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Abstract: Over the last ten years, there has been a significant interest in employing nonnegative matrix
factorization (NMF) to reduce dimensionality to enable a more efficient clustering analysis in machine
learning. This technique has been applied in various image processing applications within the fields
of computer vision and sensor-based systems. Many algorithms exist to solve the NMF problem.
Among these algorithms, the alternating direction method of multipliers (ADMM) and its variants are
one of the most popular methods used in practice. In this paper, we propose a block-active ADMM
method to minimize the NMF problem with general Bregman divergences. The subproblems in the
ADMM are solved iteratively by a block-coordinate-descent-type (BCD-type) method. In particular,
each block is chosen directly based on the stationary condition. As a result, we are able to use much
fewer auxiliary variables and the proposed algorithm converges faster than the previously proposed
algorithms. From the theoretical point of view, the proposed algorithm is proved to converge to a
stationary point sublinearly. We also conduct a series of numerical experiments to demonstrate the
superiority of the proposed algorithm.

Keywords: NMF; ADMM; Bregman divergence; block active; imaging sensor

1. Introduction
1.1. Overview of the Matrix Factorization Algorithms

Unsupervised learning is a form of machine learning in which models are trained on
unlabeled data to classify patterns or make inferences without any external guidance or
supervision. The key advantage of unsupervised learning is its ability to uncover hidden
structures and relationships within datasets. This may not be readily apparent through man-
ual inspection, enabling the automatic discovery of insights and patterns in large datasets.
However, working with large datasets can be challenging because they are often noisy and
high-dimensional, which makes their processing and analysis difficult. To address this
challenge, researchers often use dimensionality reduction techniques to extract meaningful
features from the data. By reducing the dimensionality of the data, the computation cost
of training and classification algorithms can be improved. Dimensionality reduction can
be achieved by reducing the size of the feature vector, which is the input data used to
train and test machine learning models. Unsupervised learning methods factor the data
matrix subject to various constraints for such dimensionality reduction. Depending on the
constraints, the resulting factors have significantly different data representations. Principal
component analysis (PCA) [1] enforces no constraints on the factorization. Consequently,
PCA achieves an optimal low-dimension approximation to the data matrix while retaining
as much of the original variation as possible. For this reason, PCA has been widely applied
in various applications such as face recognition [2–4] and document representation [5–7].

In parallel, previous studies have shown that there is some psychological and physi-
ological evidence for parts-based representation in the human brain [8–10]. Nonnegative
matrix factorization (NMF) [8] has been proposed to learn the parts of objects by enforc-
ing the nonnegative constraints. In particular, NMF approximates the data matrix by a
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product of two nonnegative matrices. The nonnegative constraints are useful to learn a
parts-based representation of the data because it only allows additive combinations. It
has been shown nonnegative matrix factorization is superior to PCA in fields that use
nonnegative datasets such as face recognition [11–14], document clustering [15,16], audio
signal processing [17,18], and recommendation systems [19,20].

1.2. Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) is a technique for factorizing a matrix into two
nonnegative matrices, denoted as W and H. This method is distinct because it constrains
all elements in W and H to be nonnegative. To grasp the concept of NMF, it is essential to
comprehend the underlying intuition behind matrix factorization.

As shown in Figure 1, suppose we have a matrix V of size m× n, where each element
is greater than or equal to zero. With NMF, we can decompose V into two matrices: W of
size m× k and H of size k× n, where k is a chosen rank. Notably, both W and H have only
nonnegative elements. Here, V is defined as:

Vm×n = Wm×k Hk×n (1)

where

• V is the original input matrix (Linear combination of W and H);
• W is the feature matrix;
• H is the coefficient matrix;
• k is the low-rank approximation of V (k ≤ min(m, n)).

Figure 1. NMF intuition.

The primary goal of NMF is to perform dimensional reduction and feature extraction.
By specifying a lower dimension k, the main objective of NMF is to identify two matrices,
W ∈ Rm×k and H ∈ Rk×n, containing only nonnegative elements, as illustrated in Figure 1.

