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Abstract: Capsule endoscopy (CE) is a widely used medical imaging tool for the diagnosis of
gastrointestinal tract abnormalities like bleeding. However, CE captures a huge number of image
frames, constituting a time-consuming and tedious task for medical experts to manually inspect.
To address this issue, researchers have focused on computer-aided bleeding detection systems
to automatically identify bleeding in real time. This paper presents a systematic review of the
available state-of-the-art computer-aided bleeding detection algorithms for capsule endoscopy. The
review was carried out by searching five different repositories (Scopus, PubMed, IEEE Xplore, ACM
Digital Library, and ScienceDirect) for all original publications on computer-aided bleeding detection
published between 2001 and 2023. The Preferred Reporting Items for Systematic Review and Meta-
Analyses (PRISMA) methodology was used to perform the review, and 147 full texts of scientific
papers were reviewed. The contributions of this paper are: (I) a taxonomy for computer-aided
bleeding detection algorithms for capsule endoscopy is identified; (II) the available state-of-the-art
computer-aided bleeding detection algorithms, including various color spaces (RGB, HSV, etc.),
feature extraction techniques, and classifiers, are discussed; and (III) the most effective algorithms
for practical use are identified. Finally, the paper is concluded by providing future direction for
computer-aided bleeding detection research.

Keywords: bleeding classification; bleeding detection; bleeding recognition; bleeding segmentation;
capsule endoscopy; wireless capsule endoscopy

1. Introduction

The small bowel (SB) in humans has a complex looped-shape configuration and an
extremely large length (around 6 m). For SB disease diagnosis, endoscopy can be used
to detect tumors, cancer, bleeding, and Crohn’s disease [1]. In 2001, capsule endoscopy
(CE, also called wireless capsule endoscopy, WCE) was approved by the Food and Drug
Administration in the United States. It is a noninvasive technology that was primarily
designed to provide diagnostic imaging of the SB, as this part of the human body is
difficult to inspect through instrumental examination. CE represents the latest endoscopic
technique that has revolutionized the treatment and diagnosis of diseases of the upper
gastrointestinal (GI) tract, SB, and colon. A CE device consists of a complementary metal-
oxide-semiconductor (CMOS) camera sensor with a microchip, a light-emitting diode (LED),
a radiofrequency (RF) transmitter, and a battery. A clinical examination involving the use of
CE can be executed in an ambulatory or hospital setting on an outpatient basis. After fasting
overnight (8–12 h), a small capsule is swallowed by the patient. The capsule provides
a wireless circuit and micro-imaging video technology is used for the acquisition and
transmission of images. Software that localizes the device during its passage through the
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intestine is encompassed in the system. The capsule is propelled by peristaltic movement
when it goes through the SB. While moving along the GI tract, images are captured at a
fixed frame rate (2 frames per second, fps), although the newest model of CE manufactured
by Given Imaging (PillCam SB 3 capsule) is able to achieve a frame rate of 2–6 fps based on
the capsule speed as it travels through the SB [2]. These images are transferred to a data
recorder worn on a belt outside the patient’s body, and about eight hours after swallowing,
the patient returns to the clinic where the data and images are downloaded. Within 24–48 h,
the capsule is passed through the patient’s stool.

CE is considered a first-line examination tool for diagnosing various kinds of diseases,
including ulcers, polyps, bleeding, and Crohn’s disease [3]. A single scan may include
up to 10,000 images of the GI tract for each patient, but evidence of abnormalities may
appear in only a few of them. A very common abnormality found in the GI tract is
bleeding [4]. To detect this, many researchers have contributed high-performance classifiers.
Detection of bleeding at an early age is critical since it is a precursor for inflammatory
bowel diseases such as Crohn’s disease and ulcerative colitis (UC). Bleeding is not only
limited to the stomach; it can occur anywhere in the GI tract [5]. It is considered to be a
common abnormality detected by CE and is often defined as “bleeding of unknown origin
that recurs or persists or is visible after an upper endoscopy and/or negative endoscopy
result” [6]. The major challenge is that residual traces and blood spots do not have typical
shapes or textures, and their colors can range from light red to dark intense red and brown,
making it difficult to distinguish blood from other digestive contents. This diversity of color
might depend on the position of the camera, the bleeding timing [7], and the neighboring
conditions of the intestinal content [8]. Bleeding is not a single pathology, and it may be
caused by a variety of small intestinal diseases, such as open wounds, vascular lesions,
angiodysplasia, ulcers, Crohn’s disease, and tumors. To discriminate the pathology, both
texture and color features are used.

Since the CE diagnostic process captures over 57,000 images, manual reviewing is
a labor-intensive and time-consuming task for physicians in order to detect bleeding
regions [9], and it may involve several challenges due to complex backgrounds, low
contrast, variations in the lesion, and color. This may affect the accuracy of subsequent
classification and segmentation [10,11]. These issues complicate objective disease diagnosis
and necessitate the opinions of many specialists to avoid misdiagnosis.

As a result, there is a strong need for an alternate technique to automatically detect
bleeding in the GI tract. Some research has been conducted on the automated inspection
and analysis of CE images. Software suites that use computational techniques are often
made available with the brand of a particular capsule and are used by a lot of people.
The benefits include the efficiency and availability of a tool that can automatically detect
bleeding regions and improve diagnostic accuracy. Commercial software built by Given
Imaging aims to recognize spontaneous active blood, although the reported sensitivity
and specificity are not satisfactory [8]. Although CE has many advantages, research in CE
technology is not widespread. For instance, at present, it is challenging for physicians to
go through the entire collection of more than 50,000 frames in order to diagnose a disease.
Due to visual fatigue and the relatively small size of the lesion region, the disease may go
undetected in its early stages. The fact that software packages already available on the
market are based on low-level, hand-crafted feature extraction algorithms that have poor
generalizability should not be ignored. Additionally, because the feature extraction and
classification phases are separated in hand-crafted feature-based techniques, it is difficult
to make reliable diagnostic decisions.

Several informative original articles and reviews on bleeding detection in CE images
have been published over the last 15 years. The authors of [12] reviewed the clinical ap-
plications and developments of small bowel CE, i.e., small bowel tumors, Celiac disease,
and Crohn’s disease. They gave insight into the potential future prospects of small bowel
CE. In [13], the authors discussed different imaging methods, including signal processing,
color and image processing, and artificial intelligence, for representing, analyzing, and
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evaluating CE images. In [14], the authors calculated performance metrics (accuracy, posi-
tive and negative predictive values, sensitivity, specificity) and compared the diagnostic
accuracy of video CE and double-balloon enteroscopy in cases of obscure GI bleeding of
vascular origin. Another study [15] discussed the market’s available CE models, including
diagnostic yield, safety profile, image quality, and technical evolution, for small bowel CE.
That study analyzed five commercially available types of small bowel capsule endoscopes,
which were the PillCam®SB2, MiroCam®v2, EndoCapsule®, OMOM® (SmartCapsule),
and CapsoCam®SV1. In [16], the authors reviewed and analyzed the literature for com-
putational methods that could be applied in software to improve the diagnostic yield of
video CE. Another research group [17] reviewed a deep learning-based approach (CNN)
for CE, which was used to solve a variety of issues, e.g., detection of polyp/ulcer/cancer,
bleeding/hemorrhage/angiectasia, and hookworms. In [18], the authors reviewed all of
the image features (color, texture, shape) for image abstraction in machine vision-based
analysis of CE videos and reviewed computer-aided diagnostic systems of CE images. The
authors mainly concentrated on the study of shot boundaries and GI pathology detection.
In the literature, the authors of [19] assessed the accuracy of video CE to identify active
hemorrhage in the upper GI. In another article [20], the authors discussed deep learning
methods (CNN-based algorithms) for WCE, in which only the PubMed repository was
used for article selection. Moreover, none of these review articles particularly focused on
only bleeding detection algorithms for CE. The foremost contributions of this paper are
summarized as follows:

1. A taxonomy for computer-aided bleeding detection algorithms for capsule endoscopy
is identified.

2. Various color space and feature extraction techniques are used to boost the bleeding
detection performance, which is discussed in depth.

3. From the observation of the existing literature, direction for the computer-aided
bleeding detection research community is provided.

The emphasis of this work is only on state-of-the-art bleeding detection algorithms
using CE, which differentiates this paper from various recent review papers. This review
was performed by gathering the required information from recent research and organizing
it according to taxonomy, analyzing the performance of bleeding detection methods, and
providing a path for future research. Moreover, in order to improve the current acceptance
of computer-aided bleeding detection algorithms in CE, it is hoped that this effort will
capture advanced techniques that will be more acceptable in real-life applications.

2. Review Methodology

The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) [12]
guidelines were followed for this review. The authors separately screened the titles and
abstracts of the publications retrieved through the database search and then carried out a
full-text review of all relevant studies. This methodology used the following processes.

2.1. Identifying Research Question

To conduct this systematic review, one research question was selected:
Available state-of-the-art computer-aided bleeding detection algorithms for cap-

sule endoscopy: How accurate and suitable are they for practical use?
The answer to this question will help to improve computer-aided bleeding detection

algorithms for CE and identify the research gaps in the current methodology.

2.2. Database

Comprehensive searches for suitable literature were performed across five repositories:
Scopus, PubMed, IEEE Xplore, ACM Digital Library, and ScienceDirect.
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2.3. Search Strategy

To cover all of the approaches for bleeding detection in CE, the considered key-
words were: ‘Bleeding’, ‘Hemorrhage’, ’Blood’, ‘Detection’, ‘Segmentation’, ‘Recognition’,
‘Classification’, and ‘Capsule Endoscopy’. The search query string was: (“Bleeding” OR
“Hemorrhage” OR “Blood”) AND (“Detection” OR “Segmentation” OR “Recognition” OR
“Classification”) AND (“Capsule Endoscopy”).

The search results were confined to the English language. The primary references of
the selected full-text articles were analyzed for related publications. Articles related to
non-humans, posters, and book chapters were excluded. Articles that fulfilled the exclusion
criteria, shown in Table 1, were filtered out.

