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Abstract: This paper deals with a specific approach to fault detection in transformer systems using
the extended Kalman filter (EKF). Specific faults are investigated in power lines where a transformer
is connected and only the primary electrical quantities, input voltage, and current are measured.
Faults can occur in either the primary or secondary winding of the transformer. Two EKFs are
proposed for fault detection. The first EKF estimates the voltage, current, and electrical load resistance
of the secondary winding using measurements of the primary winding. The model of the transformer
used is known as mutual inductance. For a short circuit in the secondary winding, the observer
generates a signal indicating a fault. The second EKF is designed for harmonic detection and
estimates the amplitude and frequency of the primary winding voltage. This contribution focuses on
mathematical methods useful for galvanic decoupled soft sensing and fault detection. Moreover, the
contribution emphasizes how EKF observers play a key role in the context of sensor fusion, which
is characterized by merging multiple lines of information in an accurate conceptualization of data
and their reconciliation with the measurements. Simulations demonstrate the efficiency of the fault
detection using EKF observers.

Keywords: soft sensing; fault detection; state estimation of electrical systems; transformers

1. Introduction

Today, there are many low-power household and medical appliances containing
simple inverters or mutual inductors. There are also many devices in industry, e.g., drives,
where the situation is similar but with high performance. In all of these applications,
the effort is to replace conventional sensors with soft ones and to ensure fault-free operation.
The following section provides an overview of the current state of possible methods
and their implementation in specific fault detection applications. This contribution focuses
particularly on mathematical methods useful for soft sensing and fault detection. Moreover,
EKF observers play a key role in the context of sensor fusion, which is characterized by a
modern sensor’s structure for merging multiple lines of information in a more accurate
conceptualization of data and their reconciliation with the measurements. In this context of
conceptualization and reconciliation of the measured data, sensor fusion represents one of
the crucial key points in fault detection.

1.1. Fault Detection

Due to the need to guarantee safety conditions and continuity of service in technical
systems, detecting faults is one of the most challenging and important tasks in control
systems and monitoring; see [1,2]. The importance of this task is not just limited to technical
systems; it is important and crucial in any field of application. In this context, a recent
proposed approach in [3] investigates a general method that uses only system input/out-
put data collected via sensor networks. It proposes a new method to analyze the residual
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signals, which are combined with the Hellinger distance to improve the performance of the
method. The method proposed in [3] takes into particular consideration the presence of
noise. In fact, in the presence of strong noise, detecting faults becomes a difficult task. In
the context of safety, the importance of the fault detection is clearly stated by the presence
of norms. Methods of applying, designing, deploying, and maintaining safety-related
systems are described within the international standards IEC 61508 [4] (Functional Safety
of Electrical/Electronic/Programmable Electronic Safety-related Systems). Thanks to these
standards, a large number of compliant products and processes have been created, such
as automotive safety components, medical devices, sensors, actuators, diving equipment,
and process controllers. In particular, IEC 61508 defines through ISO 26262 [5] a series of
standards that are dedicated to automotive components and are used in a more general
context of functional safety to suppress and eliminate undue risks caused by improper be-
havior of electrical/electronic systems. Recent publications include [6], in which redundant
virtual sensors were applied to guarantee continuity in service. In [7], the dual concept of
virtual sensors using EKFs was used to maintain continuity of service in DC/DC systems.
This recent literature indicates the importance of this topic and the need to explore new
solutions for evolving products and systems. Fault detection is a fundamental procedure
for obtaining fault-tolerant systems. Such systems continue to function correctly even if a
certain number of errors occur during their execution. The development and verification
of fault-tolerant systems requires scientific methodology that includes modeling methods,
design patterns for fault-tolerance methods, and ready-made algorithms. In design, it is
important to recognize faults and evaluate whether they are dangerous. Different measures
can be taken into account to assess their nature. Faulty components can be replaced with
ready-made new components in standby mode, or the system can be shut down in an
irreparable state.

As stated in the seminal work [8], many contributions have been proposed for state
observation and monitoring. They were collected in [9]. The Kalman filter (KF) can be used
as an asymptotic observer [10], proven by the direct Lyapunov method to estimate deflec-
tions. It can be used in fault detection to monitor states, components, and working points
of machines and complex plants and can serve as an auxiliary observer of a supervisory
system with higher algorithms and logic elements. In the last few years, many different
contributions have appeared in all technical fields. The extended Kalman filter (EKF) was
proposed for the parameter estimation of induction motors and for the speed and position
estimation of brush-less DC motors [11].

Fault detection is also a challenge in terms of fault isolation. In this context, observer-
based techniques have been applied in many technical fields, such as sensor fault de-
tection for induction motors [12], aircraft engine fault diagnostic systems [13], and air
conditioning [14], based on a combination of ARX structure and EKF. To achieve functional
safety in terms of a fault-tolerant system, the term “hardware redundancy” often means
redundant sensors and/or redundant actuators connected in standby to the system. This
method is very expensive. In general, in fault detection, observers as virtual sensors and
virtual actuators are used to detect faults and errors and to replace the faulting component,
if possible, using a “virtual one”. Thus, observers as virtual sensors can be successfully
used for monitoring and support of fault detection structures without using direct sensors
as fault detectors.

