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Abstract: The wind tunnel balance signal detection system is widely employed in aerospace applica-
tions for the accurate and automated measurement of aerodynamic forces and moments. However,
measurement errors arise under different environmental temperature. This paper addresses the issue
of measurement accuracy under different temperature conditions by proposing a temperature com-
pensation method based on an improved gray wolf optimization (IGWO) algorithm and optimized
extreme learning machine (ELM). The IGWO algorithm is enhanced by improving the initial popu-
lation position, convergence factor, and iteration weights of the gray wolf optimization algorithm.
Subsequently, the IGWO algorithm is employed to determine the optimal network parameters for the
ELM. The calibration decoupling experiment and high-low temperature experiment are designed and
carried out. On this basis, ELM, GWO-ELM, PSO-ELM, GWO-RBFNN and IGWO-ELM are used for
temperature compensation experiments. The experimental results show that IGWO-ELM has a good
temperature compensation effect, reducing the measurement error from 20%FS to within 0.04%FS.
Consequently, the accuracy and stability of the wind tunnel balance signal detection system under
different temperature environments are enhanced.

Keywords: wind tunnel balance; signal detection system; temperature compensation; gray wolf
optimization algorithm; extreme learning machine

1. Introduction

The wind tunnel balance is an experimental device widely utilized in the study of
aerodynamics [1]. It comprises a multi-component force measurement sensor designed to
measure the aerodynamic forces and moments acting on various models, including space-
craft and automobiles. The balance incorporates multiple full-bridge circuits composed
of strain gauges, enabling the sensing of changes in aerodynamic forces and moments in
all dimensions [2]. During testing, aerodynamic loads can be determined by supplying
excitation to the six-axis balance circuit using a high-precision power supply and capturing
the response signal of the balance through the acquisition of a signal detection system [3].
In practical applications of the six-axis balance signal detection system, different working
environments can have an impact on the detection system, particularly the influence of am-
bient temperature. When operating under extreme conditions, the wide range of ambient
temperature can induce significant drift in the system’s characteristics. The characteristic
drifts will cause bias between measured values and real values, thereby affecting measure-
ment accuracy [4]. Therefore, compensating for the temperature effect on the balance signal
detection system is crucial, as the characteristic drift caused by temperature profoundly
affects the accuracy of balance testing.
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The effects of temperature on the balance signal detection system can be mainly at-
tributed to two components: the elastic bodies and the signal conditioning circuit. The elas-
tic bodies component comprises the elastic body and the strain gauges affixed to its surface.
The temperature generated error is primarily caused by the thermal effects on the strain
gauges and the disparate expansion coefficients between the strain gauges and elastic
bodies. These factors play a crucial role in inducing temperature generated error in the
elastic bodies. The signal conditioning circuit consists of various modules, including the
excitation source, zero adjustment, anti-electromagnetic filter, amplifier circuit, low-pass
filter, and reference source circuit. The entire signal conditioning circuit is susceptible to
temperature effects, resulting in changes in the temperature coefficient and voltage drift of
the amplifier. These temperature-induced variations, in turn, cause changes in the output
value of the circuit. Additionally, apart from resistors and amplifiers, the excitation source,
reference source, and capacitors within the conditioning circuit also exhibit distinct charac-
teristics with temperature changes. Collectively, these factors contribute to the characteristic
drift phenomenon observed in the balance signal detection system [5].

The compensation of the balance signal detection system for temperature can be
achieved through hardware compensation or software compensation methods. Hard-
ware compensation involves designing the circuit to eliminate temperature coefficients [6].
For instance, Chu et al. [7] adopted double thermocouples to measure the airflow temper-
ature and proposed a time domain compensation method to compensate for the airflow
temperature measurement results. Wu et al. [8] presented a method that utilizes pulsed
light received by a Faraday rotating mirror to differentiate between the temperature and
current. Lee et al. [9] involved a fluorescence quenching-based gas sensor and a resis-
tive temperature detector (RTD) with an integrated thermometer for in situ temperature
monitoring and compensation. However, hardware compensation is more costly, sub-
ject to material-processing constraints, and introduces new uncertainties to the system,
limiting its compensation accuracy. On the other hand, software compensation involves
constructing a compensation model to obtain the compensated output voltage value us-
ing the measured voltage and real-time temperature values. Software compensation is
more cost-effective, flexible, and accurate than hardware compensation, making it more
suitable for practical applications. Numerous software compensation methods have been
proposed by researchers, such as least squares method (LSM), wavelet transform (WT) [10],
and various artificial neural networks (ANNs) [11–14]. The LSM is more suitable for linear
problems, and the error caused by temperature is usually non-linear. And WT requires
a large number of parameters for model building, making it complex and challenging to
implement. In recent years, artificial neural networks, such as backpropagation (BP) and
least squares support vector machine (LSSVM) [15,16] models, have gained popularity for
temperature compensation. However, these models tend to be more complex, prone to
overfitting, and require a significant number of parameters. In contrast, the ELM model [17]
is simple yet possesses strong generalization abilities, making it more suitable for address-
ing overfitting issues. For example, Li et al. [18] proposed an ELM-based temperature
compensation method for piezoresistive differential pressure sensors. Another study by
Long et al. introduced a temperature-compensated ELM model for low coupling and
temperature compensation [19].