Table 1. Eligibility Criteria.

Inclusion Criteria Exclusion Criteria

Articles published in peer-reviewed venues. Articles that do not involve bleeding, lesion, or hemorrhage.

Articles published from 1 January 2001 to 24 July 2023. Articles not written in English.

Articles must address a set of keywords: (Bleeding OR
Hemorrhage OR blood) AND (Detection OR Segmentation OR

Recognition OR Classification) AND (Capsule Endoscopy).
Exclude articles on non-humans.

Articles that describe an automatic computer-aided bleeding
detection system for capsule endoscopy. Exclude posters and book chapters.

2.4. Results

The initial search resulted in a total of 2361 publications. A total of 609 duplicates,
36 non-English articles, one abstract, and two incomplete articles were removed before the
screening. Based on the abstracts and titles, 1713 articles were set aside for screening. A
total of 1178 articles were excluded through title skimming and 346 were excluded through
abstract skimming. Four articles were not retrieved. As a result, 185 articles were included
as eligible articles, from which 26 review articles, 2 dataset articles, 1 non-bleeding articles,
4 non-human articles, 1 poster, and 4 book chapters were excluded. Through the process,
156 articles were included in the systematic review after including 9 published review
articles. Figure 1 shows the methodology and results of the systematic review.
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3. Review Findings
3.1. Taxonomy

Based on the current literature, the CE datasets comprised two types according to
the domain analysis: image and video. The literature based on CE image and video
datasets was included in this review. To answer the research question, a taxonomy was
generated from the literature findings, which is shown in Figure 2. The image and video
domains were further divided into three categories: classification, segmentation, and
combined (classification + segmentation). Classification is a task that can be performed
to classify bleeding images from non-bleeding images using classification algorithms. To
detect a bleeding zone, segmentation is another important technique that can cluster a
bleeding image into several coherent subregions. Both classification and segmentation
algorithms are used in the development of advanced computer-aided diagnosis systems to
identify bleeding images as well as recognize bleeding regions. Different types of feature
extraction techniques, for example, color space, shape, texture attributes with region of
interest (ROI), pixel- or block-wise contourlet transform, etc., featured extraction domains
that were used to tune the machine learning algorithms for accurate identification of the
bleeding images. Also, various convolutional neural networks, such as Visual Geometry
Group (VGG), Residual Network (ResNet), Densely-Connected Convolutional Networks
(DenseNet), etc., were used to extract features from CE images. Most of the literature
used a color space for feature extraction, like RGB (Red, Green, and Blue), HSV (Hue
Saturation Value), HIS (Hue, Saturation, Intensity), YCbCr (Luminance, Chrominance
[chroma CB and chroma CR]), CMYK (Cyan, Magenta, Yellow, and Key [black]), CIE L*a*b*
(Lightness [L], Red—Green [a], and Yellow—Blue [b]), etc. From the review findings,
the state-of-the-art computer-aided bleeding detection algorithms were categorized into
two types: conventional machine learning algorithms, such as Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), K-Means Clustering, Naïve Bayes, Random Tree,
Random Forest, Artificial Neural Networks (ANN), Probabilistic Neural Networks (PNN),
Multilayer Perceptron (MLP), etc., and deep learning algorithms, such as CNN, AlexNet,
VGG, ResNet, SegNet, DenseNet, etc. The available bleeding detection algorithms in the
literature covered the research question.
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3.2. Analysis Domain

Two types of CE datasets of bleeding were available. One was image domain datasets,
and the other was video domain datasets. Most of the literature reviews proposed bleeding
detection systems based on the image domain.
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3.2.1. Image

An image is a matrix of pixels organized in columns and rows. The grayscale image
represents a one-dimensional matrix and the RGB image represents a three-dimensional
matrix. Based on the characteristics of the image, a digital machine or processor can
analyze the medical image to detect the abnormality. Over eight hours, a CE captured
approximately 55,000–57,000 images throughout the GI tract in one experiment. In [21],
the authors proposed a CE image dataset obtained from 10 patients at the University of
Malay Medical Center (UMMC). The dataset consisted of 100 bleeding and 300 normal
images, which had a resolution of 288 × 288 pixels. A total of 1131 bleeding lesions and
2164 normal non-sequential images were utilized by an algorithm to detect bleeding. The
size of the images was 320 × 320 or 512 × 512 pixels [22]. In [23], the authors suggested the
KID Dataset 2, which contained a total of 2352 CE images (bleeding: 303) with a resolution
of 360 × 360 pixels, and MICCAI 2017, which contained a total of 3895 CE images (bleeding:
1570) with 320 × 320 or 512 × 512 resolution. A total of 1200 CE images with a resolution of
576 × 576 pixels were utilized in the study [24]. According to [25], the model was trained
using 2000 images that were extracted from 20 different videos. The image dataset was
available on capsuleendoscopy.com. An OMOM capsule produced 3596 CE images with
256 × 240 pixels size, which were extracted from five subjects [26]. A dataset of CE images
with a size of 240 × 240 × 3 pixels, which contained 148 bleeding and 152 inactive images
from 60 CE video snippets of 12 subjects, was utilized in a study [27].

3.2.2. Video

Few studies utilized the CE video domain for automatic bleeding detection. The
frames of the video are sequentially arranged and applied to an algorithm for identifying
bleeding frames or regions. Time is an important parameter of the video domain. The
video domain has the best likelihood of detecting bleeding by using the previous and next
frames of the video as well as the time information. However, lengthy videos require
high processing power. The authors of [28] utilized a video CE dataset with a sequence of
600 frames, which was collected from a PillCam SB3 video. Among them, 73% of the total
frames were red lesions. In [29], if the last frame of the CE video was not found, the authors
presented a pixel-based approach using the Support Vector Classifier method in which the
model continued the process to the next frame of the video. In [30], a novel, full reference,
video quality metrics method named Quality Index for Bleeding Regions in Capsule
Endoscopy (QI-BRiCE) was proposed, which evaluated the perceptual and diagnostic
qualities of damaged WCE videos with bleeding regions. Videos of 15 patients ranging
in duration from 12,000 to 20,000 frames were used for automatic bleeding detection [31].
A semi-automatic method was proposed to extract the bleeding region from successive
video frames containing bleeding. Three video files were used that included 589, 500, and
428 frames [32]. Deeba et al. improved the model by skipping one or a few frames from the
sequence of bleeding frames [33]. A study utilized a CNN-based model to screen high-risk
suspicious images from CE videos with a focus on high sensitivity but potentially lower
specificity [34]. Using 84 full-length videos, another study [35] proposed an algorithm that
was comparable with the Suspected Blood Indicator (SBI).

Five publicly accessible CE bleeding videos were tested in [36,37] to construct auto-
matic bleeding detection models to identify bleeding. Ten real patient video files were
used in [38], which consisted of 200 frames and about 40 s in duration. Instead of deal-
ing with a complete video, consecutive small portions of videos were used. Each video
consisted of several frames, which were tested sequentially [39]. Another study used the
time domain information of CE videos for a bleeding localization technique. The approach
used eight different videos collected from eight subjects at West China Hospital [40]. A
total of 4166 third-generation small bowel CE videos were applied in [41], which were col-
lected from the Computer-Assisted Diagnosis for Capsule Endoscopy database (CAD-CAP)
endorsed by the Société Française d’Endoscopie Digestive.
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3.2.3. Task

In this review, all kinds of literature on the computer-aided bleeding detection ap-
proach were divided into three categories based on the task. The first category was the
classification task for bleeding images or frames, the second was the segmentation task for
bleeding zone identification, and the third was the combination of the classification and
segmentation tasks.

Classification

Classification is a supervised learning technique in both machine learning and deep
learning that is used to categorize a given set of data into classes. A classification model
learns from the given dataset and then classifies new observations into a number of classes
or groups, such as 0 or 1, yes or no, bleeding image or non-bleeding image, etc. The study
in [23] presented a machine learning algorithm to classify CE images into two categories,
named bleeding and non-bleeding images. Rustam et al. developed a deep neural network
for the classification of bleeding CE images [42]. A video frame classification model using
SVM, which is a machine learning algorithm, was presented in [30] to classify bleeding
frames in CE videos.

Segmentation

Segmentation is a technique in which an image is broken down into different sub-
regions according to the extracted features. An image is a collection or set of different
pixels. Similar types of pixels are grouped according to image segmentation. This technique
helps in minimizing the complexity of the image in order to simplify further processing or
analysis of the image. E. Tuba et al. [43] presented an automated segmentation technique
based on SVM to detect bleeding regions in CE images. In other research on bleeding zone
segmentation of CE images, a deep learning-based model, named Multi-Stage Attention-
Unet, was proposed [44]. A time domain-based segmentation approach was provided by
W. Shi et al. [40] for locating bleeding in CE videos.

Classification + Segmentation

This category includes the classification and segmentation techniques at the same time
to classify images and locate the region of similar types of pixels. In this review, several
articles proposed to classify bleeding images and also to detect the bleeding region at the
same time using both classification and segmentation techniques for the development
of advanced computer-aided diagnosis systems. Rathnamala et al. presented a model
based on Gaussian mixture model superpixels and SVM for automatic bleeding detection
using CE images. First, the model classified bleeding and non-bleeding images, and then
it applied the post-segmentation technique to detect the bleeding region in the bleeding
image [45]. Two deep learning CNN-based models, AlexNet and SegNet, were presented
in [46] to classify bleeding images and zones in CE images. In [36], a computer-aided
scheme was presented for the classification of bleeding frames from CE videos, and then
the post-segmentation technique was applied for the localization of the bleeding zone.

4. Feature Extraction

Features are a major part of any pattern recognition task. Feature extraction is the
process of converting raw data (like an image) into a set of features. It aids in reducing
the number of resources required to explain big amounts of data. Color and texture are
two common and crucial image recognition properties. Both are also highly beneficial in
extracting features from CE images to identify bleeding because bleeding areas have more
or fewer color differences and/or textures compared with their neighboring environment.
The feature extraction domain is a selection process that selects a region of the image that
is used to efficiently extract features. Various feature extraction domains were used to
accurately extract bleeding features, such as ROI, specific block, pixel level, and image level.
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Color Space: Color space refers to a specific color arrangement. There are many
different color spaces, such as RGB, HSV, YIQ, YCbCr, CMYK, CIE L*a*b*, CIE XYZ, etc.
From the literature review, the color spaces used for feature extraction were categorized
into four groups: RGB, HSV, Other, and Combined color spaces.

