uploaded data depends on communication delays, which de-
pends on the data size of DT Ƣ  stored by edge servers, ʄ ,Ƣ

𝒞 , which represent the com-
putation speed of the CPU cycle frequency at edge servers 𝑗, and 𝒞  represents the num-
ber of CPU cycles consumed to process an edge server to train a data sample. The CPU-
cycle frequencies enable operation at various frequencies to regulate power consumption, 
which helps to shorten the IoT device communication’s computation times and speed up 
the FL training process. The communication delay can be written as 

Ʈ = max ∑
ƊƢ  

ʄ ,Ƣ
𝒞

Ƣ
𝒞 . (5)

From the analysis above, the total delay is denoted as  

Ʈ =  Ʈ + Ʈ , (6)

where |Ɗҡ(𝜏)| represents the data size for IoT device updates. 

2.2. Learning Accuracy for DT-IoT -FL 
The edge association problem is crucial for minimizing the total time cost in DT edge 

networks while maintaining the required level of learning accuracy. To evaluate the deci-
sion-making capabilities of DTs in our proposed IoT networks, FL is utilized for traffic 
load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
to the proliferation of user devices, it is necessary to shorten the amount of time needed 
for model training in the various applications, as illustrated in (2) and (3), in order to 
maintain secure connections. Depending on the particular components of latency being 
assessed, the dataset utilized for latency calculations in a blockchain setting can change. 
Reductions in the amount of time needed for model training across a variety of applica-
tions due to the growth in user devices and the necessity of ultra-low latency connection 
are shown in (3). The amount of time it takes to upload data is influenced by the block-
chain latency (4) between edge servers and the communication delay for the data size of 
DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

that can make predictions on new or unseen data.
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Figure 5 shows the highest achievable accuracy of the performance action based
on RA actions in DT. Centralized training is the performance upper bound used to set
the central trainer’s processing power to the total number of devices while ignoring the
communication delay associated with collecting training data. The use of DT with Deep-RL
agents offers good accuracy. This is because DT ideally assigns each agent a greater level
of training to distribute bandwidth resources to IoT devices based on iteration and the
actions carried out to distribute optimal resources allocation (Oτ ,
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load prediction and training independent local models based on the locally collected data 
and then shares their model parameters on the edge servers using wireless transmitting 
data [17,24]. Blockchain-enabled FL is capable of increasing reliability and enhancing data 
security in a network to enable secure collaborative learning and foster trust among un-
trusted users. The proposed method incorporates blockchain and DT to improve output 
accuracy and lower loss, to create secure-aware and reliable-aware edge intelligence. Due 
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DT Ƣ  that reflects the CPU cycle frequency ʄ ,Ƣ

𝒞  (5). The local dataset of device ҡ is Ɗҡ, 
which is a collection of data samples with the coordinates {Ƨ , Ȥ } , where Ƨ  is sample 
𝑗 − 𝑡ℎ input and Ȥ  is sample 𝑗 − 𝑡ℎ output. Using the data set from IoT device ҡ, the 
local loss function can be calculated as 

τ), which had a greater
statistical power to more accurately and efficiently allocate resources. According to Figure 5,
the proposed Deep-RL agent-based DT trade-off between the number of rounds and the
latency per round is able to enhance the scheduling of more IoT devices and lower the
number of rounds needed to achieve a fixed accuracy, but at the expense of a higher latency
per round. From Figure 5, the latency per round can be decreased by scheduling fewer
devices, but the convergence rate with respect to the number of rounds will be slower.
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Figure 6 shows the total cost of the impact of transmission bandwidth. As bandwidth
increases, the total cost declines, and the transmission times are shortened when the com-
munication resource is sufficient. As the overall system bandwidth is increased, it is evident
from the simulation results that all curves steadily decline. This is because the increasing
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bandwidth allocation has a substantial impact on increasing the data transmission rate
between edge servers in DT and IoT devices. With the increased edge server processing
capacity, the overall cost of edge computing strategies is greatly reduced. The proposed
technique performs well when bandwidth is limited. When compared to the RA policy
[D. Yueyue 2020] and the learning-agent-based random policy, respectively, our proposed
algorithm achieves time reductions of 1.10 and 1.12, more than those obtained when the
system bandwidth is 10 MHz. The proposed Deep-RL-agent-based DT selects 47.5% of
computation processes to be carried out locally with 1 MHz bandwidth, compared to the
RA strategy [D. Yueyue 2020], which only selects 43%.
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From Figure 7, the efficiency of the proposed Deep-RL agent based on DT with RA
policy [D. Yueyue 2020], the IoT edge resource is allocated based on the average processing
demand of two services. When the edge resource is limited, the suggested Deep-RL agent
based on DT outperforms the proposed RA policy [D. Yueyue 2020] by a wide margin.
The performance advantage in lowering the service latency specifically drops from 1.26 at
1 GHz CPU frequency to only 0.56 at 1.2 GHz CPU frequency. The effect of the number
of CPU cycles to be treated depends on the length of local model training, which was
dependent on the number of CPU cycles; when many IoT devices are needed to fix the
CPU frequency, the energy consumption significantly increases. The explanation is that
an efficient RA is more crucial in settings where resources are scarce than it is in scenarios
where resources are abundant. The outcomes verify the efficiency of the RA optimization
subroutine for edge servers.