Specifically, by setting k ≤ min(m, n), the factorization process breaks down the
original matrix V into two matrices. Therefore, the dimensional reduction occurs as the
original matrix V of size m × n is represented as the product of a smaller matrix W of
size m× k and a smaller matrix H of size k× n, resulting in a dimensional reduction from
m× n to m× k + k× n. Note that (m× k + k× n) ≤ (m× n) since k ≤ min(m, n). Typical
machine learning algorithms, including statistical machine learning and deep learning
methods such as convolutional neural networks (CNN), take a time superlinear in the input
size. This training time and classification time also depend heavily on the feature space
size. NMF likely reduces both the input size and the feature vector size. With the training
time and classification time being superlinear, the efficiency of both improves significantly
with NMF.
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The underlying assumption of NMF is that the input comprises a set of latent features,
each of which is represented by a column in the W matrix. Moreover, each column in the
H matrix represents the “coordinates of a data point” in the W matrix, essentially holding
the weights related to matrix W. In essence, each data point represented by a column in V
can be approximated by a summation of nonnegative vectors represented by columns in W
weighted by a row in H.

1.2.1. Image Processing—Facial Feature Extraction

In order to better understand the intuition behind the NMF algorithm, we consider
real-world scenarios, specifically the application of the algorithm to image processing.
Suppose we have an input image consisting of pixels that form matrix X. NMF produces
two factors (W, H) such that each image X(:, j) is approximated as a linear combination
of the columns in W. As shown in Figure 2, for facial images, the columns of W can be
interpreted as basic images consisting of features such as eyes, noses, mustaches, and lips.
The columns of H indicate the presence of these features in the corresponding X image.

Figure 2. NMF face recognition [21].

1.2.2. Contributions

This paper makes the following innovative contributions revolving around a novel
algorithm for tackling NMF challenges:

1. We present a coordinate descent approach coupled with an innovative strategy for
selecting coordinates to address the ADMM subproblems.

2. In contrast to the classic ADMM and multiplicative update methods, our proposed al-
gorithm attains a notably reduced error level while showcasing enhanced convergence
characteristics, marked by an enhanced stability, smoother trajectories, and expedited
convergence.

3. We establish the effectiveness of our approach through a rigorous theoretical analysis
and substantiate our claims via an array of comprehensive experiments conducted
on synthetic and real datasets in Section 6. These experiments collectively serve to
underscore the superior performance and potential of our novel methodology.

1.2.3. Discussion

1. Comparing the proposed method in Algorithm 3 with the classical ADMM, we use
much fewer primal and dual decision variables. Specifically, the ADMM in Algorithm
1 introduces new primal variables W+ and H+, and dual variables αX, αW , and αH ,
while the proposed method in Algorithm 3 introduces no primal variables, and only
one dual variable αX . This helps with the efficiency of the algorithm.

2. In Section 4, we introduce a new approach termed the “block active method” designed
to tackle the problems formulated in (14). Our central result, as established in The-
orem 4, rigorously demonstrates that under reasonable assumptions, our proposed
method converges towards a stationary point denoted as x∗ in Equation (15) at a
sublinear rate of convergence.



Sensors 2023, 23, 7229 4 of 17

To expound on this, we demonstrate that the error, as defined by f (xk)− f (x∗) on
the left-hand side of the equation within Theorem 4, consistently diminishes. This
reduction is characterized by the relation f (xk)− f (x) = O(k−1), indicative of the
error’s gradual decline to zero with iteration count k approaching infinity. This type of
convergence behavior is denoted as sublinear [22] due to its property of diminishing
error reduction over iterations. This stands in contrast to the linear convergence
typified by expressions such as γk for some constant 0 < γ < 1, where the decline in
error remains consistent.

3. NMF finds applications in tasks such as face recognition, document clustering, audio
signal processing, and recommendation systems. When employing NMF to address
analogous optimization problems, there should not be any difference in the theoretical
results.

4. The image resolution may or may not affect the results. Given NMF is a nonconvex
optimization problem, a global min cannot be guaranteed to be found in the general
setup. The quality of the solution a method converges to depends on several factors,
such as the initialization of W, H, and X, and the learning rate rho. Thus, improving
the resolution of the data or quality of the data may or may not improve the result.

1.2.4. Paper Organization

This paper is organized as follows. Section 2 introduces the NMF problem and places
it within the context of the related existing research. Section 3 provides a concise overview
of the widely recognized ADMM. Section 4 presents the proposed block-active method as a
coordinate descent approach coupled with an innovative strategy for selecting coordinates
to address the ADMM subproblems. Section 5 introduces an innovative ADMM-style ap-
proach for addressing the NMF problem (2). Section 6 assesses the experimental outcomes
across both synthetic and real datasets, while Section 7 serves as the concluding segment.