RGB: Images are represented in the RGB color space as an m-by-n-by-3 numeric array,
the components of which indicate the intensity levels of red, green, and blue color channels.
The range of numeric values is determined by the image’s data type. Different types of
the RGB color space are available, such as linear RGB, sRGB (standard red, green, blue),
adobe RGB, and so on. In CE images or videos, a bleeding zone is distinguished by the
presence of a bright red or dark red zone. Many studies utilized the RGB color space to
extract features for the identification of bleeding images or regions from CE images. The
studies in [47,48] presented an automated obscure bleeding detection technique on the GI
tract based on statistical RGB color features that could classify bleeding and non-bleeding
images in CE images. By using the same RGB components of each pixel of the CE image,
the study in [49] presented a system to automatically detect bleeding zones in CE images.
From the first-order histogram in the RGB plane, the approach extracted bleeding color
information from CE image zones by calculating the mean, standard deviation, skew, and
energy [50]. Zhao et al. presented a two-dimensional color coordinate system in the RGB
color space to segment abnormality in CE videos. The approach combined two descriptors
to extract features: the first was based on image color content, while the second was based
on image edge information [38]. Another research group proposed using color vector
similarity coefficients to evaluate the color similarity in the RGB color space in order to
detect bleeding in CE images [51]. Yun et al. presented a method using color spectrum
transformation (CST) for the identification of bleeding in CE images. This approach
included a parameter compensation step that used a color balance index (CBI) in the RGB
color space to compensate for irregular image conditions [52]. The study in [53] suggested
an automatic bleeding image detection technique utilizing an RGB color histogram as a
feature extractor and bit-plane slicing to detect bleeding and non-bleeding images from
CE videos. In [54], the authors utilized superpixel segmentation in RGB color format to
extract bleeding information for an automatic obscure bleeding detection technique. In [21],
an automated bleeding detection approach was presented using a color-based per-pixel
feature extraction technique. Ghosh et al. [37] presented an automatic bleeding detection
approach based on an RGB color histogram of block statistics to extract features from CE
videos. To reduce computational complexity and flexibility, the approach utilized blocks
of surrounding pixels rather than individual pixel values. The conventional machine
learning model (which includes different stages: image acquisition, pre-processing, feature
extraction, and classification) used single pixels for the training and testing data. Therefore,
the model was unable to eliminate a few very small judged bleeding zones that were not
bleeding. To address this issue, cluster of pixels-based feature extraction techniques have
been used in some research to extract features from bleeding CE images. A cluster of
pixels in the RGB color space was utilized instead of single pixels in an automatic bleeding
classification system, which improved the sensitivity [55].

Instead of directly using the RGB color space, a G/R composite color plane was
utilized to extract features from CE images in [36]. In other research, T. Ghosh et al. [39]
extracted statistical features from the overlapping spatial blocks in CE images based on the
G/R color plane. The R/G transform color plane pixel intensity ratio was utilized for the
extraction of bleeding information from CE images [56]. Rather than considering individual
pixels, Ghosh et al. considered the surrounding neighborhood block of the individual pixel
and the R/G plane ratio for bleeding feature extraction from CE images [57]. Shi et al. [40]
used a temporal red-to-green ratio (R/G) feature value to detect bleeding regions.

According to T. Ghosh et al. [58], the average pixel intensity ratio in the RGB color
space was used to extract features from CE images for an automatic bleeding detection
approach. The study in [59] presented rapid bleeding detection in CE videos. The red
ratio (RR) in the RGB color space was used to extract a feature from each superpixel of CE
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images. Also, the RR feature for individual pixels was utilized for feature extraction of
bleeding from CE images [25]. The various coefficients of the RGB color space for bleeding
and non-bleeding superpixel blocks are RG (Red, Green), RB (Red, Blue), and GB (Green,
Blue) in two-dimensional space. Liu et al. [60] presented an automatic gastric hemorrhage
detection system based on the coefficient of variation in the RG two-dimensional color
space for different superpixel blocks in CE images. Another transformation form of the
RGB color space is the OHTA color space. In [61], the OHTA color space was utilized to
extract the features of bleeding from CE images.

A custom RGB color space was proposed in [31], which was similar to the CMYK color
space and was used to extract features for automatic blood detection in CE videos. Kundu
et al. [62] presented a normalized RGB color space histogram-based feature extraction
method to identify bleeding in CE images. Another research group employed a two-stage
saliency map extraction method to localize the bleeding areas in CE images. The first-stage
saliency map was constructed using a color channel mixer, and the second-stage saliency
map was derived from the RGB color space’s visual contrast [63].

Some studies applied algorithms in the RGB color space to extract features from CE
images or videos. Using advanced pattern recognition techniques, a MapReduce framework
was presented for the identification of bleeding frames and segmentation of bleeding zones.
For classification, the system encoded RGB color space information from the raw data of
CE images using a K-means clustering algorithm, and for segmentation of the bleeding
zone, a density-based algorithm (DBSCAN) was utilized [64]. Hwang et al. presented
an automatic bleeding region detection system using the Expectation Maximization (EM)
clustering algorithm in the RGB color space [65].

HSV: HSV (hue-H, saturation-S, value-V) is an alternative representation of the RGB
color space that correlates better with the human perception system. The HSV color space is
generated from cartesian RGB primaries, and its components and colorimetry are related to
the color space from which it is derived. Several studies [1,11,29,35,43,46,66–87] employed
the HSV color space histogram as the color feature descriptor to extract features from
CE images or videos in automated bleeding detection systems. In [78], the RGB image
was transformed into HSV color and several statistical parameters, like variance, kurtosis,
skewness, entropy, etc., were calculated from the histograms of CE images. The extracted
features were applied in a bleeding detection method. The contrast, cluster shade, cluster
prominence, and entropy were computed to extract bleeding features from the Gray Level
Co-occurrence Matrix (GLCM) in the HSV color space [79]. Usman et al. suggested a
pixel-based method for the detection of bleeding regions in CE videos. The HSV color
space was utilized to compute the bleeding information [29]. The study in [88] presented
a color-based segmentation using the HSV color space to detect bleeding regions in CE
images. Giritharan et al. presented a bleeding detection method based on the HSV color
space with dominant color and co-occurrence of dominant colors for feature extraction
to classify bleeding lesions [66]. In [67], the HSV color moments were used to extract
bleeding features from CE images, achieving the highest accuracy compared to the local
binary pattern (LBP), local color moments, and Gabor filter. Using a block-based color
saturation approach in the HSV color space, CE images were classified as bleeding or non-
bleeding in [68]. A two-stage analysis system was proposed in [69], in which both block-
and pixel-based color saturation methods used the HSV color space to extract bleeding
features. Color saturation and hue were obtained in the study by converting the input
videos or images to the HSV color space. In [70], the authors compared texture features
with color features extracted from the HSV color space for the classification of bleeding and
showed that color features provided better results. A fuzzy logic edge detection technique
was applied in the HSV color space in [1] to extract features of bleeding and non-bleeding
from CE images. According to [9], a feature selection strategy was proposed based on HSV
color transformation to extract geometric features from CE images for classifying bleeding
images. To extract the color features, another research group [70] applied the HSV color
space Scale Invariant Feature Transform (HSV-SIFT) for CE abnormality detection.
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Various statistical features are computed from the hue, saturation, and value channels
of the HSV color space. The hue space (H) provides a useful feature for color objects
or surfaces. The hue space was utilized in [71] to extract features from CE images for
an automatic bleeding detection approach. Another strategy used the combination of
a hue–saturation (HS) color histogram with relevant features (64 bins) for extraction of
information in order to identify suspected blood abnormalities [72]. The HSI (hue-H,
saturation-S, intensity-I) color space is another variation of the HSV color space. A binary
feature vector in the HSI color space was more effective in extracting features in a bleeding
detection approach [73]. A segmentation approach in which the average saturation from
the HSI color space, as well as the skewness and kurtosis of the uniform LBP histogram,
were used as features for automated segmentation to detect bleeding in CE images [43].
Another research group suggested an HSI color histogram to follow a moving background
and bleeding color distributions through time in the first stage. Cui et al. [74] presented six
color features in the HSI color space to classify bleeding and normal CE images.

Other color spaces: In addition to the most popular RGB and HSV color spaces, a
few articles utilized different color spaces to extract bleeding features from CE images,
such as YIQ (luminance-Y, chrominance-IQ: in phase-I and quadrature-Q), YCbCr, CIE
L*a*b*, CIE XYZ, and K-L (Karhunen–Loeve Transform) color spaces. The study in [89]
analyzed only the Q value of the YIQ color scheme to determine the ROI section. Then, a
composite space Y.I/Q of the YIQ color space was presented to extract bleeding features
by computing the mean, median, skewness, and minima of the pixel values. Based on the
YIQ color histogram, another article proposed an automatic bleeding detection scheme
for CE images [90]. The YCbCr color space was presented to collect information from CE
images in order to identify images with lesions [91]. Yuan et al., investigated several color
histograms, including RGB, HSV, YCbCr, and CIE L*a*b*, and proposed the YCbCr color
space to extract bleeding features for discrimination of bleeding images from normal CE
images [92]. The studies in [93–96] suggested using the CIE L*a*b* color space for detection
or localization of the bleeding region in CE images. Mathew et al. proposed a bleeding
zone detection system based on the contourlet transform in the CIE XYZ color space [97].
Another feature extraction color space was the Karhunen-Loeve (K-L) Transform, which
was utilized for fuzzy region segmentation in CE images [98]. The study by X. Liu et al. [99]
proposed a computer-aided bleeding and ulcer detection approach based on the covariance
of second-order statistical features in the K-L color space. A K-means color group was
suggested as a color feature extractor for superpixel segmentation to find bleeding regions
in CE videos [100].