Although ELM demonstrates efficient and accurate performance in regression pre-
diction, its random generation of input layer weights and implicit layer thresholds can
lead to network instability. To address this issue, optimization algorithms are utilized to
optimize the weights and thresholds of ELM, thereby reducing prediction error values,
improving network performance, and enhancing the ELM prediction accuracy. In recent
years, the field of metaheuristic algorithms has seen rapid development, with examples
including particle swarm optimization (PSO) [20], the sparrow search algorithm (SSA) [21],
the whale optimization algorithm (WOA) [22], the fireworks algorithm (FWA) [23], and the
gray wolf optimization (GWO) [24,25], among others. GWO offers a faster optimization
process compared to other algorithms, as it first derives the solutions and then ranks and
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compares them to obtain the best solution. However, GWO has drawbacks, such as dif-
ficulty in handling a large number of variables and escaping local optima when solving
large-scale problems [26]. In a previous study, Xie et al. proposed a three-stage update
function for inertia weights and a dynamic update method for learning rate to enhance
GWO performance by avoiding local optima [27]. Jin et al. proposed optimal Latin hyper-
cube sampling initialization, nonlinear convergence factor, and dynamic weights for IGWO
to enhance its accuracy in optimizing support vector regression (SVR) parameters [28].
Therefore, this paper aims to improve the gray wolf algorithm by enhancing three aspects:
initial population location, convergence factor, and iteration weights.

Based on the aforementioned discussions, this paper employs the IGWO to optimize
the ELM neural network, aiming to obtain the optimal weights and thresholds for the
network. Building upon this, we propose the IGWO-ELM for the temperature compensation
method. In this study, we focus on the calibration decoupling experiments, high- and low-
temperature experiments, and temperature compensation experiments using a six-axis
force/torque sensor and a balance signal detection system board applied to the space
robotic arm as our research object. The experimental results demonstrate that IGWO-ELM
exhibits a remarkable temperature compensation effect and demonstrates excellent stability.

The main contributions are as follows:

• This paper proposes three improvements to enhance the performance of the gray
wolf algorithm:

1. Improving the initialized population by employing circle chaotic mapping to
enhance the diversity of the initial population, thus promoting exploration in the
search space;

2. Enhancing the convergence factor by utilizing a nonlinear function, which en-
hances the global search capability in the early stages of the algorithm and
improves the convergence speed in the later stages;

3. Accelerating the convergence speed of the algorithm towards the optimal solu-
tion by enhancing the dynamic weighting strategy.

• Presents a temperature compensation method for the wind tunnel balance signal detec-
tion system based on the IGWO algorithm and the ELM model. The proposed method
aims to accurately predict and compensate for the errors induced by temperature in
the system. By utilizing the IGWO algorithm and the ELM model, the temperature-
related errors can be effectively mitigated, leading to improved measurement accuracy
and reliability of the wind tunnel balance signal detection system.

• The calibration decoupling experiment and high–low temperature experiment are de-
signed and carried out. On this basis, ELM, GWO-ELM, PSO-ELM, GWO-RBFNN and
IGWO-ELM are used for temperature compensation experiments. The experimental
results show that IGWO-ELM has a good temperature compensation effect, and the
measurement error is reduced from 20%FS to less than 0.04%FS.

2. Basic Algorithm
2.1. Extreme Learning Machine (ELM)

ELM is a feed-forward neural network model for machine learning that offers several
advantages over other models, such as BPNN and RBFNN. ELM models [29] do not require
the adjustment of structural parameters during training, making them simple and efficient.
In ELM, the connection weights between the input layer and the hidden layer, as well as
the thresholds of the hidden layer neurons, are randomly generated and do not require
adjustments during training. The only requirement is to set the number of neurons in the
hidden layer to obtain the optimal solution. The network structure is illustrated in Figure 1.
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Figure 1. ELM network structure.