2. NMF Problem and Previous Work

The NMF problem can be formulated as follows:

min f (W, H) ≡ D(V|WH), (2)

s.t. Wik, Hkj ≥ 0, (3)

where D(V|V̂) represents some measure of divergence between V and its approximation
V̂. A general family of divergence functions is the β-divergence, denoted by Dβ. The β-
divergence between two matrices is defined as the sum of the elementwise divergence, i.e.,
Dβ(V, V̂) = ∑i,j dβ(Vij|V̂ij), where dβ is defined by

dβ(x|y) = xβ

β(β− 1)
+

yβ

β
− xyβ−1

β− 1
. (4)

The three most commonly used β-divergence functions with NMF in practice are the
Euclidean distance, Kullback–Leibler (KL) divergence, and Itakura–Saito (IS) divergence so
as to model the Gaussian noise, Poisson noise, and multiplicative gamma noise, respectively.
Particularly, we have

• β = 2 (Euclidean distance): d(x|y) = 1
2 (x− y)2;

• β = 1 (Kullback–Leibler divergence): d(x|y) = x log x
y − x + y;

• β = 0 (Itakura–Saito divergence): d(x|y) = − log x
y + x

y − 1.

In the literature on NMF, many algorithms have been proposed to solve Problem (2) for
β = 2, including multiplicative updates (MU) [23–26], projected gradient descent (PGD) [27],
hierarchical alternating least square (HALS) [28–30], the alternating direction method of
multipliers (ADMM) [31,32], and alternating nonnegative least square (ANLS) [33]. Un-
fortunately, there are few works proposed to solve the NMF problem with the general
Bregman divergence. In this paper, we propose an ADMM that can be used to solve the
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NMF problem with the general Bregman divergence. In fact, we are not the first one
proposing an ADMM method to solve the NMF problem. For example, reference [31]
also proposed an ADMM method to solve NMF problem and each subproblem had a
closed-form solution. However, our method introduces a much fewer number of auxiliary
variables, and we use an iterative method to solve each subproblem. By doing so, the pro-
posed algorithm converges much faster than the previously proposed algorithms. We
provide the theoretical analysis of the proposed algorithm and construct a line of numerical
experiments to demonstrate the performance of the proposed method.

3. Alternating Direction Method of Multipliers

In this section, we provide a brief review of the well-known alternating direction method
of multipliers (ADMM). We consider an optimization problem formulated as follows:

min f (x) s.t. Ax = b (5)

where f : Rn → R is the objective function, x ∈ Rn is the decision variable, A ∈ Rm×n and
b ∈ Rm are a given matrix and vector. Since the objective function f could be nonconvex,
searching for a global solution is not easy. Instead, the common pursuit is to find a stationary
point of the problem. A stationary point of (5) is a vector x∗ that satisfies

∇ f (x∗) + ATy = 0 (6)

Ax∗ = b (7)

The ADMM method can help us find such vector x∗. In particular, the augmented
Lagrangian function is given by

Lρ(x, y) = f (x) + 〈y, Ax− b〉+ ρ

2
‖Ax− b‖2

where y ∈ Rm is the Lagrangian multiplier. Then, the ADMM method updates x and y
by optimizing Lρ(x, y) alternatively. In particular, suppose we are given feasible vectors
(xk, yk) at the kth iteration. Then,

xk+1 = argminx Lρ(x, y) (8)

yk+1 = y + ρ(Axk+1 − b) (9)

where xk+1 is a global minimizer of Lρ(x, yk) for a fixed yk, and yk+1 is the result of a
one-step gradient ascent with step size ρ. Here the step size for yk+1 could be different
from the penalty parameter ρ so that yk+1 = yk + α(Axk+1 − b) for some α 6= ρ. However,
it is common to use α = ρ. Then, we obtain a sequence {xk, yk} of vectors and [34] shows
this sequence converges to a stationary point (x∗, y∗) that satisfies (3).

The paper [31] adapts the ADMM framework to solve the NMF problem with the
Bregman divergence. They firstly reformulate the problem (2) by introducing additional
auxiliary variables as follows:

minimize
W,H,X,W+ ,H+

D(V|X) (10)

s.t. X = WH (11)

W = W+, H = H+ (12)

W+ ≥ 0, H+ ≥ 0 (13)

where X, W+, and H+ are additional auxiliary variables. The corresponding augmented
Lagrangian function of (2) is given by
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Lρ(X, W, H, W+, H+,αX , αW , αH) =

D(V, X) + 〈αX , X−WH〉+ ρ

2
‖X−WH‖2

F

+ 〈αW , W −W+〉+
ρ

2
‖W −W+‖2

F

+ 〈αH , H − H+〉+
ρ

2
‖H − H+‖2

F

where αX , αW , and αH are the Lagrange multipliers. The updates are taken by minimizing
Lρ alternatively with respect to each primal variable and taking a gradient ascent in each of
the Lagrange multipliers. The algorithm is summarized in Algorithm 1.