Combined multiple color spaces: To detect bleeding, a group of color features was
computed using multiple color spaces in CE images. The method described in [26] em-
ployed two distinct enhancing operations for identifying bleeding in CE images: the first
was for the RGB color space, and the second was for the grayscale color space. The study
in [101] determined the ROI of bleeding CE images using the YIQ color space and extracted
features from the ROI using the CMYK color space. Based on the RGB and HSV color spaces,
CE images were defined using statistical characteristics to extract bleeding features [33,102].
A 9-D feature was extracted at the superpixel level from the RGB and HSV color spaces
during the segmentation stage of the study [103]. Some studies utilized a combination of
the RGB and HSI color spaces to extract features for the bleeding detection approach in
CE images [104–107]. Five color spaces (RGB, HSV, CIE L*a*b*, YCbCr, and CMYK) were
used to extract features in [108]. In [7], the authors proposed the R channel with respect
to the G and B channels and the ratio of G and B channels as features in the RGB color
space, and the HSV color space was chosen for the saturation feature. The color features
were extracted using the color components X = {R, G, B, L, a, b, H, S, V, F1, F2, F3} in the
RGB, CIE L*a*b*, and HSV color spaces from each superpixel of CE images [109]. In [110],
the color components H, S, a, b from the HSV and CIE L*a*b* color spaces and the Ros
(Rosenfeld–Troy) metric were used. Ten features, including Normalized Excessive Red
(NER), Hue, sum RGB, chroma, etc., were used to analyze CE video frames in [111]. For the
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segmentation of bleeding regions from bleeding CE images, delta E color differences were
used to extract features by applying nine color shades (red, orange, brown, maroon, purple,
pink, mahogany, brown, and bittersweet) for characterizing different types of bleeding [45].
The recommended Probability Density Function (PDF) fitting-based feature extraction
technique was used in the YIQ, HSV, and CIE L*a*b* color spaces [112]. In [113], 40 features
were extracted from five different channels, including R in the RGB color space, V in the
HSV color space, Cr in the YCbCr color space, and a and L in the CIE L*a*b* color space.
An article [114] investigated 21 color components from RGB, YUV, YIQ, HSB, CIE XYZ,
and CIE L*a*b* color spaces for feature extraction, such as U/Y, V/Y, I/Y, and Q/Y. A. K.
Kundu et al. [115] demonstrated a combination of the HSV and YIQ color spaces using
normal PDF to detect GI diseases in CE videos. According to [30], the HSV color space was
used for threshold analysis of the classification model, and the CIE L*a*b* color space was
used in the trainable model for edge detection in images.

Texture: Texture feature is used to partition images into ROI and classify those regions
as bleeding and non-bleeding. It provides information about an image in the spatial pat-
terns of colors or intensities that repeat. In [75,116], a conventional texture representation
model, named uniform Local Binary Pattern (LBP), was used to differentiate bleeding and
normal regions. The study in [35] extracted the texture features (LBP) from suspicious
areas in images and their surroundings for classifying bleeding. Zhao et al. [38] extracted
an LBP based on the contourlet transform as texture features to segment abnormalities in
WCE images. As a color texture feature, Li et al. [12] integrated chrominance moments
and uniform LBP to discriminate bleeding regions from normal regions. Charfi et al. [88]
also extracted texture features (LBP) for segmentation from WCE images in order to pre-
vent false detections. For recognizing bleeding regions, a 6D color texture feature vector
{x = (R, G, B, H, S, I)} was developed in [106]. Pogorelov et al. [4] presented bleeding detec-
tion system-computed texture features to extract additional information from the captured
image frames. By using a histogram of the index image, a distinguishable color texture
feature was developed in [53] for automatic bleeding image detection.

The Gray-Level Co-occurrence Matrix (GLCM) is a statistical approach for assessing
texture that considers the spatial interaction of pixels. The GLCM functions describe the
texture of CE images by computing how frequently pairs of pixels with given values and
in a specified spatial relationship appear in an image, generating a GLCM, and afterward
extracting statistical measures from this matrix. In [117], the authors proposed an effi-
cient normalized GLCM for extracting the bleeding features from CE images. In [118],
the authors proposed a texture feature descriptor-based algorithm that operated on the
normalized GLCM of the magnitude spectrum of the images for a real-time computerized
GI hemorrhage detection system. The study in [72] compared two types of texture features,
GLCM and Homogeneous Texture Descriptor (HTD), with various numbers of color his-
togram bins. Rathnamala et al. [45] extracted texture attributes from the Gaussian mixture
model superpixels in WCE images.

Shape: Shape feature extraction from images involves the process of identifying and
describing the geometric characteristics of objects or regions within the image. This in-
cludes detecting object boundaries; computing features like area, perimeter, circularity, and
eccentricity; and representing the shape using descriptors like chain codes, Hu moments,
Histogram of Oriented Gradients (HOG), or Fourier descriptors. Among them, HOG is a
popular shape feature extraction method commonly used for object detection and recog-
nition tasks. The studies in [119–121] specifically utilized the HOG descriptor for shape
feature extraction.

Extraction Domain: According to the taxonomy, the extraction domain is the process
of extracting bleeding features from CE images. All of the reviewed studies were cate-
gorized into three parts depending on the extraction domain: global feature (when the
features are extracted from the whole frames or images); local feature (when the features
are extracted at the pixel-level or from a portion of an image -specific block size, ROI, POI);
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and combined local and global features (when the features are extracted at both pixel and
image levels).

Global feature: The entire image information is used in the global feature extraction
technique. Using statistical features (such as mean, mode, variance, moment, entropy,
energy, skewness, kurtosis, etc.), several articles [1,30,61,71,78,79,94,96,103,109,115,116,122]
extracted bleeding features from whole CE images. In [50], statistical color features of
bleeding images were extracted from the RGB plane’s first-order histogram. In another
study [79], statistical features were measured from GLCM after applying an Undecimated
Double Density Dual Tree Discrete Wavelet Transform on CE images. Cui et al. [74] applied
six color statistical features to identify bleeding features from the full image feature. Zhou
et al. [73] utilized color information to extract the bleeding features from the image feature.
In [9], color, shape, and surf were used for feature extraction from whole images.

Local feature: A pixel-level feature extraction approach was proposed in several
studies in order to accurately identify bleeding images [29,36,51,56,58,120,121,123]. Instead
of computing different features from each pixel, a few researchers proposed block-based
local feature extraction techniques to reduce time and computational cost [37,47]. The
study in [39] investigated various overlapping block sizes (3 × 3, 5 × 5, 7 × 7, and 9 × 9)
and proposed a 7 × 7 block size to extract features from CE images. Maghsoudi et al. [80]
divided the original image of 512 × 512 pixels into 256 sub-images with a resolution of
32 × 32 pixels for feature extraction. In [70], the 576 × 576 pixels input was sliced into nine
non-overlapping blocks, each with 64 × 64 pixels. Another research group divided each
CE image into blocks of 64 × 64 pixels and analyzed the 64 × 64 = 4096 pixels in each block
to recognize hemorrhage [69]. CE images are surrounded by a large black background,
which provides unwanted features. As a result, this reduces the performance of the model.
To address this, a few studies introduced a Region Of Interest (ROI) for proper feature
extraction. In [92,100,119], the authors selected an ROI from a maximum square inside the
circular CE image without loss of main information. The ROI was 180 × 180 pixels in size,
chosen from a total of 256 × 256 pixels. An elliptical ROI was selected inside the image
to extract local features in [33]. According to [101], an ROI of the bleeding CE image was
determined using the YIQ color space. After that, CMYK values were computed within
the ROI pixels, which were applied to discriminate bleeding and non-bleeding pixels. An
ROI was selected based on the Q-value of the YIQ color space and a composite space Y.I/Q
was used to capture the bleeding information from the ROI section of the CE images [89].
The Pixel Of Interest (POI) technique can also extract local features that depend on the
intensity values of pixels. In [112,115], the authors utilized POI instead of whole CE images
to extract features for the classification of bleeding images.

Combined local and global features: Studies used local and global features to de-
velop robust and accurate computer-aided bleeding detection systems. The studies
in [65,106,107] proposed bleeding detection application software that was tested at the pixel
and image levels. Region-level block-based and image-level global feature extraction tech-
niques were applied in [39] to identify bleeding images. There were two stages presented
in [4]; the first used only local color features to categorize bleeding images, while the second
included global texture and color features to classify bleeding pixels. In [37], a block-based
local feature extraction technique was presented, and then global features were extracted
using a color histogram to classify bleeding and non-bleeding images. Ghosh et al. [57]
presented an approach that used the maximum pixel value of each proposed spatial block
and the global features to classify bleeding images. In another study [59], the authors used
pixels to remove the edge zone and grouped pixels adaptively based on the red ratio in the
RGB color space for superpixel segmentation. Another study proposed a global feature
descriptor based on magnitude spectrum entropy and a local textural descriptor based
on the contrast, sum entropy, sum variance, difference variance, and difference average,
operating on the normalized GLCM [118]. Few researchers have proposed various machine
learning and deep learning algorithms to extract both global and local features from CE
images. The study in [22] proposed a bleeding detection method using a genetic algorithm
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for feature selection from CE images. Using an unsupervised K-means clustering algorithm,
some studies extracted features for automatic bleeding detection in CE images [39,64].
Three pre-trained deep convolutional neural networks (CNNs), named ResNet50, VGG19,
and InceptionV3 models, were used to extract features from CE images suggested by [23].

5. Algorithm

Initially, researchers proposed various threshold values to detect bleeding [51,52].
Various machine learning (ML) and deep learning (DL) algorithms are currently being used
for accurate bleeding detection.

Machine Learning (ML): Several ML algorithms have been applied in computer-aided
bleeding detection systems to effectively detect bleeding in CE images or videos, such as
SVM, KNN, K-Means Clustering, Naïve Bayes, Random Tree, Random Forest, ANN, PNN,
MLP, etc.