Suppose there are N training samples (Xi, Yi), where 1 ≤ i ≤ N,
Xi = [Xi1, Xi2, · · · , Xin]

T ∈ Rn is the input vector of the ith sample, and
Yi = [yi1, yi2, · · · , yim]

T ∈ Rm is the output vector of the ith sample, then the ELM network
can be represented as

∑
f
l β f g

(
W f Xi + b f

)
= Ti (1)

where g(x) is the activation function; W f =
[
w f 1, w f 2, · · · , w f n

]T
is the input weight; b f

is the threshold of the f -th hidden layer neuron; β f =
[

β f 1, β f 2, · · · , β f m

]
is the output

weight; and Ti = [ti1, ti2, · · · , tim]
T is the output vector of the ith sample.

The learning goal of ELM is to minimize the output error of the network as much as
possible, expressed as

∑N
i=1||Ti −Yi|| = 0 (2)

That is, there exists a suitable set of W, b and β such that

Hβ = Y (3)

Among them, H =




g(W1X1 + b1) · · · g(WlX1 + bl)
...

. . .
...

g(W1XN + b1) · · · g(WlXN + bl)


 represents the implied layer

output matrix of the network; β =
[
βT

1 , βT
2 , · · · , βT

l
]T

l×m ; and Y =
[
YT

1 , YT
2 , · · · , TT

N
]T

N×m.
The output weights β can be obtained by solving the least squares solution of the following
system of equations:

min
β

= ||Hβ−Y|| (4)

The solution is
β̂ = H+Y (5)

where H+ is the generalized inverse matrix of the output matrix H of the hidden layer.

2.2. Gray Wolf Optimization Algorithm (GWO)

The gray wolf optimization algorithm is a novel meta-heuristic algorithm that draws
inspiration from the internal system and hunting patterns of gray wolves in nature. It aims
to find optimal solutions by emulating the hunting behavior of gray wolf packs. In the
natural environment, gray wolves occupy a higher position in the food chain and exhibit a
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preference for group living. Within the gray wolf community, a strict hierarchical structure
is maintained, as depicted in Figure 2.

 

!

"

#

Figure 2. Gray wolf hierarchy.

The GWO classifies wolf packs into four categories. The first category consists of
α wolves, who hold the dominant position and are primarily responsible for decision
making regarding hunting and food distribution. The second category comprises β wolves,
who strictly follow the leadership of α wolves and serve as mediators for transmitting
information. In the absence of an α wolf, β wolves can assume control over all other wolves,
except those in the first category. The third category encompasses δ wolves, who only
dominate ω wolves and are mainly responsible for fundamental tasks within the pack,
such as standing guard and scouting. Lastly, the fourth category comprises ω wolves,
who occupy the lowest position in the pack’s hierarchy and are tasked with executing
orders from higher-ranking wolves and maintaining pack harmony. Gray wolves show
collective predation, characterized by encirclement, hunting, and attack strategies. In the
GWO algorithm, the first three optimal solutions correspond to the positions of α, β, and δ
wolves, while the remaining solutions represent positions of ω wolves. In each iteration,
the optimal position is estimated using the first three optimal solutions. The gray wolves are
then guided to randomly update their positions around these optimal solutions, gradually
converging towards the global optima. Figure 3 illustrates the schematic diagram of the
optimal search process.
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Figure 3. Schematic diagram of the gray wolf algorithm for finding advantages.

1. Surrounding behavior
Throughout the encirclement process, the separation distance, denoted as D, be-
tween the wolf pack and the prey, is captured by the formulation outlined in
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Equation (6). To adapt their positions dynamically, the wolf pack undergoes position
updates contingent upon the aforementioned distance as delineated in Equation (7).
By manipulating the coefficient vectors A and C, it becomes possible to guide the
wolves towards the prey from varied vantage points. The determination of these
coefficients is facilitated through the deployment of Equations (8) and (9):

D =
∣∣CXp(t)− X(t)

∣∣ (6)

X(t + 1) = Xp(t)− AD (7)

A = 2ar1 − a (8)

C = 2r2 (9)

where t is number of current iterations; Xp is the position vector of the prey; and D is
the distance. a is the convergence factor, slowly decreasing from 2 to 0, and r1, r2 are
random numbers in [0, 1].