Algorithm 1: ADMM for NMF [31].
Initialize X, W, H, W+, H+, αX , αW , αH
for iteration = 1, 2, · · · do

WT ← (HHT + I) \ (HXT + WT
+ + 1

ρ (HαT
X − αT

W))

H ← (WTW + I) \ (WTX + H+ + 1
ρ (W

TαX − αH))

X ← argminX≥0D(V|X) + 〈αX , X〉+ ρ
2‖X−WH‖2

F

W+ ← max
{

0, W + 1
ρ αW

}
H+ ← max

{
0, H + 1

ρ αH

}
αX ← αX + ρ(X−WH)
αH ← αH + ρ(H − H+)
αW ← αW + ρ(W −W+)

end

Here, the notation A \ b is an operator in Matlab that takes the inverse of A and
multiplies it by b, that is, A \ b := A−1b.

4. Block-Active Method

In this section, we consider a constrained optimization problem formulated as follows:

min f (x) s.t. x ≥ 0, (14)

where f is a convex objective function, and x ∈ Rn is the decision variable. Section 5
proposes a new ADMM-type method where the problem (14) is an important subproblem.
We propose to use a block coordinate descent (BCD) method to solve the problem (14).
In general, a BCD method picks up a block of coordinates of the decision variable and
minimizes the objective function only with respect to the selected block of coordinates.
In particular, let xk be the current feasible point at the kth iteration. Let ik be the selected
coordinate. Then, the update rule is given by

xk+1 = argmin f (x + eik v), s.t. x + eik v ≥ 0

where eik is a vector whose entries are all zeros, except the ikth entry is equal to 1. How to
select the block is significant in a BCD method. In general, there are three ways to select the
block, that is, cyclic, random, and greedy. In the cyclic selection rule, each block is selected
cyclically. Each block is selected randomly if the random selection rule is applied. A block
is selected if it has the largest magnitude of the partial derivative, that is,
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ik = argmaxi∈[n]

∣∣∣∣∣∂ f (xk)

∂xi

∣∣∣∣∣
where [n] = {1, 2, · · · , n}.

4.1. Block-Active Method

Here, we propose a new block coordinate method called block-active method to solve
the problem (14) where the block is selected based on the stationary condition. Note that a
vector x∗ is a stationary point of (14) if it satisfies{

∂ f (x∗)
∂xi

= 0, if x∗i > 0
∂ f (x∗)

∂xi
≥ 0, if x∗i = 0.

(15)

Here, Equation (15) is called stationary condition. At each iteration, we collect the
coordinates that do not satisfy the stationary condition. In particular, let x ≥ 0 be a feasible
point. We construct an index set F as follows:

F = {i ∈ [n] : xi > 0∨ (xi = 0∧ ∂ f (x)/∂xi < 0)}. (16)

Note that here, we include some extra coordinates in F , that is, xi > 0 and ∂ f (x)
∂xi

= 0.
Later on, we show that if x is already a stationary point, including these extra coordinates
does not make the block-active method move away from a stationary point. Instead, if x is
not a stationary point, with the help of a scale matrix H, including these extra coordinates
make the proposed method converge faster.

Given the index set F , we define vectors g and d as follows:

gi :=
∂ f (x)

∂xi
, ∀i ∈ F and d := −H−1g (17)

where g ∈ R|F |, d ∈ R|F |, and H ∈ R|F |×|F| is a strictly positive definite (p.d.) matrix. Given
a scalar α > 0, we define a single-variable function x(α) as follows:

x(α)i =

{
max{0, xi + αdi}, i ∈ F ,
xi, i /∈ F .

(18)

From Equation (18), we can see only part of vector x is selected and updated. The sub-
vector of x is selected based on the stationary condition (16). The algorithm is summarized
in Algorithm 2. As noted by [35], our method has the potential to be extended in a dis-
tributed manner.