The determination of inrush and internal fault currents in transformers is an important
feature of the transformer protection scheme proposed in [15–17]. In particular, in [15], a
classification, in the sense of a discrimination, of internal fault currents and the phenomenon
of inrush currents in a transformer is realized by using an EKF algorithm based on the
monitoring of current and resistance variation on the primary winding. In [16], a fault
diagnosis in a permanent magnet synchronous generator (PMSG) is proposed and, when the
fault appears, an EKF and unscented Kalman filter (UKF) are used to detect the percentage
and the place of the fault. In [17], high-order compensation topology integration for
high-tolerant wireless power transfer is proposed, in which description and comparison



Sensors 2023, 23, 7173 3 of 18

of highly flexible compensation topologies, including integration methods and relative
control strategies for high misalignment-tolerant wireless power transformer systems, are
proposed. All of these contributions indicate the importance of the topic as well as the
variety of the possible problems that can occur and their possible solutions. A current
sensor fault-tolerant control strategy based on criteria markers is presented for permanent
magnet synchronous motor drive systems in [18,19]. EKF in a learning-based approach to
fault detection and classification in three-phase power transformers is presented in [20].

Fault detection and diagnosis (FDD) is another challenge in power system protection.
Its comprehensive review and classification for the last three decades is provided in [21].
FDD for a robust design is shown in [22], where the combination of different techniques,
including state estimation, statistical, spectral analysis, model- and signal-based approaches,
and deep learning, is discussed. A review of the methods of fault detection, classification,
and location for transmission lines and distribution systems is provided in [23], where
the time interval for fault detection is part of the discussion. Reactions, fault detection,
challenges, and future prospects of power transformer insulation systems are discussed
in [24].

Identification of short circuits in low-voltage networks using a tolerant locus curve
criterion is presented in [25]. The criterion is independent of the power factor and initial
current. It indicates the short circuit if its values are outside of the tolerance locus curve.
The design and evaluation of a hybrid system for fault detection and prediction in electrical
transformers is shown in [26]. Diagnosis of interturn faults of voltage transformers using
excitation current and phase differences is discussed in [27].

In this paper, we focus on fault detection using an EKF structure for sensor fusion
based on original principles, as summarized in Section 1.2 on our paper’s contributions.

1.2. Contribution

This paper proposes fault detection using extended Kalman filters for sensor fusion.
Contributions for the purposes of fault detection are summarized as follows:

• The original principle of a specifically adapted EKF as observer that estimates the fault
condition of the power line of electrical health device management (fluctuation of the
mains voltage of the power line in Europe is in the tolerance of 230± 23 V at a mains
frequency of 50± 0.2 Hz; see DIN IEC 60038 [28].

• The original principle of another EKF for a state estimation of the secondary galvanic
decoupled side of a two-winding transformer and the electrical load resistance RL.

The paper is organized as follows. The problem of fault detection is formulated
in Section 2. Section 3 deals with two specific EKFs for a mutual inductor with load
and for power line conditions. An experimental setup for demonstration of the proposed
approach is described in Section 4. Finally, Section 5 shows and discusses the obtained
results. The paper also contains Appendix A, in which there is a printout of the EKF
procedures.

2. Problem Formulation

The fault detection problem is to create a detectable signal by which the fault can
be detected. As a target application, we investigate a specific two-winding transformer
(mutual inductor) connected to one phase of the power line and the detection of specific
faults, or electrical limit states, immediately upon occurrence of the fault. The model of the
mutual inductor is described in Section 2.1. The complete transformer system including
fault detector is described in Section 2.2. The detector based on the software principle using
EKFs is described in Section 3.
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2.1. Mutual Inductor and Transformer

The mutual inductance model is an alternative approach to describe the physical
properties of a transformer, such as its magnetic permeability or dimensions. This method
is not very popular in the power systems community but has gained consensus in systems
theory. In it, and particularly in connection with the adaptive estimation of parameters that
characterize mutual inductance, such as the coupling coefficient K, the mutual inductance
approach is preferred for its flexibility and straightforward structure.

Although the mutual inductance approach does not directly emphasize the physical
aspects of the transformer, it guarantees an efficient description of the related physical
phenomenon as follows. An important parameter to be estimated is the coupling coefficient
K = φm

φm+φ1
, in which φm represents the common flux (core flux) and φ1 the primary stray flux,

which will be considered variable over time t.
Recent publications, such as [29], look at the optimal impedance on the secondary side

of the “transformer” as well as improving transfer efficiency. It is necessary to know the
coupling coefficient. A coupling coefficient observer method based on KF is proposed to
adapt the optimal impedance controller on the secondary side. The mutual inductance
approach is usually preferred in the asynchronous motor model using two combined EKFs
for state and parameter estimation of the induced motor.