2. Hunting behavior
Once the wolf pack has successfully encircled the prey, the α wolf, β wolf, and δ
wolf position themselves closest to the prey. Under the leadership of these wolves,
the entire pack advances towards the prey. The positional hunting behavior of the ω
wolf can be described by the following mathematical model:

Dα = C1Xα(t)− X(t) (10)

Dβ = C2Xβ(t)− X(t) (11)

X1(t + 1) = Xα(t)− A1Dα (12)

X2(t + 1) = Xβ(t)− A2Dβ (13)

X3(t + 1) = Xδ(t)− A3Dδ (14)

X(t + 1) =
X1(t + 1) + X2(t + 1) + X3(t + 1)

3
(15)

3. Attacking the prey
The objective of this phase is to capture the prey, which corresponds to obtaining the
optimal solution. In the GWO algorithm, the process of approximating the prey is
simulated by gradually decreasing the value of parameter a. As a decreases, the ele-
ments of vector A are constrained to the interval [−a, a]. When |A| < 1, the wolves can
attack the prey; conversely, when |A| > 1, the wolves disperse in various directions,
leading to a loss of the optimal position. This behavior highlights the tendency of the
GWO algorithm to become trapped in local optima.

2.3. Improved Gray Wolf Optimization Algorithm (IGWO)

2.3.1. Optimize Initial Population Location

Chaotic motion possesses significant advantages, such as regularity, randomness,
and ergodicity. To increase population diversity and prevent the algorithm from getting
trapped in local optima during the optimization process, the concept of chaotic mapping is
incorporated into the GWO algorithm. Various methods can be used for chaotic mapping,
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including logistic mapping, tent mapping, and circle mapping [30]. However, it has
been shown that the distribution of logistic mapping is nonuniform and biased towards
the extremes, which adversely affects the speed and accuracy of finding the optimal
solution [31]. Tent mapping [32] exhibits a more uniform distribution, but it is prone to
convergence towards stationary points. In comparison, circle mapping demonstrates a
more stable distribution with uniform values across the range as depicted in Figure 4.
Therefore, in this paper, circle chaotic mapping is employed to initialize the population of
the gray wolf algorithm.The expression for circle chaotic mapping is as follows:

Xi+1 = mod(Xi + 0.2− (0.5/2π) sin(2πXi), 1) (16)

where Xi is the i-th dimensional random value.
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2.3.2. Optimized Convergence Factor

The GWO algorithm’s ability to balance exploration and exploitation is influenced by
the parameter A, and the convergence factor a determines the value of A. In each iteration,
the convergence factor a is linearly reduced from 2 to 0. However, the GWO algorithm does
not solve problems in a linear optimization process. Therefore, the linear decrease of a does
not fully adapt to the actual convergence search process and does not effectively coordinate
global and local search. To address this issue, many researchers have proposed nonlinear
improvements to the mathematical expression of a to enhance the algorithm’s convergence
accuracy [33]. Nonlinearization of the convergence factor a is a common approach used to
solve this equilibrium problem. The improved expression for the convergence factor a is as
follows:

a = 2− 2
[

1
e− 1

×
(

e
t
T − 1

)]
(17)

Where: a is the convergence factor of the Gray Wolf algorithm; e is the natural constant; t is
the number of iterations; T is the maximum number of iterations .

The improved convergence method involves non-linearly decreasing the convergence
factor a from 2 to 0 during the iteration process. This approach aligns more closely with
the hunting behavior of gray wolves, where the iteration speed starts slow in the early
stage and becomes faster in the later stage. This strategy enhances both the global and local
search capabilities of the algorithm. By accelerating the convergence of the algorithm, it
ensures better coordination between local and global search efforts.
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2.3.2. Optimized Convergence Factor

The GWO algorithm’s ability to balance exploration and exploitation is influenced by
the parameter A, and the convergence factor a determines the value of A. In each iteration,
the convergence factor a is linearly reduced from 2 to 0. However, the GWO algorithm does
not solve problems in a linear optimization process. Therefore, the linear decrease in a does
not fully adapt to the actual convergence search process and does not effectively coordinate
global and local search. To address this issue, many researchers have proposed nonlinear
improvements to the mathematical expression of a to enhance the algorithm’s convergence
accuracy [33]. Nonlinearization of the convergence factor a is a common approach used to
solve this equilibrium problem. The improved expression for the convergence factor a is
as follows:

a = 2− 2
[

1
e− 1

×
(

e
t
T − 1

)]
(17)

where a is the convergence factor of the gray wolf algorithm; e is the natural constant; t is
the number of iterations; and T is the maximum number of iterations.