Algorithm 2: Block-active method to minimize (14)
Initialize x0
for iteration = 1, 2, · · · do

Select index set Fk based on the stationary condition (16)
Compute g and d according to (17)
Choose an appropriate step size αk
xk+1 = xk(αk) by (18)

end

4.2. Convergence Analysis of the BCD Method

Given a feasible point x, we can show x is a stationary point if and only if the single
variable function x(α) = x for all strictly positive α > 0. On the other hand, if x is not a



Sensors 2023, 23, 7229 8 of 17

stationary point, then we can show there exists a strictly positive scalar α for which any
α ≤ α causes a descent in the objective value.

Theorem 1. (1) x ≥ 0 is a stationary point of (14) if and only if x = x(α) for all α > 0.
(2) If x is not a stationary point, then there exists α > 0 such that

f (x(α)) < f (x), for all 0 < α ≤ α. (19)

Definition 1. A function g is called L-smooth if ∇g is Lipschitz continuous with constant L > 0.
In particular, there exists a strictly positive scalar L > 0 for which

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖, for all x, y. (20)

Given a function g is L-smooth, we have the following well-known descent lemma.

Lemma 1 (Descent Lemma). If g is L-smooth, then

g(y) ≤ g(x) + 〈∇g(x), y− x〉, for all x, y. (21)

Suppose the objective function f in (14) is L-smooth. It follows from the descent lemma
that the sequence { f (xk)} generated by the block-active method consistently decreases and it
converges to f (x∗) sublinearly.

Theorem 2 (Convergence result). Assume the objective function f is L-smooth and λmin{Qk} ≥
µ for all k, where µ > 0 is a fixed constant. If αk ≤ min{αk, µ2/L}, where αk is defined in
Theorem 1, then

f (xk)− f (x∗) ≤
‖x0 − x∗‖2

Q

k
, (22)

where ‖z‖2
H := ∑i,j∈F ziQijzj.

In the above theorem, we demonstrate that the error terms defined as f (xk)− f (x∗)
are consistently diminished. This reduction is characterized by the relation f (xk)− f (x∗) =
O(k−1), indicating the gradual decline to zero as the iteration count k approaches ∞. This
type of convergence behavior is so-called sublinear [22]. It stands in contrast to the linear
convergence rate in the form of γk for some constant γ ∈ (0, 1), where the reduction is
constant. On the other hand, the smoothness assumption of the objective function L can
be dropped but the convergence can still be ensured by using the arguments introduced
in [36,37] for the non-Lipschitz optimization. The proof of Theorem 1 and 2 can be found
within Appendices A and B.

5. Block-Active ADMM

In this section, we propose a new ADMM-type method to solve the NMF problem (2)
by using the block-active method to solve the subproblems. Particularly, since the intermediate
quantity X = WH needs to be updated repeatedly once the matrices W and H are updated,
we directly introduce this quantity as a new variable in the optimization problem. Thus,
the NMF problem becomes

min D(V|X),

s.t. X = WH,

H, W ≥ 0.

(23)
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Since the ADMM framework is good at dealing with equality constraints, we propose
a new algorithm based on the ADMM framework by introducing one dual variable αX.
The corresponding augmented Lagrange function is given by

Lρ(X, W, H, αX) =D(V|X) + 〈αX , X−WH〉+ ρ

2
||X−WH||2F. (24)

The updates alternately optimize Lρ with respect to each of the three primal variables,
followed by one update on the dual variable. The updates are summarized as follows.

W+ = argminW≥0Lρ(X, W, H, αX) (25)

H+ = argminH≥0Lρ(X, W+, H, αX) (26)

X+ = argminLρ(X, W+, H+, αX) (27)

α+X = αX + ρ(X+ −W+H+) (28)

Since the optimization with respect to X does not have any constraint, X+ has a
closed-form solution by solving the equation ∂Lρ

∂X = 0. The closed-form solution is given in
([31], Theorems 1 and 2). In contrast, the updates for W and H can be reformulated in the
form of nonnegative least squares. Taking the optimization of H as an example, we have

H+ = argminH≥0Lρ(X, W+, H, αX)

= argminH≥0〈αX , X−WH〉+ ρ

2
||X−WH||2F

= argminH≥0
ρ

2

[
1
ρ2 ‖αX‖2 + 2〈αX/ρ, X−WH〉+ ||X−WH||2F

]
= argminH≥0

ρ

2
||X−WH + αX/ρ||2F

= argminH≥0||(X + αX/ρ)−WH||2F

Thus, this subproblem can be solved by the method we proposed in the previous
section, called block-active method. In particular, we can choose the scaling matrix Q as
part of WTW based on the index set F . Since W ∈ RM×K and M � K, WTW is highly
likely strictly positive definite so that Q is a submatrix of WTW. Moreover, we denote
nnls_blockactive(A, B) as the procedure proposed in the previous section and used to solve
the nonnegative constraint problem in the form of

min ‖AX− B‖2 s.t. X ≥ 0. (29)

Algorithm 3 is provided as an example of the proposed block-active ADMM method
for the case where β = 1 in the β-divergence distance.