SVM is one of the most popular supervised ML algorithms that is used to detect
bleeding and non-bleeding images or zones from CE images or videos. The majority of
studies used SVM based on the extracted features of input images including color space and
texture [119,122]. In 2008, Liu et al. [48] developed an automated obscure bleeding detection
technique for the GI tract that could classify bleeding and non-bleeding CE images using
the SVM algorithm. An automated bleeding detection approach was presented in [47]
that provided an accuracy of 97.67%. Another research group suggested an automatic
bleeding image detection technique utilizing an SVM classifier to detect bleeding and
non-bleeding frames from CE videos. The approach reported 94.50% accuracy, 93.00%
sensitivity, and 94.88% specificity [53]. The study in [36] utilized the SVM classifier to train
with 200 bleeding and 200 non-bleeding CE images and achieved 97.96%, 97.75%, and
97.99% accuracy, sensitivity, and specificity, respectively. Studies in [49,124] suggested a
system to automatically detect bleeding in CE images using the SVM classifier. A recent
study suggested a Quadratic Support Vector Machine (QSVM) classifier for an automated
bleeding detection approach, which was proposed in [1]. A fuzzy logic technique was
applied to extract the features of the images. The model achieved 98.2%, 98%, and 98%
accuracy, sensitivity, and specificity, respectively. Joshi et al. [125] presented an SVM
classification model based on an improved Bag of Visual Words to detect bleeding in
CE images.

Different kernel functions of the SVM algorithm, including linear, polynomial (cu-
bic [126], quadratic [81]), and Radial Basis Function (RBF) [120] were used in bleeding
detection in CE image research. The SVM classifier with the linear kernel was utilized in a
real-time computerized gastrointestinal hemorrhage detection method for CE videos. The
results obtained 99.19%, 99.41%, and 98.95% accuracy, sensitivity, and specificity, respec-
tively [118]. Liu et al. [60] presented an automatic detection gastric hemorrhage system
using the SVM classifier with RBF as the kernel function, which achieved 95.8% accuracy,
87.5% sensitivity, 98.1% specificity, 12.5% miss detection rate, and 1.9% false detection
rate, respectively. Another study [21] also used the RBF kernel of the SVM classifier to
discriminate between bleeding and non-bleeding images, achieving 98.0%, 97.0%, and
98.0% accuracy, specificity, and sensitivity, respectively. In addition [105], the SVM classifier
model was used to detect bleeding using the chi-square kernel and histogram intersection.
The combination of spatial pyramids with a robust hue histogram improved the accuracy
by about 8%.

KNN is the second most popular supervised ML algorithm to detect bleeding in CE
images or videos. The algorithm processes all existing pixels of CE images and classifies
new pixels based on similarities. In [90], the KNN classifier was used to train with CE
videos, achieving 97.50% accuracy, 94.33% sensitivity, and 98.21% specificity. Kundu
et al. [62] employed a KNN model for detecting bleeding in CE images, which achieved an
accuracy of 98.12%, a sensitivity of 94.98%, and a specificity of 98.55%. The article in [103]
presented a bleeding detection approach for CE images that was compared to various
ML algorithms, such as SVM, AdaBoost (Adaptive Boosting), and KNN, and the KNN
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algorithm achieved the best results with 99.22% accuracy. In another study, a KNN classifier
was employed [71] to distinguish the characteristics of bleeding and non-bleeding images.
The classifier was trained with 200 color CE images and achieved 99.0% accuracy.

ANN or NN is an ML algorithm for computer system designs that are inspired by
biological neural networks. The approach described in [50] employed an ANN with 3 input
neurons, 22 hidden neurons, and 2 output neurons, with a minimum squared error loss
function. The ANN classifier was also applied in a preprocessing step to analyze the
pixels in CE images in [25]. ANN is also known as NN. A NN cell classifier was applied
in [76,96] to categorize bleeding and non-bleeding patches in CE images. Another study
proposed back-propagation NN to detect bleeding regions, achieving 97% sensitivity and
90% specificity. A Probabilistic Neural Network (PNN) is a radial basis function and
Bayesian theory-based feedforward neural network. One such study [107] applied PNN
to detect bleeding zones in CE images, achieving 93.1% sensitivity and 85.6% specificity.
Multilayer Perceptron (MLP) is a type of fully connected feedforward ANN that is widely
used in statistical pattern recognition. Several articles [32,75,80,82,83] employed MLP
neural networks to classify bleeding images and regions in CE images. The article in [114]
proposed the Vector Supported Convex Hull classification algorithm, which was compared
to SVM and configured with two alternative feature selection approaches. The model
achieved a 98% sensitivity and specificity ratio for bleeding detection. Another study [102]
suggested a computer-aided color feature-based bleeding detection technique using a
modified ant colony optimization algorithm. The model achieved 98.82%, 99.66%, and
98.01% accuracy, sensitivity, and specificity, respectively.

Other ML: The Naïve Bayes classifier is another ML classification algorithm based on
the Bayes Theorem. The studies in [54,100] used a Naïve Bayes classifier to detect bleeding
in CE images. In [38,94], another ML algorithm, K-means clustering, was applied to extract
important features for summarizing CE video clips. Random Tree and Random Forest
are tree-based ML algorithms for making decisions. In the study in [78], a Random Tree
classifier was trained with 100 bleeding and 100 non-bleeding images for a computer-aided
bleeding detection system. The classifier achieved an accuracy of 99%, a sensitivity of
98%, and a specificity of 99%. In [79], both Random Tree and Random Forest classifier
models outperformed bleeding detection compared to MLP and Naïve Bayes models. Both
models provided 99.5%, 99%, and 100% accuracy, sensitivity, and specificity, respectively.
The Random Forest model was also used in [77], achieving 95.7% sensitivity and 92.3%
specificity. In [65,123], an Expectation Maximization (EM) clustering algorithm was used
to detect potential bleeding regions as the ROI for subsequent classification of bleeding
images from normal ones.

Combined multiple ML: In [110], a block-based segmentation technique using local
features was presented and several ML algorithms, like linear discriminant analysis, SVM,
Random Forest, and ADABoost, were applied for discriminating between bleeding and
non-bleeding images. Using the SVM and K-means algorithms, a GI bleeding detection
approach was presented in [64] to detect bleeding images and regions of bleeding images,
reporting less computation time with 98.04% accuracy and 84.88% precision. According
to [72], an automatic detection system was designed to identify suspected blood indicators
in CE images. The authors compared various ML classifiers, like SVM and NN. The ISVM
classifier was trained with 136 normal with 214 abnormal images and achieved a maximum
of 98.13% accuracy using the Total Margin-Based Adaptive Fuzzy (TAF-SVM) algorithm.
In addition, an automatic bleeding detection approach for CE videos was suggested by
Ghosh et al. using a cluster-based feature. The SVM classifier was applied to the clustering
information to detect bleeding zones in CE images, obtaining a precision of 97.05%, False
Positive Rate (FPR) of 1.1%, and False Negative Rate (FNR) of 22.38% [39].

Deep Learning (DL): The most widely used deep learning approach for image classi-
fication and segmentation is the Convolutional Neural Network (CNN). Several CNN mod-
els, such as AlexNet [95], LeNet [127], Fully Convolutional Neural Network (FCN) [27,128],
Visual Geometry Group Network (VGGNet) [129], Residual Network (Resnet-50) [130–132],
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Res2Net101 [133], Inception-Resnet-V2 [134,135], AttResU-Net [136], MobileNet [42],
DenseNet [24], Region-based Convolutional Neural Networks (R-CNN) [137], Convo-
lutional Recurrent Neural Network (CRNN) [34], U-Net [44,138], SegNet [46], and custom
CNNs [41,139–153], have been utilized in a number of studies for the classification or
segmentation or combined classification and segmentation of bleeding in CE images. The
study in [27] presented an FCN model for an automatic blood region segmentation system.
Another study [128] proposed a Look-Behind FCN algorithm for abnormality detection
(polyps, ulcers, and blood) in CE images, achieving an accuracy of 97.84%. In [127], a LeNet
model was trained and adopted pre-trained AlexNet, VGG-Net, and GoogLeNet models to
identify intestinal hemorrhage. In [46], the authors applied a pre-trained AlexNet model
for identification and a SegNet model for segmentation of intestinal bleeding. Another
CNN algorithm, named U-Net, was proposed in [28,44] to segment bleeding areas in CE
images and videos. Xing et al. [24] proposed a saliency-aware hybrid network algorithm
based on two densely connected convolutional networks (DenseNets) for an automatic
bleeding detection system. The authors of [85] developed a CNN model for detecting
bleeding zones, which was trained using SegNet layers with bleeding, non-bleeding, and
background classes. A blood content detection approach using ResNet architecture with
50 layers was suggested in [130], which achieved an accuracy of 99.89%, a sensitivity of
96.63%, and a specificity of 99.96%. Hwang et al. used a CNN model based on VGGNet to
identify lesions with 96.83% accuracy [129]. Another CNN model for classifying bleeding in
CE images was provided in another study [42]. The model was created utilizing MobileNet
and a custom-built CNN. To identify small bowel angioectasia, the authors of [154] used a
16-layer Single Shot MultiBox Detector (SSD) deep CNN method.

Combined ML & DL algorithms: In recent years, several researchers have employed
CNN-based models, such as AlexNet [126], VGG [86], ResNet [121,131], InceptionV3 [23],
DenseNet [155], and XcepNet23 [81], to extract relevant features from medical images,
particularly in tasks like identifying bleeding from normal images. In [86], deep CNNs
(VGG16 and VGG19) were applied to extract features from CE images. A KNN algorithm
was proposed to classify bleeding images, achieving 99.42% and 99.51% accuracy and
precision rate, respectively. An automatic bleeding region segmentation technique was
presented in [156] using individual MLP and CNN models. In another study [23], the
authors proposed pre-trained deep CNNs (VGG19, InceptionV3, and ResNet50) models to
extract bleeding features, and ML algorithms (SVM, KNN, Linear Regression) were utilized
to distinguish bleeding and non-bleeding images. In [155], the authors applied DenseNet
for feature extraction and the features were trained with an MLP algorithm to classify GI
track abdominal infections. In addition, the study in [157] applied a CNN model to extract
bleeding features and the SVM classifier was used to detect bleeding.