A two-winding transformer as the mutual inductor and its equivalent components,
with the electrical series resistance R1 and the inductance L1 of the primary winding,
are shown in Figure 1. The secondary winding is represented by the electrical resistance R2
and the inductance L2 together with the electrical load resistor RL(t).

Figure 1. Scheme of mutual inductance with electrical load resistance RL(t).

The voltage distribution of the primary winding of the mutual inductance is as:

u1(t) = R1 i1(t)+ L1
d i1(t)

d t
+ M

d i2(t)
d t

, (1)

where i1(t) and i2(t) are the currents across the primary and secondary winding, respectively.
The dynamics of the voltage distribution across the secondary winding are as follows:

u2(t) = L2
d i2(t)

d t
+ M

d i1(t)
d t

+ R2 i2(t), (2)

and for mutual inductance, M is defined as follows:

M = K
√

L1 L2, M2 = K2 L1 L2, (3)

where K is the inductive coupling coefficient. Thus, the dynamics of voltage distribution
are described by Equations (1)–(3). Then, the current i1(t) of the primary winding is:

d i1(t)
d t

= 1
L1(1−K2)(u1(t)− R1 i1(t)+ M

L2
RL i2(t)+ MR2

L2
i2(t)), (4)

and the current i2(t) for the secondary winding is:

d i2(t)
d t

= 1
L2(1−K2)(− RL i2(t)− R2 i2(t)− M

L1
u1(t)− M R1

L1
i1(t)). (5)
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Time derivatives for the proposed inductive coupling coefficient and for the electrical
load resistance of the secondary side are assumed to be:

d K
d t

= 0,
d RL

d t
= 0. (6)

The model of the two-winding transformer in Equations (3)–(6) uses voltage dis-
tribution from Equations (1)–(3) mentioned above. The model represents the system of
differential equations in normal form, i.e., the first time, derivative terms are located on one
side and other algebraic terms on the opposite side. This form is suitable for matrix notation
and state-space formulations. This feature will be individually used to our advantage in
subsequent sections on EKF methods.

2.2. Transformer System

A structural scheme of the considered electrical system and the proposed observer
strategy is depicted in Figure 2. The measured inputs are voltage u1(t) and current i1(t)
of the power line. Two EKFs are designed and implemented to reduce the calculation load
through the reduction of the dimensions of the algorithm matrices. The aim is to estimate
the state of the mutual inductance together with the load resistance RL and to detect
harmonics or faults in the power line. The proposed structure has some similarities
to the adaptive KF in [1], where it is used for the approximation of the derivative.

Figure 2. System with the observers and the measured input voltage u1(t) and current i1(t) together
with the electrical system (mutual inductor with electrical load resistance RL).

3. EKF Methods

EKF methods are usually applied to state-space estimation of a class of nonlinear
systems. A structural limit of this approach is that EKF does not guarantee either the global
convergence or the optimality of the estimation. Here, they are applied to two specific
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subsystems to estimate values of unmeasured electric quantities for both primary and
secondary winding.

3.1. State Observer for the Mutual Inductance and Load–EKF1

The EKF1 is utilized as an observer to estimated the state of the mutual inductor and
the electrical load resistance RL(t). It is necessary for the EKF1 to express Equations (4) and (5)
in a state-space representation with the measurement matrix:

x(t) = [i1(t) i2(t) K(t) RL(t)]T
, ẋ(t) = f(x(t), u1(t)), (7)

f(x(t), u1(t)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
L1 (1−K(t)2 )

(u1(t)− R1 i1(t)+ M
L2

− RL(t) i2(t)+ M R2
L2

i2(t))

1
L2 (1−K(t)2 )

(− RL(t) i2(t)− R2 i2(t)− M
L1

u1(t)− M R1
L1

i1(t))

K(t)
RL(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Using the Euler discretization with the sampling time Ts and the discrete model of
the dynamics of the electrical current, the coupling and the voltage across the secondary
winding can be expressed by the following discrete time equations:

i1, k = i1, k−1 +
Ts

L1(1−K2)(u1, k−1 − R1 i1, k−1 +
M
L2

− RL i2, k−1 +
M R2

L2
i2, k−1) (9)

i2, k = i2, k−1 +
Ts

L2(1−K2)(− RL i2, k−1 − R2 i2, k−1 −
M
L1

u1, k−1 −
MR1

L1
i2, k−1) (10)

where (9) and (10) can be given in a state-space form inside the Kalman filter algorithm as:

x̂k−1 = [ i1, k−1 i2, k−1 Kk−1 RL, k−1 ]T, x̂−k = f(x̂k−1, u1, k−1). (11)