The improved convergence method involves non-linearly decreasing the convergence
factor a from 2 to 0 during the iteration process. This approach aligns more closely with
the hunting behavior of gray wolves, where the iteration speed starts slow in the early
stage and becomes faster in the later stage. This strategy enhances both the global and local
search capabilities of the algorithm. By accelerating the convergence of the algorithm, it
ensures better coordination between local and global search efforts.
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2.3.3. Improvement of Gray Wolf Iteration Weights

In the original GWO algorithm, the α, β, and δ wolves, selected based on their fitness
function values, represent the current three optimal solutions. However, it is not reasonable
to have these three wolves guide the other groups with the same strength during the opti-
mization process. Such an approach would slow down the convergence of the algorithm,
make it more prone to reaching local optima, and ultimately fail to produce the desired
optimal solution. To address this limitation, an improved approach based on the concept
of dynamic proportional weights is proposed [34]. In each iteration, the positions of the
remaining wolves are dynamically guided by the distances between the three types of
leading wolves and the prey. This dynamic guidance significantly enhances the algorithm’s
adaptability to the environment [35]. The ω wolves update their positions as follows,
under the guidance of the α, β, and δ wolves, respectively:

X1 = Xα − A1Dα (18)

X2 = Xβ − A2Dβ (19)

X3 = Xδ − A3Dδ (20)

Based on X1, X2, and X3 generated by the algorithm in each iteration, the specific
formula for updating the location of ω wolf based on dynamic weights is as follows:

ω1 =
|X1|

|X1|+ |X2|+ |X3|
(21)

ω2 =
|X1|

|X1|+ |X2|+ |X3|
(22)

ω3 =
|X1|

|X1|+ |X2|+ |X3|
(23)

In Equations (21)–(23), ω1, ω2, and ω3 correspond to the learning weights of ω wolves
to α wolves, β wolves, and δ wolves, respectively. Therefore, the ω wolves finally update
their positions in the following way:

X(t + 1) = ω1X1 + ω2X2 + ω3X3 (24)

From the weight Equations (21)–(23), we can see that ω1, ω2, and ω3 are constantly
changing during each iteration, which means “dynamic weights”. Therefore, the dynamic
weights in this paper can be adjusted according to the actual convergence in each iteration
so that they can be better adapted to the environment.

2.4. Improve GWO Algorithm to Optimize ELM

The improved GWO algorithm is employed to optimize the weights and thresholds
of ELM, aiming to find the optimal network parameters. The weights of the input layer
and the thresholds of the hidden layer serve as the location parameters for the gray wolf
individuals. By applying the improved GWO algorithm, the optimal initial weights and
thresholds are obtained, which are then used for training the network. This optimization
process effectively mitigates the influence of randomly generated weights and thresholds
on the network performance. Furthermore, GWO evaluates the fitness value based on the
network error during each iteration, thereby enhancing the accuracy and stability of the
model’s predictions. The fitness function is defined as follows:

f it =
1
n ∑n

i=1|yi − ŷl | (25)
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where yi is the true value, ŷl is the predicted value, and n is the number of samples.
The IGWO-ELM algorithm flow is shown in Figure 5 and is as follows:

1. Determining the network model structure and encoding the network weights w and
threshold B to generate the gray wolf’s position vector.

2. Defining the dimensions of the weight variables dim, the population size N, the maxi-
mum number of iterations, and the upper and lower bounds of the search space ub
and lb.

3. Initialization of gray wolf populations using circle mapping to increase the population
diversity of the gray wolf algorithm.

4. By optimizing the convergence factor and dynamically adjusting the gray wolf itera-
tion weights, the optimal solution of fitness is searched in the solution space, and the
location of the individual gray wolf with the optimal fitness value is used as the
network initialization parameter.

5. By determining whether the iteration termination condition holds, if it does, the itera-
tion is terminated; otherwise, the execution continues.

6. The parameters corresponding to the optimal gray wolf individuals are used as
the optimal initial weights and thresholds of ELM to construct the IGWO-ELM
network model.

Start

Example Initialize 

GWO parameters

GWO optimum

fitness value

The Circle map

initializes the Wolf pack

Update the best grey Wolf

individual location

Input training data

data pre-processing

Initializes the ELM 

weight and threshold

The fitness value 

is obtained
Input test data

Optimal convergence factor

Whether the end 

condition is met
Obtain the best initial 

weight threshold

The IGWO-ELM model 

was constructed
End

N Y

Figure 5. IGWO-ELM algorithm flow chart.