6. Discussion

A CE device typically records video in the GI tract for around 8 h. Few studies utilized
video to detect bleeding abnormalities. Figure 3 shows an overview of the used domains
and algorithms in the papers that were reviewed in this study. To detect bleeding in CE im-
ages, researchers used three tasks, which included classification (C), segmentation (S), and
combined classification and segmentation (C + S). Articles using the proposed classification
task showed an average accuracy of 96.13% ± 3.04, sensitivity of 95.13% ± 4.25, and speci-
ficity of 95.63% ± 4.03. For the segmentation algorithms, the average accuracy was around
94.95% ± 4.11, sensitivity was 92.44% ± 9.16, and specificity was 95.86% ± 2.16. Articles
that used the proposed combined task achieved an average accuracy of 97.12% ± 1.95,
sensitivity of 94.12% ± 9.10, and specificity of 96.63% ± 4.15. Based on the above litera-
ture analysis, the combined task performed better. One significant benefit of the current
methods is their ability to identify bleeding in CE images/frames and pinpoint the specific
bleeding region. However, a limitation of these methods is their inability to measure the
extent or depth of the bleeding area.
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Figure 3. Overview of all studies in this review. C = classification, S = segmentation, C + S = combined
both classification and segmentation, ML = machine learning, DL = deep learning, ML + DL = both
machine learning and deep learning.

Feature extraction is an essential part of bleeding detection in CE images. The feature
values are extracted from the color channels of CE images. The performance of a bleeding
detection algorithm directly depends on the feature values. To identify bleeding, many color
spaces were presented. RGB is the popular color space to extract features because it is the
default color space. Apart from the RGB color space, several studies proposed individual
color channels (R, G, B, etc.), color channel pixel ratios (R/G, G/R, etc.), or various color
spaces (HSV, YIQ, YCbCr, CIE L*a*b*, CIE XYZ, K-L, etc.) to extract appropriate bleeding
features. A few researchers applied two or more color spaces together to extract features.
According to the taxonomy, all of the suggested color spaces were categorized into four
groups: RGB, HSV, Combined (multiple color spaces), and Other (YIQ, YCbCr, CIE L*a*b*,
CIE XYZ, etc.). It is important to acknowledge that the performance results presented in
this article are directly extracted from the original papers. The box plots in all the figures
were used to compare the performance between groups of methods, rather than between
individual algorithms. Statistical measures such as the mean, median, 25th percentile, and
75th percentile were utilized for each group. The performance results of different color
spaces in detecting bleeding using a box plot are shown in Figure 4. According to the figure,
the choice of color space did not provide any performance benefits. All of the color spaces
provided similar results except the ‘Other’ color space. When comparing all color spaces,
the RGB color space had a slightly higher recall value. It should be noted that the recall
performance criterion is the most important in the detection of bleeding. On top of that, the
RGB color space achieved lower variance for accuracy, recall, and specificity. The current
methods make a significant contribution by investigating all potential color spaces to detect
bleeding in capsule endoscopy.
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Figure 4. Performance of different color spaces. (‘X’ and circle represent mean and outlier, respectively).

A typical approach for extracting bleeding features from whole CE images is the global
feature extraction domain. Because this approach analyzes the entire image at once, the
complexity and processing time are increased. The average results obtained using different
extraction domains using a box plot are shown in Figure 5. To address the problem, various
studies proposed a pixel-level feature extraction domain, in which the technique analyzed
each pixel of the CE image. The technique improved the results but did not reduce the
complexity and computation time. Several authors selected a portion of the CE image
(specific block size, ROI, POI) in the preprocessing step for feature extraction, named the
local feature extraction domain. The technique improved the results and reduced the
complexity and processing time. Recently, a few researchers applied both the global and
local feature extraction domains in a computer-aided bleeding detection system, which
significantly enhanced the detection accuracy compared to the individual domains. Texture
and statistical values (mean, mode, variance, moment, entropy, energy, skewness, kurtosis,
etc.) were calculated using the feature values. Finally, a classification or segmentation
algorithm was used to extract the values in order to detect bleeding in the CE images.
According to Figure 5, the combined feature extraction domain outperformed the other
domains in terms of accuracy, sensitivity, and specificity because it was tested at both the
pixel and image levels. Also, a CNN model was used to train the model at the pixel level,
followed by the application of a classification model to detect bleeding. The current feature
extraction methods have certain limitations, such as introducing bias (which is influenced
by the chosen algorithm), increased complexity, overfitting, and reduced generalizability.

The majority of the literature reviewed proposed various ML algorithms that were
trained with the texture and statistical features to identify bleeding in the CE images. Before
introducing advanced ML algorithms, researchers set threshold values for the extraction
features to detect bleeding in the CE images. The review of the literature found that the
greatest number of articles used the KNN, SVM, MLP, and NN algorithms. In addition
to these algorithms, a few other ML algorithms were used, such as Principal Component
Analysis (PCA), Random Tree, Random Forest, Fuzzy C-Means, Expectation Maximization
clustering, and Vector Supported Convex Hull, which were called “Other ML” in this study.
The performance of the ML technique is based on the extracted features of color channels.
The color channel intensity values overlapped between bleeding and non-bleeding pixels.
As a result, utilizing ML approaches to distinguish bleeding from non-bleeding in CE
images is problematic. In the last few years, researchers have proposed a DL technique,
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particularly using CNNs (AlexNet, LeNet, FCN, VGGNet, ResNet-50, MobileNet, U-Net,
DenseNet, and SegNet) to identify bleeding in CE images. DL is an end-to-end classification
and segmentation approach that extracts features automatically at the pixel level. Unlike
ML, the DL approach does not require a separate feature extraction stage and it extracts
features automatically to provide more efficient outcomes. The performance results for
different state-of-the-art ML and DL algorithms using a box plot are shown in Figure 6.
From the figure, it is observed that both the KNN and CNN algorithms outperformed
the other algorithms. While the existing methods have made significant contributions
to the development of classification and segmentation algorithms for detecting bleeding
with satisfactory performance, they have often been tested on a limited number of test
samples, such as images. Furthermore, deep learning algorithms have not yet incorporated
attention mechanisms to further enhance their performance. We have added Appendix A
at the end of our paper, which includes all of the information gathered from the reviewed
articles in Table A1. We compared the performance of the research methods of the reviewed
articles using established metrics such as accuracy, recall, specificity, Dice score, F1 score,
Intersection over Union (IoU), etc.
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The most commonly used color spaces in the available state-of-the-art bleeding detec-
tion algorithms for CE images are RGB, HSV, YIQ, YCbCr, CIE L*a*b*, CIE XYZ, K-L, etc.
Among them, from the above review, we can see that the RGB color space had a slightly
higher recall value and achieved lower variance for accuracy, recall, and specificity. A
computer-aided system also improved the execution speed because no color conversion
operations are required when using the RGB color space. So, for practical use, the RGB
color space is the best option as there is no need to convert the data into other color do-
mains. For the feature extraction method, the combined global and local feature extraction
domain showed greater detection accuracy compared to the individual domains, which
makes it more suitable for practical use. For bleeding detection in CE images, most of the
literature proposed ML algorithms, which included SVM, KNN, PCA, MLP, NN, Random
Tree, Random Forest, etc. Also, the greatest number of articles on DL used CNNs (FCN,
SegNet, U-Net, DenseNet, ResNet50, VGGNet, and MobileNet). From the above review
of the literature, the KNN and CNN algorithms outperformed the other algorithms. For
ML algorithms, the color channel intensity values overlapped between bleeding and non-
bleeding pixels. Meanwhile, the DL approach does not require a separate feature extraction
stage and it extracts features automatically, which is more effective for practical use.

7. Limitations

To be suitable for practical use and deliver robust performance on unknown test
data, the current methods require improvement. These improvements should include
minimizing computational requirements and visually representing the outcomes to ensure
that clinicians can trust the results. In the above review, the chosen color space did not
provide any performance benefits for the classification or segmentation tasks. The RGB color
space provided higher execution speed with lower performance variance, and it should be
used in the future. DL algorithms provide a promising path for practical computer-aided
bleeding detection systems in CE. However, DL algorithms depend on the number of
medical image datasets and the insufficient quantity of data is a limitation.

8. Future Direction

Deep learning-based software like Enlitic’s Curie|ENDEX™ is being used to help
radiologists manage and analyze medical imaging data in an efficient way [158]. In ad-
dition, Medtronic PillCam™ COLON CAD, Olympus CAD EYE™, and EndoBRAIN®

(Fujifilm, Tokyo, Japan) are currently being used by physicians to automatically detect GI
abnormalities in CE images [159]. Although there are just few examples of computer-aided
bleeding detection, it is promising as the technology is continuing to develop. More real-life
effective algorithms are being introduced by researchers. This review paper will help guide
them towards algorithms that could be used by practicing physicians. Recently, a new
technique called a Generative Adversarial Network (GAN) has been introduced to generate
synthetic images [160–163]. So, in the future, the dataset limitation may be overcome by
collecting more data using synthetic CE images. Additionally, DL algorithms may be a
better alternative for detecting bleeding in CE images. Several articles introduced ML
and DL algorithms concurrently, such as DL for feature extraction and ML for bleeding
image categorization. The integrated models considerably improved the performance of
computer-aided bleeding detection systems. From the literature review, the majority of
articles used the same patient or subject data for the training and testing datasets as they
randomly selected images for training and testing. This introduces bias in an experimental
setup. Same-patient CE images should not be mixed in training and testing datasets for
classifying bleeding.