This deterministic dynamic model is expressed by the following matrix notation with one
time-step subscript k− 1, which belongs to all the time-varying parameters of the matrix:

f(x̂k−1, u1, k−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
[f1, f2, f3, f4]T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i1 +
Ts

L1(1−K2 )
(u1 − R1 i1 +

K
√

L1L2
L2

RL i2 +
K
√

L1L2
L2

R2 i2)

i2 + Ts
L2 (1−K2 )

(− RL i2 − R2 i2 −
K
√

L1L2
L1

u1 −
K
√

L1L2
L1

R1 i1)

K

RL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ k−1

. (12)
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The discrete Jacobian matrix is defined, using the similar subscript k− 1, as follows:

Jk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1

∂ i1

∂ f1

∂ i2

∂ f1

∂K
∂ f1

∂RL

∂ f2

∂ i1

∂ f2
∂ i2

∂ f2
∂K

∂ f2
∂RL

∂ f3
∂ i1

∂ f3
∂ i2

∂ f3
∂K

∂ f3
∂RL

∂ f4
∂ i1

∂ f4
∂ i2

∂ f4
∂K

∂ f4
∂RL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ k−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− R1 Ts

L1 (1−K2)
K Ts (RL+ R2)√

L1L2 (1−K2)
(1− 3K −K2)Ts(RL+ R2) i2√

L1L2 (1−K2)2
K Ts i2√

L1L2 (1−K2 )
−K Ts R1√

L1L2 (1−K2)
1−Ts (RL + R2)

L2 (1−K2)
(−1+ 3K +K2)Ts(u1+R1 i1)√

L1L2(1−K2)2
−Ts i2

L2 (1−K2)
0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ k−1

. (13)

It follows for the a priori covariance estimate that:

P−k = JkP+k−1JT
k +Q1. (14)

During the initial time step, P+k−1 = P+0 is a predetermined initial value. From the second
time step, P+k−1 is the previously derived a posteriori error estimate covariance. The user
defines matrix Q1, which serves as a “possible” representation of the uncertainty inherent
in the model due to associated noise processes. As only a single state is measured, the
denominator in Equation (15) is scalar. This leads to the use of an unconventional yet
succinct notation for the Kalman gain as follows:

kk =
P−k H1

H1
TP−k H1 + r1

. (15)

The vector H1 = [1 0 0 0]T specifies which state represents the measurement innovation.
In the given case, it is the electrical current i1(t), and the measurement uncertainty is
quantified by the scalar r1. In the update step, the a posteriori estimation of the states and
the covariance of the estimation error follow from:

x̂+k = x̂−k + kk(i1 −H1
Tx̂−k ) (16)

P+k = (I4×4 − kkH1
T)P−k . (17)

Remark 1. The precision of the estimation depends on the system model accuracy in the observer
EKF1 and on the precision of the output sensor. The observer can be tuned by using the covariance
matrix Q1 , which states the inaccuracy of the model, and by the variance matrix r1, which represents
the variance of the output sensor; see [30,31].

3.2. State Observer for the Power Line Condition– EKF2

The state observer EKF2 is utilized for harmonic detection. It is predetermined to es-
timate the electrical voltage amplitude A(t) and frequency ω(t) of the primary winding
of the power line. For the estimation, a harmonic model is suitable as follows:

h2(t) = uEKF2(t) = u1(t) = A(t) sin(ω(t) t). (18)
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This model includes the corresponding minimal number of physical quantities of voltage
measurements u1(t) and considers the useful relation φ(t) = ω(t) t.

Remark 2. The presence of the product between A(t) and sin(ω(t) t) in Equation (18) states a
non-injective function that generates a non-observable structure. In fact, it is possible to describe
the measured output u1(t) through normally distributed physical quantities A(t) and ω(t) with
means that correspond to four combinations of their positive and negative magnitudes. In order to
apply this approach, it is necessary to consider positive ω(t) and positive amplitude A(t). These
assumptions reflect the physical structure of the considered phenomenon.

If frequency of the harmonic sinusoidal is constant, then φ̇(t) = ω. It follows that
Ȧ(t) = 0 if A(t) is constant. Let a model of the real world in state-space form be written as
follows:

⎡⎢⎢⎢⎢⎢⎣

φ̇(t)
ω̇(t)
Ȧ(t)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

AF

⎡⎢⎢⎢⎢⎢⎣

φ(t)
ω(t)
A(t)

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0
us1(t)
us2(t)

⎤⎥⎥⎥⎥⎥⎦
, (19)

where us1(t), us2(t) are white noise variables and AF is a matrix of the system dynamics.
The signals are under continuous disturbance, modeled by process noise matrix Q2 as:

Q2 =
⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 Φs1 0
0 0 Φs2

⎤⎥⎥⎥⎥⎥⎦
, (20)

in particular, with the diagonal elements Φs1 and Φs2 indicating the corresponding vari-
ances. Now, the system can be discretized using the forward Euler method as follows:

