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The latest advances in innovative sensing and data technologies have led to an in-
creasing implementation of autonomous systems in agricultural production processes.
Physical autonomous systems can accomplish even more complex tasks, while cyber ones
can support timely, accurate and informed decision making, leading to more efficient
farm management and improved profitability in the context of precision agriculture and
Agriculture 4.0. This combination has transformed agricultural robots to machines with
embedded awareness [1,2] also capable of interacting with other machines [3–5], as well as
with human labor [6–8]. On the other hand, sensing technologies in agriculture continu-
ously provide a vast amount of data necessary for the development and implementation of
AI technologies [9–11].

All the above constitutes a closed-loop interaction between the disciplines of sensing,
AI, and robotics technologies (Figure 1). This interaction is the basis of the present Topical
Collection under the purpose of highlighting the corresponding advancements in the
domain of precision agriculture. In this collection, a total of 10 articles are included
covering different aspects of this interaction approach, including topics such as agri-robotics
awareness, human–robot interaction, AI in crop and livestock production, and digital twins
in the context of modern agriculture.
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Figure 1. The closed-loop approach for the interaction of the sensors, AI, and robotics entities.

With the recent advances in sensing methods and data acquisition technologies in
agriculture, a vast amount of data became available, paving the way to exploring the
utilization of artificial intelligence in agriculture. This is the main topic that is analyzed
in the comprehensive review provided by Benos et al. [12], as an update of the previ-
ous review presented in [9]. Machine learning refers to a subset of artificial intelligence
and has considerable potential for handling numerous challenges in the establishment of
knowledge-based farming systems. In this study, a thorough review of recent literature
on machine learning in crop, water, soil, and livestock management is analyzed. Maize,
wheat, cattle, and sheep were the most investigated crops and animals, respectively. This
study is anticipated to constitute a guide of the potential advantages of machine learning
in agriculture.
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Regarding machine learning applications in crop management, two works are pre-
sented in the collection. Farkhani et al. [13] propose the use of a multi-layer attention
procedure to present an interpretation of the Deep Neural Network’s (DNN) decisions
through a high-resolution attention map for the classification of weeds. The proposed
architecture can improve the resolution and location of weed areas for efficient weed man-
agement. The second work deals with the mapping of agricultural environments. The
study presented by Anagnostis et al. [14] proposes an approach for the segmentation of
trees in commercial orchards using aerial images obtained by unmanned aerial vehicles
(UAVs). The methodology is based on a deep learning convolutional neural network and
was proven to be efficient for the automated detection and localization of tree canopies. The
trained model was tested on never-before-seen orthomosaic images, achieving performance
levels up to 99%, demonstrating the robustness of the proposed approach.

Deep learning was also utilized in livestock management for the detection and track-
ing of pigs for the quantification of social contacts as described in Wutke et al. [15]. A
convolutional neural network (CNN) was applied on video footage to detect the location
and orientation of pigs tracking the animals’ movement trajectories over a given period
using a Kalman filter (KF) algorithm. This enabled the automatic identification of social
contacts in the form of head–head and head–tail contacts. The specific study demonstrated
the effectiveness of the methodology to enhance animal monitoring systems. The sec-
ond study in this collection concerning technological and digital advances in livestock
regards the use of neck-mounted collars equipped with accelerometers for monitoring
and classifying dairy cattle behaviors (Pavlovic et al.) [16]. Such sensor systems automat-
ically provide information about key cattle behaviors, such as level of restlessness and
ruminating and eating time, assessing the overall welfare, at animal level. Within this
work, the development of algorithms for the classification of cattle states is described. The
results showed that the classification model that was based on linear discriminant analysis
using features selected through Backward Feature Elimination provided the most balanced
tradeoff between performance and computational complexity.

The second group of works regard applications of robotics in agriculture. Crop
harvesting is one of the most demanding, time-consuming, and labor-intensive operations
in high-value crops such as fruit and nut trees, grapes, and various vegetable crops. Due to
its seasonal character, securing the work force to address this task is a great challenge [17].
Therefore, a lot of effort has been invested in the development of autonomous or semi-
autonomous crop-harvesting systems. In most cases, due to the complexity of the operation,
intelligent systems are needed [18]. A review conducted by Navas et al. [19] has been
included in the current collection that addresses the task of automatic crop harvesting,
focusing on the specifications of soft grippers. Soft robotics and soft grippers are promising
approaches in this field due to the specifications required to meet hygiene and manipulation
requirements in unstructured environments when working with delicate products. This
review provides an insight into soft end-effectors for agricultural applications, emphasizing
robotic harvesting, aiming to serve as a guide in the design of soft grippers for fruit
harvesting robots in soft robotics for Agriculture 4.0.