3. Experiment

The wind tunnel balance signal detection system comprises a six-axis sensor and a
balance signal detection system board. In this study, we utilized the six-axis force/torque
sensor developed by the Institute of Intelligent Mechanics (IIM) of the Chinese Academy
of Sciences specifically designed for space robotic arm applications, along with a custom-
designed signal detection system board. The sensor parameters are presented in Table 1
below. The balance signal detection system board consists of a signal conditioning mod-
ule, excitation source module, AD acquisition module, and signal transmission module,
with Ethernet transmission employed for signal transmission. The overall structure of the
wind tunnel balance signal detection system is depicted in Figure 6 below.
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Table 1. Six-axis force/torque sensor parameters.

Measurement Range (±) Fx/Fy/Fz: 1000 N, Mx/My/Mz: 40 Nm
Dimensional Parameters Height: 53 mm, Diameter: 93 mm

Overload capacity ≤300%FS
Zero output ≤±0.5%FS

Supply voltage/power DC 5V/2W

Excitation 

source module

Sensor 

Module

Amplifier 

circuit 

module

Low-pass 

filter 

module

AD 

Acquisition 

Module

MCU 

Module

Network 

transmission 

module

Upper 

computer 

display

Signal Conditioning

Figure 6. Wind tunnel balance signal detection system structure diagram.

3.1. Calibration and Decoupling Experiments

Calibration involves the adjustment of the equipment under test using standard metro-
logical equipment to ensure accurate and reliable measurements. In our study, data are
collected using a six-axis force/torque transducer, and precise calibration of this transducer
is crucial for achieving accurate measurement performance. By calibrating the six-axis
force/torque transducer, we establish the relationship between the applied force/torque
and the corresponding output voltage for different force states of the transducer. This
relationship can be expressed mathematically as follows:

F = W ·U + B (26)

where the W is the weight matrix, also known as the decoupling matrix, and the B is the
deviation vector.

A known standard force source is employed to apply a standard force/torque to the
sensor in various directions, with the applied force/torque continuously varying from
the minimum to the maximum measurement range. The output voltage of the sensor is
simultaneously measured and recorded at each loading point. This process is repeated three
times to obtain comprehensive calibration data. The calibration ranges for the platform are
as follows: Fx/Fy—1000 N; Fz—2000 N; and Mx/My/Mz—50 Nm. There is an accuracy
of 0.1%FS.

After the calibration experiments are completed, the decoupling matrix W deviation
vector B is calculated using a linear neural network as follows:

W =





−12.833 0.115 −0.113 0.122 −17.068 −0.130
0.093 −12.90 −0.515 16.741 0.208 0.034
−0.076 −0.501 −9.964 0.122 0.023 0.001
0.002 −0.028 −0.017 0.128 0.004 −0.001
0.026 0.002 −0.001 −0.003 0.132 0.001
0.037 −0.001 −0.003 0.001 0.002 −0.123





(27)

B = [38203.083,−4828.718, 13017.101,−112.087,−201.395,−162.169] (28)

Finally, the transfer expression (26) is obtained.
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3.2. High-Low Temperature Experiment

To investigate the temperature characteristics of the wind tunnel balance signal de-
tection system, the drift resulting from system measurement errors is analyzed through
high-low temperature experiment. The obtained data are then used to train a model. In or-
der to accurately study the temperature-induced drift characteristics, no force/torque is
applied to the six-axis force/torque sensor, allowing the system output to vary solely due
to temperature changes.

The wind tunnel balance signal detection system is placed inside a sealed high-low
temperature experimental chamber, with the system powered by a 24 V DC power supply.
The temperature is varied in increments of 20 °C, ranging from −40 to 80 °C. To ensure
accurate temperature measurements, each sampling point is maintained for 2 h. The sam-
pling points include−40, −20, 0, 20, 25, 40, 60, and 80 °C. The acquisition module transmits
the voltage output values at each temperature to the computer via the network for storage
and processing. The high–low temperature experimental setup is depicted in Figure 7.

24V excitation source power supply

High and low temperature experiment

PC data display

power 

supply

data 

transmission

Figure 7. High–low temperature experiment demonstration.