φ̇(t) = ω(t)⇒ φ k − φ k−1 = Ts ω k−1, (21)

and then Equation (19) in its discrete form is:

⎡⎢⎢⎢⎢⎢⎣

φ k
ω k
A k

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 Ts 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

φ k−1
ω k−1
A k−1

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0
us1, k−1
us2, k−1

⎤⎥⎥⎥⎥⎥⎦
, (22)

where the Jacobian matrix H2 of the output in (18) is as follows:

du1, k

dφ k
= A k cos(φ k),

du1, k

dω k
= 0,

du1, k

dA k
= sin(φ k), (23)

H2 = [ A k cos(φ k) 0 sin(φ k) ]. (24)

Thus, the estimation of the amplitude A(t) and phase φ(t) of voltage u1(t) can be provided.

Remark 3. The presence of the even function cos(φ k) in the Jacobian in Equation (24) generates
a Jacobian matrix, which states a non-injective transformation and which reflects again the unob-
servability aspect mentioned in Remark 2. As already explained in Remark 2, in order to apply this
approach, it is necessary to consider only positive values of amplitude and positive value phase.
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3.3. Observability Analysis

To investigate observability, a test related to “local weak observability” using Lie
derivative structures is presented in the literature. The concept is strictly connected
to the concept of the distinguishability in finite time [32]. For more details on the lo-
cal weak observability test for the EKFs, see the Appendix with the created MATLAB
R2021a® code. A nonlinear system,

{ ẋ(t) = f(x(t), u1(t))
y(t) = h(x(t)) ,

is observable if the following expression holds:

rank(O(x(t))) = rank [O0(x(t)) O1(x(t)) O2(x(t)) ⋯ On−1(x(t))] = n, (25)

where O(x(t))

= [( ∂
∂x h(x))

T
( ∂

∂x O0(x) f(x, u1)T) ( ∂
∂x O1(x) f(x, u1))

T
⋯ ( ∂

∂x On−1(x) f(x, u1))
T
]

= [( ∂
∂x h(x))

T
( ∂

∂x Lf h(x))
T

( ∂
∂x L

2
f h(x))

T
⋯ ( ∂

∂x L
n−1
f h(x))

T
] , (26)

with L0
f h(x) standing for the scalar function h(x), ∂

∂x (L0
f h(x)) = ∂

∂x h(x) for the Jacobian

of h(x), and Lf h(x) = L0
f h(x) ⋅ f(x, u1) = ∂

∂x (h(x)) ⋅ f(x, u1) for a scalar function given

by the Jacobian of h(x) scalar, multiplied by the field f(x, u1). In general, it can be written
as follows:

Lm
f h(x) = Lm−1

f h(x) ⋅ f(x, u1), ∀ m ∈ N; (27)

note that Lm
f h(x) = Lm−1

f h(x) is a scalar function and, according to [33], it can be given as:

Lf h(x) =
n
∑
i=1

∂ h(x)
∂xi

f(x, u1), (28)

where index i represents the components of the field, which are equal to the number of
states.

The first idea is to measure two state variables, for instance, the currents i1(t) and i2(t).
In this case, the system results in being observable. In fact, it is possible to see that
it is easy to find a nonzero determinant among 70 determinants, which are obtained
for the observability test in accordance with the binomial expression:

Nd = (p
n
) = p!

n!(p − n)!
, (29)

where Nd represents a number of possible determinants to be checked, n is the number
of columns, and p is the number of rows of the local weak observability matrix.

In the presented application, it is assumed that current i2(t) is not available to be
measured. In this case, as explained in Section 3, the measured state is current i1(t); see
Figure 2 for a graphical visualization of the state observer. The test stated by Equation (26)
is not satisfied; see Appendix for details. Nevertheless, Equation (26) represents a sufficient
condition and, in this sense, no conclusion about the local weak observability of the system
can be drawn.

Simulation results obtained with the selected tuning elements of the EKF1 show
that the local weak observability of the considered phenomenon, which is taken into
consideration, is guaranteed. More in depth, in Equation (12), if just current i1(t) is
measured, then n = 4, which is the number of the states or number of columns, including
the extended states, and p = 4 is the number of rows of the local weak observability matrix,
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which is the product between the number of states, including the extended states, and the
number of measured outputs.

Applying Equation (26) to the system described in Equation (19), considering just the
measured output voltage u1(t), in Equation (29), the number of columns equals the number
of rows, p = n = 4, which implies that just one determinant must be checked. The unique
determinant is not equal to zero.

4. Experiment Setup

For the implementation and simulation of the developed state observers and the
electrical system, MATLAB®/Simulink R2021a® was used with a sampling time Ts = 1 ×
10−5 s. Figure 3 shows the experiment setup of the electrical system (orange) including
the load resistance RL(t), the state observer EKF1 (light blue) for the mutual inductor, the
harmonic state observer EKF2 (green), and the power line (red) with Gaussian distributed
(variance = 300) output voltage u1(t).