A system performance comparison is carried out between the proposed Deep-RL
agent based on the DT algorithm and other algorithms to assess the effects of varying
IoT device numbers. To confirm the effectiveness of trials, it is important to compare
performance under various IoT device counts. Our suggested approach offers a larger
reward, as seen in Figure 8. To achieve high-efficiency learning accuracy from (13c), (13d),
the total energy cost
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where 𝒞ҡ is the total amount of processing CPU cycles for IoT devices to train a data 
sample, 𝛿 = 𝛾 log (

ѱ
) represents the effective switched capacitance, 𝛾 represents a con-

stant related to the data size and ѱ  is the minimum loss at this rate. The local model 
upload requires the following EC: 

Ԑҡ =
ƿҡ ( ) Ɗҡ( )

 ҡ,ƈ
𝒽ҡ,ƈ( ) 𝒫ҡ,ƈ( )

Ŋ

. (10)

The amount of energy consumed in terms of DT when using an edge server can be 
written as: 

Ԑ = 𝛿 𝒞  ∑ ƊƢ  ʄ ,Ƣ
𝒞Ƣ

. (11)

The total EC of the DT-IoT devices connected to FL can be calculated as: 

Ԑ = ∑ (Ԑҡ + Ԑҡ) + ∑ ԐҠ
ҡ .  (12)

3. Formulation of The Communication Effectiveness Problem for DT-IoT Using FL 
In this section, our goal is to develop a federated model that minimizes the weighted 

cost and enhances learning accuracy from distributed IoT devices. So, the FL model must 
be trained with minimal resource consumption due to the limited computing and com-
munication resources of IoT devices. A trade-off between learning accuracy and resource 
efficiency is established by the combinatorial problem of resource optimization. The opti-
mization problem can be expressed as:  

min 
|Ɗ|

ʄ,Ƣ ,𝒪    

∑ ∑ ʄҡ ϣ , Ƨ ҡ, Ȥ ҡ
Ҡ
ҡ + 𝜎(Ʈ + Ԑ )  (13)

total is also checked as a budget that should not exceed an expected

value i f
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total ; then, the agent continues on to the next state and receives a
reward immediately. In addition, the reward of the Deep-RL agent based on the DT leads
to a better performance than the RA policy [D. Yueyue 2020], algorithm and learning-agent-
based random policy, which reduces the EC. This is because the Deep-RL agent based on
the DT algorithm improves the learning accuracy and takes the required action by solving
the problem of a huge action-space. Also, it is clear that the reward increases significantly
as the assignment time increases.
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5. Conclusions

In this paper, we proposed the use of sustainable RA- in FL-DT edge networks, which
integrates DT into edge networks for real-time data analysis. We also focused on enhancing
the security and effectiveness of edge computing in IoT networks, ensuring sustainable
computing and analyzing the limitations of the current RA. The B5G networks rely on
improvements in the security and effectiveness of edge computing in IoT networks, which
require URLLC, real-time data processing, and real-time data analysis to achieve sustain-
able computing, and mitigate the computation and communication capacity. Moreover,
minimizing the cost of system delay and the EC depends on the proposed DT-enabled
Deep-RL agent technique for optimal IoT devices to guarantee the efficiency of the learning
accuracy and sustainability of the DT-IoT system FL by employing DNN for RA. The
simulation results demonstrate that the proposed Deep-RL-agent-based DT can balance
system delay and EC to improve reliability by guaranteeing the learning accuracy of IoT
devices. This also greatly lowers the system time cost and offers good accuracy, enhancing
the efficiency of the integrated DTs with edge networks.
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