In this paper, the sensor measurement error Em is employed as the evaluation index
for quantifying the degree of temperature-induced drift in each bridge of the wind tunnel
balance signal detection system. The defined equation is as follows:

Em =
UT −Ure f

U(FS)
× 100% (29)

where UT is the measured value of the wind tunnel balance signal detection system at
T°C; Ure f indicates the measured value at the standard temperature, i.e., 25 °C; and U(FS)
indicates the range of the wind tunnel balance signal detection system.

The temperature-induced drift caused by measurement errors in the six dimensions
can be observed using Equation (27) as depicted in Figure 8. From the figure, it is evident
that the temperature-related errors exhibit predominantly nonlinear behavior. With in-
creasing the temperature, the errors of Fx and Mz gradually transition from negative to
zero and then increase; the errors of Fz and My follow a similar trend, but with opposite
correlation; the errors of Fy and MX remain relatively smaller as the temperature increases.
Among these, Fz exhibits the largest error, reaching up to 20%FS, while Fx and My also have
maximum errors of 10%FS. In short, the temperature-induced error can reach a minimum
of 0.6%FS. Furthermore, temperature introduces significant nonlinearity-induced errors,
significantly impacting the accuracy of the wind tunnel balance signal detection system.
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Figure 8. Uncompensated measurement error.

4. Temperature Compensation
4.1. Wind Tunnel Balance Signal Detection System Compensation Principle

To mitigate the impact of temperature-induced drift, temperature compensation is nec-
essary for the wind tunnel balance signal detection system. The temperature compensation
process is illustrated in Figure 9. Initially, the force and torque measured by the system are
converted to a voltage output U0. Subsequently, the voltage output and temperature are
compensated using a model to obtain the thermal output UT . Finally, the measured output
is subtracted from the thermal output to obtain the actual output. The compensated output
is determined using Equation (26).

Rotary balance 

data acquisition 

system

Transfer  

Expression
IGWO-ELM  ! "  #

temperature

force/torque
 !  "

Compensating 

voltage value The actual 

force/torque

Figure 9. IGWO-ELM temperature compensation system diagram.

4.2. Compensation Model

Firstly, the acquired data are divided into training and test sets using the leave-out
method. In this process, 80% of the acquired data is utilized to train the IGWO-ELM
algorithm, while the remaining 20% is reserved to assess the accuracy of the compensation.
Both the training and test sets consist of measured output and temperature values for
each direction. Furthermore, to validate the prediction performance of the IGWO-ELM
algorithm, BPNN, GWO-ELM, PSO-ELM, and GWO-RBFNN are trained using the same
data samples, respectively.

The parameters of the GWO algorithm are set as follows: the number of populations is
30, the upper limit is 1, the lower limit is 0, and the number of iterations is 200. The param-
eters of the PSO algorithm are set as follows: c1 = c2 = 1.49445, the number of populations
is 30, the maximum value of individuals popmax = 1, the minimum value of individuals
popmin = 0, the maximum value of individuals velocity Vmax = 100, the minimum value
Vmin = −100, and the maximum number of iterations maxgen = 200. The implicit layer
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neurons of ELM are set to 8, the implicit layer activation function is sigmoid, and the
RBFNN centroids are −40, −20, 0, 20, 25, 40, 60, and 80. All parameters are kept the same
as much as possible.

In addition, the performance of the algorithm is evaluated by means of the mean
square error (MSE) as a fitness function, which is calculated as follows:

MSE =
1
n ∑n

i=1(yi − ŷl)
2 (30)

where yi is the true value of the i-th sample, ŷl is the predicted value of the i-th sample, and
n is the number of samples.

4.3. Compensation Results and Analysis

The compensation results for each dimension in the test sets are presented in Table 2
below. Among them, the test results of IGWO-ELM demonstrate the best performance,
while ELM and GWO-RBFNN perform relatively worse. From the test results, it can be
observed that the errors of IGWO-ELM in the four dimensions of Fx, Fy, My, and Mz can
be limited to within 0.01%FS. Furthermore, the test results of IGWO-ELM outperform
those of single GWO-ELM, showcasing effective compensation for temperature-induced
errors. It is evident that under the same network structure conditions, the performance of
GWO-ELM is not as satisfactory, while the performance of GWO-ELM is superior to that
of GWO-RBFNN.

Table 2. Comparison of prediction errors of different algorithms.