9. Conclusions

A systematic review of the available state-of-the-art computer-aided bleeding detection
algorithms for capsule endoscopy (CE) was conducted, and the most accurate and suitable
algorithms for practical use were identified. This review suggests a taxonomy for computer-



Sensors 2023, 23, 7170 20 of 35

aided bleeding detection systems. Researchers used various color spaces and feature
extraction techniques to boost the bleeding detection algorithm performance. The analysis
revealed that the choice of color space offered no additional benefits. For simplicity, the
RGB color space is preferred. For the feature extraction, combining both global and local
feature extraction domains in a computer-aided bleeding detection system significantly
enhanced the detection accuracy compared to individual domains. The k-nearest neighbor
(KNN) and convolutional neural network (CNN) outperformed the other algorithms for
computer-aided bleeding detection systems. However, the KNN algorithm faces a few
limitations, like overfitting and hand-crafted feature extraction. Recently, computer-aided
bleeding detection systems have focused on deep learning algorithms. The performance
of deep learning bleeding detection algorithms is improving day by day. In the future,
deep learning algorithms will be a promising path for computer-aided bleeding detection
systems in capsule endoscopy.
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Appendix A

Table A1. Summary of the reviewed state-of-the-art algorithms.

Refs. Domain

Methodology/Technique Feature Extraction

CS DS Results
Task ML/DL Algorithm Color

Space
Extraction
Domain

2006 [65] Image C ML
Expectation
Maximiza-

tion
RGB Combined - 201 images R: 92%, S: 98%

2008 [35] Video C ML SVC HSV Local 10-fold 84 videos A: ~97%

2008 [48] Image C ML SVM RGB Local - 640 images A: ~99%

2008 [66] Video C ML SVM HSV Global - 5 videos R: 80%

2008 [104] Image S ML Threshold Combined Global - 2000
images

R: 92.86%,
S: 89.49%

2008 [98] Image C + S ML Threshold Other Combined - - -

2008 [75] Image C ML MLP HSV Local 3600
images A: 90.84%

2009 [83] Image C ML MLP HSV Local 4-fold 100 images R: 87.81% ± 1.36,
S: 88.62% ± 0.44

2009 [82] Image C ML MLP HSV Local - 200 images Detection rate:
90%.

2009 [70] Image C ML SVM, NN HSV Local 10-fold 300 images A: 99.41% (SVM),
A: 98.97% (NN)

2009 [52] Image S ML Threshold RGB Global - 4800
images

R: 94.87%,
S: 96.12%
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Table A1. Cont.

Refs. Domain

Methodology/Technique Feature Extraction

CS DS Results
Task ML/DL Algorithm Color

Space
Extraction
Domain

2009 [106] Image C ML NN Combined Combined - 14,630
images

R: 93.03%,
S: 95.86%

2010 [107] Image C ML PNN Combined Combined - 14,630
images R: 93.1%, S: 85.6%

2010 [74] Image C ML SVC HSV Global - 6416
images A: ~97%

2010 [38] Video S ML K-Means
Clustering RGB Local - 10 videos -

2010 [76] Image C ML NN HSV Local - 200 images A: 93.1%

2011 [25] Image C ML ANN RGB Local - 2000
images

A: 94%, R: 94%,
S: 95%

2011 [105] Image C ML SVM Combined Combined 5-fold 560 images A: 97.9%, R:
97.8%, S: 98.0%

2011 [7] Image C ML Threshold Combined Local - 42 images R: 87%, S: 90%

2012 [69] Image C ML Threshold HSV Local - 72 images
In 3 images, the

algorithm did not
detect bleeding

2012 [49] Image C ML SVM RGB Local - 52 images -

2012 [72] Image C ML SVM HSV Local 5-fold 350 images A: 98.13%

2012 [51] Image C ML Threshold RGB Local - 14,630
images R: 90%, S: 97%

2012 [99] Image C ML Threshold Other Global - 100 images R: 82.3%, S:
89.10%

2012 [114] Image C + S ML

Vector
Supported

Convex
Hull

Combined Local - 50 videos R/S: >98%

2013 [111] Image C + S ML SVM Combined Local - 10 videos FPR: 4.03%

2013 [55] Image C ML SVM RGB Local - - R rises to 0.8997

2013 [50] Image C ML ANN RGB Global - 90 images A: 89%

2013 [93] Image S ML Threshold Other Global - 700 images A: 92.7%, R:
92.9%

2014 [53] Image C ML SVM RGB Local - 2250
images

A: 94.50%,
R: 93.00%,
S: 94.88%

2014 [58] Image C ML SVM RGB Local - 200 images
A: 95.80%,
R: 96.50%,
S: 95.63%

2014 [59] Image C + S ML SVM RGB Combined 10-fold 5000
images

A: 94%, R: 97%,
S: 92%

2014 [56] Image C ML KNN RGB Local 1-fold 200 images A: 98.5%, R:
98.0%, S: 99.0%

2014 [73] Image C ML SVM HSV Global 5-fold 1413
images

A: 95.33%,
R: 96.88%,
S: 89.35%

2014 [71] Image C ML KNN HSV Global 1-fold 200 images
A: 99.0%,
R: 100.0%,
S: 98.0%
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Table A1. Cont.

Refs. Domain

Methodology/Technique Feature Extraction

CS DS Results
Task ML/DL Algorithm Color

Space
Extraction
Domain

2014 [101] Image C ML SVM Combined Local 1-fold 1000
images

A: 93.40%,
R: 95.50%,
S: 92.87%

2014 [32] Video C + S ML MLP RGB Global - 428 images A: 93.7%, R:
94.5%, S: 80.0%

2015 [78] Image C ML Random
Tree HSV Global 10-fold 200 images A: 99%, R: 98%,

S: 99%

2015 [118] Image C ML SVM RGB Combined - 1200
images

A: 99.19%,
R: 99.41%,
S: 98.95%

2015 [63] Image C ML SVM RGB Local - 800 images
A: 95.89%,
R: 98.77%,
S: 93.45%

2015 [61] Image S ML Threshold RGB Global - 690 images A: 89.56%

2015 [57] Image C ML KNN RGB Combined 1-fold 1000
images

A: 96.10%,
R: 96.48%,
S: 96.01%

2015 [89] Image C ML SVM Other Local 1-fold 15 videos A: 93.90%,
R: 93.50%, S: 94%

2015 [90] Image C ML KNN Other Local 10-fold 2300
images

A: 97.50%,
R: 94.33%,
S: 98.21%

2015 [97] Image C ML KNN Other Local 10-fold 332 images
A: 96.38%,
R: 95.17%,
S: 97.32%

2015 [92] Image C ML SVM Other Local 10-fold 2400
images

A: 95.75%,
AUC: 0.9771

2015 [109] Image C ML SVM Combined Global 10-fold 252 images AUC: 94%, R:
96%, S: 91%

2015 [26] Image S ML SVM Combined Local - 3596
images

A: 94.10%,
R: 91.69%,
S: 94.59%

2016 [91] Image S ML PCA Other Local 10-fold 1330
images

A: 94.34% ±
0.0235, AUC:

0.9532 ± 0.0172

2016 [31] Video S ML Threshold RGB Local - 15 videos -

2016 [62] Video C + S ML KNN RGB Local 10-fold 2300
images

A: 98.12%,
R: 94.98%,
S: 98.55%

2016 [64] Image C + S ML SVM RGB Local - 10,000
images

R: 96.88%,
P: 99.23%,
F1: 98.04%

2016 [40] Video S ML SVM RGB Local 8-fold 8 videos A: 97%, R:
95.83%, S: 98.08%

2016 [87] Image C ML SVM HSV Local 5-fold 1650
images A: 88.61%

2016 [79] Image C ML

Random
Tree,

Random
Forest

HSV Global 10-fold 200 images A: 99.5%, R: 99%,
S: 100%
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Table A1. Cont.

Refs. Domain

Methodology/Technique Feature Extraction

CS DS Results
Task ML/DL Algorithm Color

Space
Extraction
Domain

2016 [108] Image C ML SVM Combined Local 10-fold 400 images A: 89.2%, R:
93.5%, S: 80%

2016 [102] Image C + S ML SVM Combined Local 5-fold 300 images
A: 98.82%,
R: 99.66%,
S: 98.01%

2016 [157] Image C DL+ ML (CNN);
SVM - - - 10,000

images

R: 99.20%,
P: 99.90%,
F1: 99.55%

2016 [125] Image C ML SVM - Global 4-fold 912 images A: 95.06%

2017 [80] Image C + S ML MLP HSV Local - 223 images A: 97.47%

2017 [29] Video C ML SVC HSV Local 10-fold 30 videos A: 92%, R: 94%,
S: 91%

2017 [47] Image C ML SVM RGB Local - 1200
images

A: 97.67%,
R: 97.57%,
S: 95.46%

2017 [36] Video C + S ML SVM RGB Local 10-fold 400 images

A: 97.96%,
R: 97.75%,
S: 97.99%,

T: 0.280 sec

2017 [21] Image C ML SVM RGB Local - 400 images A: 98%, R: 97%,
S: 98%

2017 [88] Image C + S ML SVM HSV Local 3-fold 970 images A: 94.4%

2017 [43] Image S ML SVM HSV Local - 50 BL
images -

2017 [68] Image S ML Threshold HSV Local - 401 images R: 88.3%,

2017 [33] Video C ML SVM Combined Local 5-fold 8872
images

A: 95%, R: 94%
S: 95.3%

2017 [127] Image C DL

LeNet,
AlexNet,

VGG-Net,
GoogLeNet

Other - - 12,090
images F1: 98.87%

2017 [27] Image C + S DL FCN - - 300 images IoU: 0.7750

2017 [164] Image C DL CNN RGB - - 1500
images

R: 91%, P: 94.79%,
F1: 92.85%

2018 [128] Image C DL FCN RGB - 10-fold 10,000
images

A: 97.84%,
AUC: 99.72%

2018 [85] Image S DL SegNet HSV - - 335 images A: 94.42%,
IoU: 90.69%

2018 [165] Image C DL CNN Other - - - AUC: 0.90

2018 [41] Video S DL CNN - - - 6360
images R: 100%, S: 96%

2018 [28] Video S DL U-Net - - - 3295
images

ACC: 95.88%,
R: 99.56%,
S: 93.93%

2018 [116] Image S ML SVM Combined Global - 50 BL
images

Dice: 0.81,
ME: 0.092

2018 [9] Image C + S ML SVM HSV Global 10-fold 412 images A: 98.49%,
T: 17.393 sec

2018 [37] Video C ML KNN RGB Combined 10-fold 32 videos

A: 97.85%,
R: 99.47%,
S: 99.15%,
P: 95.75%
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Table A1. Cont.