Figure 3. Overview of the simulation setup with the state observer EKF1 (light blue), state observer
EKF2 (green), power line with implemented fault (red), and the electrical system (orange).

A universal control transformer with i1,max = 1.45 A and i2,max= 2.78 A is utilized
for the experiment setup, and the implemented values for the primary and secondary
inductances are L1 = 2246 ± 1.30 mH and L2 = 723.858 ± 0.774 mH, with the mutual
inductance M = 1.122. The electrical serial resistances follow R1 = 156.474 ± 0.768 Ω and
R2 = 67.079 ± 0.379 Ω. The electrical load resistance is determined to be RL = 181.36 Ω.
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The simulation studies are based on variations of the initial resistance values through
the assessment criteria defined by:

J = [∫
tstart

tstop
(i1(t)− î1(t))2

dt, ∫
tstart

tstop
(i2(t)− î2(t))2

dt, ∫
tstart

tstop
(K(t)− K̂(t))2

dt,

∫
tstart

tstop
(Rl(t)− R̂l(t))2

dt]
T
= [ J1, J2, J3, J4 ]

T
. (30)

5. Results and Discussion

This section shows representative results that demonstrate the proposed theory
in the previous sections, with a focus on electrical features of the considered transformer.
The EKF1 and EKF2 model uncertainty matrices are defined as follows:

Q1
°

QEKF1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

102 0 0 0
0 103 0 0
0 0 103 0
0 0 0 108

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, r1 = 105; Q2
°

QEKF2

=
⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 5× 10−6 0
0 0 10−21

⎤⎥⎥⎥⎥⎥⎦
, r2 = 102,

the with covariance matrix for EKF1 P+0 = diag[0 0 0 0 ] and for EKF2 P+0 = diag[0 1 1 ].
Process noise matrix Q1 is set manually using a trial-and-error method. Larger values

of the variance are reserved for unknown dynamics with “less measured variables”. In
particular, this is the case of Gaussian mixture dynamics as K(t) and RL(t) dynamics. It is
possible to notice that the dynamics of current i1(t) are the dynamics with more information.
In fact, the deterministic model states a clear dynamic relation; see Equation (4). Moreover,
the voltage u1(t) and the current i1(t) are directly measured and, in this sense, smaller
uncertainties can be considered in the corresponding process noise. In fact, through the
measurements, we can see that the uncertainties related to the current i2(t) and the coupling
factor K(t), together with the electrical load resistance RL(t), weigh less than in the other
dynamics. The dynamics of current i2(t), as in Equation (5), present a larger process
noise variance because here the measured variable is just voltage u1(t) and, in this sense,
the information on the dynamics is more affected by uncertainty due the presence of the
stochastic variables K(t) and RL(t).

The process noise related to matrix Q2 can be interpreted in a similar way. In fact, the
first equation can be considered an equation that represents the model in an almost exact
way, except for the discretization error, which, considering the adopted sampling time, is
relatively small. The third equation, even though it involves Gaussian mixture dynamics,
is basically the output measured variable and, thus, the uncertainty associated with this
dynamic can be considered to be very small. The largest variance is related to the second
dynamic, because this dynamic involves Gaussian mixture dynamics that are not measured.
We can associate the largest process noise variance to these dynamics.

The resulting errors based on the assessment criteria in Equation (30) under dif-
ferent simulation conditions of the estimation states of EKF1 are presented in Table 1.
Figure 4 shows how the observer can correct the initial error condition in RL(t) of ±75% in
a relatively short time.

Table 1. Values of the criteria Ji, Equation (30), under different conditions of the load resistance RL

by EKF1.

RL −75% −50% −25% −5% −1% 1% 5% 25% 50% 75%

î1(t), J1: 1.60× 10−6 1.25× 10−6 1.08× 10−6 1.02× 10−6 1.01×10−6 1.01× 10−6 1.01× 10−6 1.00× 10−6 1.04× 10−6 1.11× 10−6

î2(t), J2: 7.92× 10−5 5.60× 10−5 3.86× 10−5 4.92× 10−5 5.62×10−5 6.04× 10−5 7.01× 10−5 1.47× 10−4 3.11× 10−4 5.45× 10−4

K̂(t), J3: 1.69× 10−4 9.29× 10−5 6.01× 10−5 4.92× 10−5 4.80× 10−5 4.76× 10−5 4.67× 10−5 4.57× 10−5 4.94× 10−5 5.72× 10−5

R̂L(t), J4: 9.09× 10 4.01× 10 8.96 1.56 2.53 3.37 5.79 3.50× 10 1.22× 102 2.86× 102
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Figure 4. Simulated and estimated load resistance RL(t) and R̂L(t) by EKF1 with initial condition
error of −75% in RL(t) (left). The same simulation under an initial condition error of +75% (right).