Apart from harvesting, there is a plethora of other field management activities that are
laborious and time-consuming and are subjected to automation. In the study presented
by Kitic et al. [20] an Autonomous Robotic System was developed for real-time, in-field
soil sampling and analysis of nitrates in the soil. The system combines a set of modules
including a commercial robotic platform, an anchoring module, a sampling module, a
sample preparation module, a sample analysis module, and a communication module. The
procedure starts with the definition of the sampling locations using a dedicated cloud-based
platform which processes satellite images using artificial intelligence. Then, automated soil
sampling takes place; each sample is analyzed on the spot and georeferenced, providing a
map which can be used for precision-based fertilizing.

The situational awareness and navigation of autonomous robotic platforms in agricul-
tural fields is a particularly challenging and demanding task due to the irregular nature and
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the complexity of such environments. Therefore, mapping the environment for targeted
robotic applications in agricultural fields is challenging due to the high spatial and temporal
variability which make these environments highly unpredictable [21]. The aim of the study
presented by Tagarakis et al. [22] was to investigate the use of consumer-grade RGB-D
(red, green, blue and depth) and unmanned aerial (UAV) and ground vehicles (UGV) for
autonomous mapping of the environment in commercial orchards and for providing struc-
tural information of the trees such as height and canopy volume. Two systems were used;
the ground-based system consisting of a UGV with an RGB-D camera and the aerial-based
system which consisted of a UAV equipped with high accuracy RTK-GPS and a precise
imaging system. The results from the ground-based mapping system were compared with
the three-dimensional (3D) orthomosaics acquired by the UAV. Both systems performed
adequately well. The fusion of the two datasets (from the ground and above) provided
the most precise representation of the trees. In the pursuit of optimizing the efficiency,
flexibility, and adaptability of agricultural operations, digitalization and automatization
of agricultural practices are considered as the means to achieving the goals of agricultural
production and addressing its modern challenges. However, unmanned systems, aerial
or ground, show autonomy at some level and interact with other dynamic elements in
the fields such as agricultural machinery and humans. Consequently, a new sector has
emerged focused on human–robot interaction (HRI) in agriculture. A systematic review of
the advances in the interaction between humans and agricultural robots was conducted
by Benos et al. [23], reviewing the scholarly literature to capture the current progress
and trends in this promising field while identifying future research directions. Based on
the findings of the review, there is a growing interest in the specific research field which
combines perspectives from several disciplines. In terms of crops, melons, grapes, and
strawberries were the ones with the highest interest for HRI applications, mainly due to
their high value perspective and the low availability of traditional machinery automations
due to the nature of these cropping systems. Collaboration and cooperation were the most
preferred interaction modes, with various levels of automation being examined in the cited
studies. Due to the complexity of the agricultural environments and the tasks taking place
in agricultural operations, there is still a long way to go towards the establishment of viable,
functional, and safe human–robot systems [24,25].

As already mentioned, the digitalization of agriculture is the way forward to the
future of farming in the framework of Agriculture 4.0, improving production systems
and addressing food security, climate protection, and resource management. Due to the
complexity and dynamic nature of agricultural production, sophisticated management
systems are required supporting farmers and farm managers in making informed and
improved decisions. In the review presented by Nasirahmadi et al. [26], the concept of
utilizing digital twins and digital technologies and techniques is presented. A digital twin
is the virtual representation of a physical system. In agriculture, this can be regarded as the
virtual representation of a farm, providing the potential for enhancing productivity and
efficiency while minimizing energy usage and losses. A general framework of digital twins
in soil, irrigation, robotics, farm machinery, and food post-harvest processing in agriculture
is provided.

To conclude, the current Topical Collection provides insights into advanced ICT sys-
tems applied in precision agriculture and digital farming steering towards Agriculture 4.0.
The collection includes works that cover multi-disciplinary applications in both crop and
livestock production systems. The outcomes from the reported articles highlight the impor-
tance of digital systems, sensing technologies, and advanced data analysis methodologies
for making informed decisions supporting the sustainability of future farming.
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