Algorithm 3: Block active ADMM.
Inputs V
Initialize X, W, H, αX
for iteration = 1, 2, . . . do

WT = nnls_blockactive(HT , (X + αX/ρ)T)
H = nnls_blockactive(W, X + αX/ρ)

X =
ρWH−α−1+

√
(1+α−ρWH)2+4ρV
2ρ

αX = αX + ρ(X−WH)
end

Remark 1. As established in ([32], Theorem 2), the alternating direction method of multipliers
(ADMM) demonstrates convergence to a stationary point, when descents are achieved for subprob-
lems within each iteration, despite the global problem being nonconvex. In our context, we are
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addressing a nonconvex optimization challenge, specifically the nonnegative matrix factorization
(NMF) problem as defined in Equation (2) and subsequently reformulated in Equation (23). Through
the utilization of the ADMM framework, we strategically partition the problem into a series of
subproblems, each solvable within an iteration. Leveraging the convergence assurance provided by
Theorem 2, we can confidently assert that a descent is guaranteed within each subproblem. Conse-
quently, invoking the findings of ([32], Theorem 2) within our specific context, we secure a robust
convergence result for the proposed method delineated in Algorithm 3, leading to the attainment of a
stationary point.

6. Numerical Experiments
6.1. Synthetic Datasets

We first tested the proposed algorithm on a moderately synthetic dataset with m = 500,
n = 500, and k = 150. We generated the ground truth W0 and H0, and V = W0H0. We
examined the performance of the proposed algorithm against the standard multiplicative
update [38] and the ADMM [34]. We set ρ = 1 and the maximum iteration to be 1000.
The performance results are shown in Figure 3. We can see that the proposed block method
can achieve a much lower error level given the same amount of time.
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Figure 3. Performance comparison of the synthetic dataset. Here, we set m = n = 500 and k = 150.
The maximum iteration is set to be 1000. We record the objective value on the log scale. We can see
the proposed block method can achieve a much lower error level given the same amount of running
time. In another word, the block method is faster to achieve the specified accuracy than the other
two methods.

6.2. Real Datasets

We evaluated the proposed method against both the multiplicative update and ADMM
algorithms using real datasets. These datasets were generated using either a 2D imaging
sensor or a near-infrared (NIR) imaging sensor.

1. UMist (https://cs.nyu.edu/~roweis/data.html, accessed on 2 January 2022): This
dataset is an image dataset containing 575 images of 20 people, which consist of
images of individuals captured in various poses, ranging from profile to frontal views.
All files in the dataset are in the PGM format, have a resolution of approximately
220× 220 pixels, and are 256-bit grayscale images.

2. ORL (http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html, ac-
cessed on 2 January 2022): The dataset was generated by a 2D imaging sensor and
includes 400 different images of each of 40 distinct individuals, where each image
has 92× 112 pixels and a depth of 256 levels of gray per pixel. The photographs were
taken on different occasions, with variations in lighting, facial expressions, and facial
features.

3. COIL (http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html, accessed
on 2 January 2022): The dataset contains 7200 images in the form of 32× 32 pixels

https://cs.nyu.edu/~roweis/data.html
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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for 100 objects. The images were captured on a motorized turntable against a black
background. The dataset was utilized in a real-time recognition system that employed
a sensor to detect the objects and display their angular pose.

4. YaleB (http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html, accessed on
10 February 2023): The dataset consists of image data generated by a 2D imaging sen-
sor. It comprises 2414 images of size 192 × 168 pixels from 38 individuals. The images
were taken under different lighting conditions and a variety of facial expressions.

5. NIR (http://vcipl-okstate.org/pbvs/bench/Data/07/download.html, accessed
on 10 February 2023): The dataset was created via a near-infrared (NIR) imaging
sensor. It includes 3940 NIR face images of 197 persons. The images have a size of
480× 640 pixels, 8-bit, and are not compressed.