The simulated load resistance RL(t) of the secondary side and the estimated resistance
R̂L(t) by EKF1 are depicted in Figure 5 (left). We can see that the EKF1 can correct the
initial error condition in RL(t) of +80% in a relatively short time. Figure 5 (right) presents
the simulated inductive coupling coefficient K(t) and the estimated coupling K̂(t) by EKF1.
Figure 6 (left) shows the desired current i1(t) together with the estimated current î1(t)
of the primary transformer winding by EKF1. An accurate tracking of the current signal can
be seen. The desired current i2(t) of the secondary transformer winding and the estimated
current î2(t) by EKF1 are depicted in Figure 6 (right). After ∆t = 0.04 s, accurate tracking is
visible.

Figure 7 (left) shows the desired power line distribution across the primary wind-
ing u1(t) and the simulated estimation of voltage û1(t) by the harmonic EKF2. Details
of the results are presented in Figure 7 (right). The simulated amplitude of voltage u1(t)
and the estimated voltage û1(t) by EKF2 are depicted in Figure 8 (left), and the frequency
ω(t) and the estimated frequency ω̂(t) by EKF2 are shown in Figure 8 (right).

The results of the short circuit simulation are presented in Figures 9–11, where a fault
occurs in the load resistance RL(t) = 0 Ω at t = 0.05 s. Figure 9 represents the time history
of the desired resistance RL(t) and the fault tracking of the estimated load resistance R̂L(t)
by EKF1. After the fault occurs, a tracking in ∆t = 4.67 ms is visible. The resulting voltage
u2(t) is shown in Figure 10 (left), and the resulting current i1(t) along with the current î1(t)
estimated by EKF1 are depicted in Figure 10 (right). Two time histories of the current i1(t)
of the primary winding and the resulting fault tracking of the estimated current î1(t) by
EKF1 are presented in Figure 11.

Figure 12 presents a fault in the power line voltage u1(t) with a bias of 30
√

2 volts
at t = 0.1 s. The time histories of fault estimation by EKF2 are shown in Figure 12 for the volt-
age u1(t) (left) and the estimated current î1(t) (right).

Figure 5. Simulated load resistance RL(t) and estimated load resistance R̂L(t) by EKF1 (right);
simulated coupling K(t) and estimated coupling K̂(t) by EKF1 (left).
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Figure 6. Simulated current i1(t) and estimated current î1(t) by EKF1 (left); simulated current i2(t)
and estimated current î2(t) by EKF1 (right).
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Figure 7. Simulated power line voltage u1(t) and estimated voltage û1(t) by EKF2 (left); results of the
voltage estimates by EKF2 in detail (right).

Figure 8. Simulated voltage amplitude of u1(t) and estimated amplitude of û1(t) by EKF2 (left);
simulated power line frequency ω(t) and estimated frequency ω̂(t) by EKF2 (right).

Figure 9. Time histories of the desired resistance RL(t) and the fault tracking of the estimated
resistance R̂L(t) by EKF1 (left), and in detail (right).
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Figure 10. Simulated short circuit RL(t) = 0 Ω at t = 0.05 s with the fault in the voltage u2(t) (left); the
desired current i1(t) with the fault tracking of the current î1(t) by EKF1 (right).
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Figure 11. Time histories of the desired current i2(t) and fault tracking of the estimated current î2(t)
by EKF1 (left), and in detail (right).
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Figure 12. Time histories of fault tracking of the voltage u1(t) of the primary winding by EKF2 (left);
the fault tracking of the current î1(t) by EKF2 and the desired current i1(t) (right).

6. Conclusions and Future Work

In this paper, the connection of two EKFs for sensor fusion and EKF adaptation
for fault-condition estimation were proposed. EKFs provided estimation of electrical quan-
tities and detection of possible faults. The first EKF provided the state estimation of the gal-
vanic decoupled secondary transformer side and the electrical load resistance. The second
EKF was used for harmonic detection and estimated the amplitude and frequency of the pri-
mary winding voltage. The proposed theoretical procedures were mathematically proven
and demonstrated in figures that document their efficiency. Future work will especially
focus on the issues of implementing the proposed algorithms as a specific embedded sys-
tem for hardware-in-the-loop prototyping, in order to increase the application possibilities
for photovoltaic systems that are both a part of smart grids and separated island operations.
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Abbreviations and Nomenclature

The following abbreviations are used in this manuscript:
ARX Autoregressive model with exogenous input
DC Direct current
DIN Designation of standards; German Institute for Standardization
EKF Extended Kalman filter
FDD Fault detection and diagnosis
IEC Designation of standards; International Electrotechnical Commission
ISO Designation of standards; International Organization for Standardization
KF Kalman filter
PMSG Permanent magnet synchronous generator
UKF Unscented Kalman filter