Parameters ELM GWO-ELM IGWO-ELM PSO-ELM GWO-RBFNN

Fx 3.7567× 10−5 3.3718× 10−5 3.0089× 10−5 3.5404× 10−5 3.7606× 10−5

Fy 1.8891× 10−5 1.7274× 10−5 1.3948× 10−5 1.7350× 10−5 1.6507× 10−5

Fz 3.5412× 10−4 3.4942× 10−4 2.8792× 10−4 3.2449× 10−4 3.2074× 10−4

Mx 2.5310× 10−4 2.5227× 10−4 1.9278× 10−4 2.4042× 10−4 2.2995× 10−4

My 2.2462× 10−5 1.9885× 10−5 1.7164× 10−5 1.9339× 10−5 1.9990× 10−5

Mz 7.2498× 10−5 6.8145× 10−5 6.2343× 10−5 6.7122× 10−5 7.2946× 10−5

By examining the data presented in Table 2, it becomes evident that the proposed
IGWO-ELM algorithm in this study exhibits superior performance in compensating for
temperature variations as reflected by the smaller error indicators compared to other
algorithms. Of particular importance is the significant reduction in compensation errors for
Fx, Fy, My, and Mz, which are decreased by 20% when compared to the original standard
ELM algorithm. This signifies the effectiveness of the proposed IGWO-ELM algorithm
in optimizing temperature compensation for the wind tunnel balance data acquisition
system. As a result, the algorithm utilizing IGWO-ELM outperforms GWO-ELM, PSO-
ELM, and GWO-RBFNN in achieving accurate temperature compensation.

From the data presented in the table above, it is evident that the iterations in the Fy
dimension yield the best results. Therefore, Fy is chosen as an example to evaluate the
convergence and ability to escape local optima of the IGWO algorithm after compensation.
The iterative convergence curve of the algorithm is depicted in Figure 10, where the horizon-
tal axis represents the number of iterations, and the vertical axis represents the fitness value.
From the figure, it can be observed that the IGWO algorithm shows faster convergence and
a smooth curve in the temperature compensation model. A lower fitness value indicates
higher optimization search accuracy. The appearance of the curve’s inflection point signifies
faster convergence speed. The smooth curve suggests that the algorithm excels in escaping
local optima. After conducting several experiments, a comparison between the predicted
and actual values of the test samples can be obtained as shown in Figure 11.
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Figure 10. Adaptability curve. (a) Improved GWO adaptation curve. (b) GWO adaptation curve.
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The measurement errors of the wind tunnel balance signal detection system after com-
pensation using IGWO-ELM are illustrated in Figure 12. Overall, the measurement errors in
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all dimensions are significantly reduced after the application of IGWO-ELM compensation.
The best compensation effect is achieved in the Fy dimension, with a value of 2.5× 10−3%FS.
The errors in all other dimensions are within 0.04%FS. As a result, the measurement data
obtained after the implementation of the IGWO-ELM compensation algorithm are largely
independent of the temperature, reducing the measurement error from 20%FS to within
0.04%FS, effectively controlling the measurement error caused by temperature.
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5. Conclusions

In this paper, aiming at the temperature error problem of the wind tunnel balance
signal detection system, a temperature compensation method is proposed. The method
is based on an optimized extreme learning machine using an IGWO algorithm. The re-
search focuses on a wind tunnel balance signal detection system that consists of a six-
axis force/torque sensor applied to a space robotic arm and a signal detection system
board. High–low temperature experiments are conducted to collect experimental data.
For temperature compensation, various algorithms, including ELM, GWO-ELM, PSO-ELM,
GWO-RBFNN, and IGWO-ELM, are employed and compared. The experimental results
demonstrate that IGWO-ELM outperforms other algorithms in terms of prediction ability
and reduces the temperature-induced error to within 0.04%FS. By improving the initializa-
tion of the gray wolf population, optimizing the convergence factor, and adapting iteration
weights, the IGWO-ELM algorithm exhibits improved stability, is less likely to converge
to local optimal solutions, and determines the optimal network parameters for the ELM.
In short, the experimental results confirm that the proposed IGWO-ELM temperature
compensation algorithm effectively addresses the temperature error issue and provides
better temperature compensation performance with enhanced stability.

Although the temperature compensation achieved by the IGWO-ELM algorithm is
superior, its controllable performance is relatively weak, and its ability to adapt to different
characteristics of the dataset is not highly effective. Future research can focus on enhancing
the controllability of the IGWO-ELM algorithm, particularly in relation to its adjustment
based on the specific characteristics of the dataset. This investigation will contribute
to further improving the performance and versatility of the IGWO-ELM algorithm in
temperature compensation applications.
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