The results are shown in Figures 4–8. Based on the results on the real datasets, we
can see the objective value using multiplicative update decreases faster at the beginning,
but later, the proposed block method can converge to a better solution which has a much
lower error level. In addition, comparing to the ADMM, the proposed block method is
much more stable. In Figure 7, the objective value using the ADMM does not consistently
decrease. That is because ρ = 1 is too small for the YaleB dataset. However, using
ρ = 1, the proposed block method does not diverge, and the objective value continuously
decreases. The source code for the proposed algorithms has been added to GitHub,
accessible at https://github.com/Xinyao90/Block-active-ADMM-to-Minimize-NMF-with
-Bregman-Divergences.git, accessed on 10 August 2023.
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Figure 4. Performance comparison of the UMist dataset.
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Figure 5. Performance comparison of the ORL dataset.

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://vcipl-okstate.org/pbvs/bench/Data/07/download.html
https://github.com/Xinyao90/Block-active-ADMM-to-Minimize-NMF-with-Bregman-Divergences.git
https://github.com/Xinyao90/Block-active-ADMM-to-Minimize-NMF-with-Bregman-Divergences.git
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Figure 6. Performance comparison of the COIL dataset.
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Figure 7. Performance comparison of the YaleB dataset.
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Figure 8. Performance comparison of the NIR dataset.

7. Conclusions

In this paper, we proposed a new block method that aimed to solve the nonnegative
matrix factorization problem using the general Bregman divergence distance metric. Non-
negative matrix factorization is a widely used technique in various fields such as image
processing, speech analysis, and bioinformatics. In particular, image processing systems
heavily rely on databases generated by existing imaging sensors, and the efficiency and ac-
curacy of these systems depend on the performance of the nonnegative matrix factorization
method used to process these databases.

Our proposed block method was built on the framework of the alternating direction
method of multipliers (ADMM), which is a popular algorithm used to solve optimization
problems. However, instead of following the traditional approach of the ADMM to solve
the subproblems, we introduced a new method that employed a block coordinate method.
In this approach, we selected a block based on the stationary condition, which allowed
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us to converge faster and to a solution with a lower error level compared to the previous
ADMM method.

To demonstrate the effectiveness of our proposed method, we conducted a series of
numerical experiments. The experiments included comparisons of our block method with
the traditional ADMM method and other state-of-the-art methods in terms of runtime and
overall accuracy. Our numerical results showed the dominance of our proposed block
method over other methods, highlighting its effectiveness in solving the nonnegative matrix
factorization problem using the general Bregman divergence distance metric.

In summary, our proposed block method provides an efficient and accurate solution
to the nonnegative matrix factorization problem using the general Bregman divergence dis-
tance metric. Its unique approach to solving subproblems using a block coordinate method
has proven to be faster and more accurate than traditional methods, as demonstrated by our
numerical experiments. Our proposed method can help improve the performance of image
processing systems and other applications that rely on nonnegative matrix factorization.
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Appendix A. Proof of Theorem 1

Proof. (i) =⇒ Since x is a stationary point, then F = {i ∈ [n] : xi > 0}. For each
i ∈ F , we have xi > 0 and ∂ f /∂xi = 0, so that xi(α) = max{0, xi} = xi for all
α > 0.
⇐= Suppose x(α)i = xi for all i ∈ [n]. Then,{

di = 0, xi > 0
di ≤ 0, xi = 0

By the definition of F , we have

(a) If xi > 0, then di = 0, so that ∂ f
∂xi

di = 0.

(b) If xi = 0, then ∂ f
∂xi

< 0 and di ≤ 0, so that ∂ f
∂xi

di ≥ 0.

Therefore, we have ∂ f
∂xi

di ≥ 0 for all i ∈ F and so

∑
i∈F

∂ f
∂xi

di ≥ 0.