The following nomenclature is used in this manuscript:
A Amplitude
AF Matrix of the system dynamics
F State-input feedback matrix
f(x(t), u1(t)) Nonlinear state function
u1, u2 Electrical voltages across the primary and secondary winding, respectively
i1, i2 Electrical currents of the primary and secondary winding, respectively
L1, L2, M Primary, secondary, and mutual inductances of transformer, respectively
Lm

f Lie derivatives
us White noise variable
Ud Pre-compensation matrix
h2 Scalar output measurement function
H1, H2 Output Jacobian measurement matrix, respectively
J Assessment criteria
Jk Jacobian matrix
K Inductive coupling coefficient
k Kalman gain
O(x(t)) Nonlinear observability matrix
N Natural numbers
Nd Number of possible determinants
p, n Numbers of columns and rows of observability matrix, respectively
P+k , P−k Posterior and a priori estimation error covariance matrix
QEKF1, QEKF2 Covariance matrices Q1, Q2 of process noise, respectively
r1, r2 Variance matrices of soft sensors
R1, R2, RL Primary and secondary winding and electrical load resistances, respectively
t, tstart, tstop Continuous time, start time, and stop time, respectively
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Ts Sampling period
x(t) System state
x̂+k A posteriori estimation of system state
x̂−k A priori estimation of system state
ω Angular frequency
φ Angular phase
φ1, φm Primary stray flux and core flux of transformer, respectively
Φs Phase noises

Appendix A

Listing A1. Observability test for EKF1.

1 % Observability test for EKF1
2 syms R1 Ts K R2 L1 L2 u1 RL M i1 i2 di1dt di2dt dKdt dRLdt
3
4 di1dt =1/(L1*(1-K^2))*(u1 -R1*i1+M/L2*RL*i2+M*R2/L2*i2); %

$(\ ref{Current primary winding })$
5 di2dt =1/(L2*(1-K^2))*(-RL*i2 -R2*i2-M/L1*u1-M*R1/L1*i1); %

$(\ ref{Current secondary winding })$
6 dKdt=K; dRldt=RL; %

$(\ ref{eq:dRl})$
7
8 f=[ di1dt; di2dt; dKdt; dRLdt ]; %

$(\ ref{system model1 })$
9 H1=[1 0 0 0];

10 O_0=H1;
11 O_1=[diff(di1dt ,i1) diff(di1dt ,i2) ...
12 diff(di1dt ,K) diff(di1dt ,RL)];
13 O_2=[diff(O_1*f,i1) diff(O_1*f,i2) ...
14 diff(O_1*f,K) diff(O_1*f,RL)];
15 O_3=[diff(O_2*f,i1) diff(O_2*f,i2) ...
16 diff(O_2*f,K) diff(O_2*f,RL)];
17
18 Obs_NL =[O_0;O_1;O_2;O_3]; %

$(\ ref{obsdefre })$
19 % The system does not satisfy the sufficient condition
20 % of the observability
21 simplify(det(Obs_NL)) %

$(\ ref{rankobs })$
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Listing A2. Observability test for EKF2.

1 % Observability test for EKF 2
2 syms A w phi t dphidt dwdt dAdt
3
4 dphidt=w; dwdt =0; dAdt =0; %

$(\ ref{eq:cont:mdl})$
5 u1=A*sin(phi); %

$(\ ref{outmeas })$
6
7 O_0=[A*cos(phi) 0 sin(phi)];
8 O_1=[-A*w*sin(phi) A*cos(phi) w*cos(phi)];
9 O_2=[-A*w^2*cos(phi) -2*A*w*sin(phi) -w^2* cos(phi)];

10
11 Obs=[O_0; O_1; O_2]; % %

$(\ ref{obsdefre })$
12 simplify(det(Obs)) %

$(\ ref{rankobs })$

Remark A1. The following condition:

det(Obs) = −A(t)2ω(t)2(cos(φ(t))3 − 3 sin(φ(t))+ sin(φ(t))3) = 0 (A1)

admits A(t) = 0 and ω(t) = 0 as solutions. Concerning the values of φ(t), which solve Equation (A1)
using the Symbolic Math Toolbox™ by MATLAB® R2021a, it follows that:

solve((cos(phi)3 − 3 ∗ sin(phi)+ sin(phi)3) = 0, phi)
= −log(root(z6 + z4 ∗ (6+ 3i)− z2 ∗ (3+ 6i)− 1i, z, 1)) ∗ 1i. (A2)

Two isolated real values of φ(t) are obtained as solutions using the following command:

vpa(log(root(z6 + z4 ∗ (6+ 3i)− z2 ∗ (3+ 6i)− 1i, z, 3)) ∗ 1i) = 2.83 rad (A3)

vpa(log(root(z6 + z4 ∗ (6+ 3i)− z2 ∗ (3+ 6i)− 1i, z, 4)) ∗ 1i) = −0.303 rad. (A4)

Conditions A(t) = 0 and ω(t) = 0 , together with the two isolated points φ(t) = 2.83 rad and
φ(t) = −0.303 rad, in which the sufficient observability condition is not satisfied, do not represent
dynamic relevant conditions.
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