On the other hand, since H is a positive definite matrix, then the definition of d
implies that

∑
i∈F

∂ f
∂xi

di = −gT H−1g ≤ 0.
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Therefore, we have ∑i∈F
∂ f
∂xi

di = 0. Moreover, from (a)–(b), we know ∂ f
∂xi

di = 0 for

all i ∈ F . If di = 0 for all i ∈ F , then ∂ f
∂xi

= 0 so that x is a stationary point. If di < 0

for i ∈ F and xi = 0, then ∂ f
∂xi

di = 0 implies ∂ f
∂xi

= 0, so that x is a stationary point.
(ii) Suppose x is not a stationary point. Consider two index sets

W1 ={i ∈ F : (xi > 0∧ di 6= 0) ∨ (xi = 0∧ di > 0)} (A1)

W2 ={i ∈ F : (xi > 0∧ di = 0) ∨ (xi = 0∧ di ≤ 0)} (A2)

Then, F = W1 ]W2. Moreover, if i ∈ W2, then x(α)i = xi for all α > 0. Since x is
not a stationary point, then W1 is nonempty.
Let i ∈W1. If xi = 0 and di > 0, then

xi(α) = max{0, xi + αdi} = xi + αdi, for all α > 0.

If xi > 0 and di 6= 0, then define

α = sup{α : xi + αdi ≥ 0, ∀i ∈W1}.

Note that here, α is either ∞ or a positive number. Then, we define the direction
d ∈ R|F | as follows:

di =

{
di, i ∈W1

0, i ∈W2
(A3)

Therefore, for all 0 < α ≤ α, we have

x(α)i = xi + αdi, for all i ∈ F .

Moreover, we have

∑
i∈W2

∂ f
∂xi

di ≥ 0

so that

∑
i∈W1

∂ f
∂xi

di = ∑
i∈W1

∂ f
∂xi

di ≤ ∑
i∈F

∂ f
∂xi

di = −gT H−1g < 0.

As a result, d is a feasible descent direction, so that for any α ≤ α, we have
f (x(α)) < f (x).

Appendix B. Proof of Theorem 2

Proof. Let x be the feasible point at the kth iteration. Let G(x) = x−x+
α . Then, the descent

lemma implies that

f (x+) ≤ f (x) + 〈∇ f (x), x+ − x〉+ L
2
‖x+ − x‖2

(a)
≤ f (z) + 〈∇ f (x), x+ − z〉+ L

2
‖x+ − x‖2
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where (a) is due to the convexity of f . The update can be considered as the following
optimization

x+ =argmin f (x) + 〈∇ f (x), z− x〉+ h(z) +
1

2α
‖z− x‖2

H

=argmin h(z) +
1

2α
‖z− (x− αH−1∇ f (x))‖2

H

where h(x) = χ+(x). Therefore, we have

1
α

H(x+ − x) +∇ f (x) + ∂h(x+) 3 0.

so that we have

h(z) ≥h(x+) + 〈− 1
α

H(x+ − x)−∇ f (x), z− x+〉

=h(x+) + 〈HG(x)−∇ f (x), z− x+〉

which further implies

0 ≥ 〈HG(x)−∇ f (x), z− x+〉

Consequently, we obtain

f (x+) ≤ f (z) + 〈∇ f (x), x+ − z〉+ L
2
‖x+ − x‖2

≤ f (z) + 〈HG(x), x+ − z〉+ Lα2

2
‖G(x)‖2

= f (z) + 〈G(x), x+ − z〉H +
Lα2

2
‖G(x)‖2

= f (z) +
1

2α

(
‖x+ + αG(x)− z‖2

H − α2‖G(x)‖2
H − ‖x+ − z‖2

H

)
+

Lα2

2
‖G(x)‖2

= f (z) +
1

2α

(
‖x− z‖2

H − ‖x+ − z‖2
H

)
− α

2
‖G(x)‖2

H +
Lα2

2
‖G(x)‖2

(b)
≤ f (z) +

1
2α

(
‖x− z‖2

H − ‖x+ − z‖2
H

)
−
(

αµ2

2
− Lα2

2

)
‖G(x)‖2

(c)
≤ f (z) +

1
2α

(
‖x− z‖2

H − ‖x+ − z‖2
H

)
where (b) is because λmin{H} ≥ µ, and (c) is due to α ≤ µ2

L .
Now let z = x; then, we have

f (x+) ≤ f (x)− 1
2α
‖x+ − x‖2

H

so that the objective f is a descent. Furthermore, let z = x∗; then, we have

k

∑
i=1

f (xi)− f (x∗) ≤
k

∑
i=1

(
‖xi−1 − x∗‖2

H − ‖xi − x∗‖2
H

)
≤ ‖x0 − x∗‖2

H

Since f is a descent, we have

k( f (xk)− f (x∗)) ≤
k

∑
i=1

f (xi)− f (x∗) ≤ ‖x0 − x∗‖2
H
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