Refs. Domain

Methodology/Technique Feature Extraction

CS DS Results
Task ML/DL Algorithm Color

Space
Extraction
Domain

2018 [39] Video C ML SVM RGB Combined 10-fold 32 videos
P: 97.05%,
FPR: 1.1%,
FNR: 22.38

2018 [54] Image C + S ML Naive
Baïes RGB Local - -

M:0.3478,
SD:0.3306 for R

channel.

2018 [67] Image C ML Fuzzy
C-Means HSV Local 10-fold 1275

images A: 90.92%

2018 [103] Image C + S ML KNN Combined Global - 1000
images

A: 99.22%,
R: 98.51%,
S: 99.53%

2019 [117] Image C ML SVM RGB Local 5-fold 3500
images

A: 92.45%,
R: 90.76%,
S: 94.65%

2019 [4] Image C ML SVM RGB Combined 10-fold 1200
images

A: 97.7%, R:
97.6%, S: 95.5%,
F1: 97.8%, MCC:

89.8%

2019 [60] Image C + S ML SVM RGB Local 5-fold 240 images A: 95.8%, R:
87.5%, S: 98.1%

2019 [77] Image C ML Random
Forest HSV Local 5-fold 75 images R: 95.68%,

S: 92.33%

2019 [11] Image C ML KNN HSV Local 10-fold 2393
images

A: 98.8%, R: 99%,
S: 99%, P: 95%,

F1: 97%

2019 [113] Image C + S ML SVM Combined Local 10-fold 3895
images

A: 98.2%, FPR:
02.5%, P: 97.5%,

R: 98.8%, F:
98.2%, MCC:

96.3%,
F1: 98.2%

2019 [110] Image C + S ML SVM Combined Local 10-fold 90 images A: 95%, R: 85%,
S: 97%

2019 [112] Image C ML SVM Combined Local 10-fold 30 videos
A: 96.77%,
R: 97.55%,
S: 96.59%

2019 [154] Image C DL CNN - - - 2237
images

AUC: 99.8%,
R: 98.8%, S:
98.4%, PPV:

75.4%,
NPV: 99.9%

2019 [22] Image C ML MLP Combined Local - 3895
images

A: 97.58%,
R: 96.76%,
P: 98.29%

2019 [24] Image C DL DenseNet - Local - 1200
images

R: 97.3%, P:
94.7%, F1: 95.9%

2019 [130] Image C DL ResNet50 - - - 27,847
images

AUC: 0.9998,
A: 99.89%,
R: 96.63%,
S: 99.96%,

2019 [155] Image C + S DL +
ML

(DenseNet);
MLP Combined - 10-fold 12,000

images

A: 99.5%,
R: 99.40%,
S: 99.20%,
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Table A1. Cont.

Refs. Domain

Methodology/Technique Feature Extraction

CS DS Results
Task ML/DL Algorithm Color

Space
Extraction
Domain

2019 [44] Image S DL U-Net - - - 335 images A: 98.5%,
IoU: 86.3%

2019 [84] Image S DL CNN HSV - 5-fold 778 images
A: 98.9%, R:

94.8%, S: 99.1%,
AUC: 99.7%

2019 [86] Image C + S DL +
ML

(CNN);
KNN HSV Global 10-fold 4500

images

A: 99.42%,
P: 99.51%, S:

100%

2019 [156] Image C + S DL +
ML

(CNN);
MLP Combined Global - 778 images AUC-ROC: >0.97

2020 [129] Image C DL VGGNet - - 10-fold 7556
images

A: 96.83%,
R: 97.61%,
S: 96.04%

2020 [166] Image C + S DL CNN Combined - - 94 images A: 97.8%, R:
98.6%, S: 86.3%

2020 [167] Image S DL CNN Other - - 3895
images A: 95%

2020 [115] Image C ML SVM Combined Global 10-fold 2588
images

A: 92.23%,
R: 86.15%, P:

89.11, F1: 97.60

2020 [100] Image C + S ML Naive
Baïes Other Local - 55,000

images -

2020 [124] Image C ML SVM - Local 5-fold 912 images
A: 98.18%, R:

98%, P: 98%, F1:
98%

2021 [46] Image C + S DL SegNet HSV - - 2350
images

A: 94.42%,
IoU: 90.69%

2021 [30] Video C ML SVM Combined Global - 2 videos -

2021 [23] Image C DL +
ML

(VGG19, In-
ceptionV3,
ResNet50);

SVM

RGB Global 10-fold 56,448
images A: 97.71%

2021 [1] Image C ML SVM HSV Global 10-fold 2393
images

A: 98.2%, R: 98%,
S: 98%, P: 93%,

F1: 95.4%

2021 [45] Image C + S ML SVM Combined Local 10-fold 3294
images

A: 99.88%,
R: 99.83%, S:

100%

2021 [42] Image C DL MobileNet - - 10-fold 1650
images

A: 99.3%, P: 100%,
R: 99.4%, F1:

99.7%

2021 [138] Image S DL U-Net RGB - - 3295
images

A: 95.90%,
Dice: 91%

2021 [140] Image C DL CNN RGB - - 23,720
images R: 86.6%, S: 95.9%

2021 [141] Image C + S DL CNN RGB - - 20,000
images

A: 98.9%, F1:
93.5%

2021 [137] Image C + S DL RCNN RGB - - 1302
images

R: 66.67%,
P: 85.71%,
F1: 75.00%
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Table A1. Cont.

Refs. Domain

Methodology/Technique Feature Extraction

CS DS Results
Task ML/DL Algorithm Color

Space
Extraction
Domain

2021 [135] Image C DL Inception-
Resnet-V2 RGB - - 400,000

images
A: 98.07%,

AUC: 92.2%,

2021 [142] Image C DL CNN RGB - - 11,588
images R: 91.8%, S: 95.9%

2021 [95] Image C DL AlexNet Other - - 420 images
A: 94.5%,
R: 95.24%,
S: 96.72%

2021 [143] Image C DL CNN RGB - - 5825
images R: 99.8%, S: 93.2%

2021 [126] Image C DL +
ML

(AlexNet);
SVM RGB Global - 24,000

images A: 99.8%

2021 [144] Image C + S DL CNN RGB - 5-fold 77 images A: 98%, IoU: 81%,
Dice: 56%

2021 [119] Image C ML SVM Combined Local 10-fold 3895
images

A: 95.4%, P:
95.6%, R: 95.2%

2021 [145] Image C DL CNN RGB - - 53,555
images

A: 99%, R: 88%,
S: 99%

2021 [123] Image S ML
Expectation
Maximiza-

tion
Combined Local 10-fold 3895

images
P: 96.5%, R:

95.9%, S: 93.2%

2022 [120] Image C ML SVM RGB Local - 3895
images

P: 98.11%,
R: 98.55%

2022 [146] Image C DL CNN RGB - - 6130
images

A:95.6%, R:90.8%,
S: 97.1%

2022 [96] Image C ML NN Other Global - 1,722,499
images

A: 97.69%,
P: 96.47%,
R: 96.13%

2022 [132] Image C + S DL ResNet-50 RGB - 4-fold 4900
images A: 95.1%

2022 [133] Image S DL Res2Net101 RGB Combined - 1136
images IoU: 86.86%

2022 [168] Image C DL +
ML

(CNN);
PCA, SVM RGB Global - 912 images

A: 95.62%,
P: 95.7%,

R: 95.62%,
F1: 95.62%

2022 [147] Image C DL CNN RGB - - 1200
images

A: 98.5%, R:
98.5%, F1: 98.5%,

AUC: 99.49%

2022 [148] Image C DL CNN RGB - - 49,180
images R: 93.4%, S: 97.8%

2022 [149] Image C DL CNN RGB - - 21,320
images

A: 97.1%, R:
95.9%, S: 97.1%

2022 [150] Image C DL CNN RGB - - 9005
images

R: 99.8%, S:
100.0%

2022 [151] Image C DL CNN - - - 5000
images

A: 99.3%, P: 100%,
S: 99.4%

2022 [152] Image S DL CNN RGB - - 48 images Dice: 69.91%

2022 [134] Image C DL Inception-
ResNet-V2 RGB - 9-fold 3895

images
A: 98.5%, R:

98.5%, S: 99.0%

2022 [153] Image C DL CNN RGB - - 22,095
images

A: 98.5%, R:
98.6%, S:98.9%

2022 [34] Video C DL CRNN RGB - - 240 videos A: 89%, R: 97%
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Table A1. Cont.

Refs. Domain

Methodology/Technique Feature Extraction

CS DS Results
Task ML/DL Algorithm Color

Space
Extraction
Domain

2023 [136] Image S DL AttResU-
Net RGB - - 3295

images

A: 99.16%,
Dice: 94.91%,
IoU: 90.32%

2023 [81] Image C DL +
ML

(ResNet18,
Xcep-

Net23);
Q_SVM

HSV Combined 5-fold 4000
images

A: 98.60%,
R: 98.60%,
S: 99.80%

2023 [131] Image S DL Resnet-50 RGB - - 12,403
images A: 99%, IoU: 69%

2023 [122] Image C + S ML SVM; KNN - Global - - A: 95.75%,
AUC: 97.71%

2023 [94] Image S ML K-Means
Clustering Other Global - 48 images

A: 84.26%,
R:69.84%,

Dice: 67.71%

2023 [139] Image C DL CNN RGB - - 18,625
images

A: 92.5%, R:
96.8%, S: 96.5%

2023 [121] Image C DL +
ML

(ResNet-
50);

SVM
Combined Local - 5689

images

A: 97.82%,
R: 97.8%, F1:

97.8%

DS = datasets, C = classification, S = segmentation, C + S = combined both classification and segmentation,
ML = machine learning, DL = deep learning, DL + ML = both deep learning and machine learning, BL = bleeding,
A = accuracy, R = recall = sensitivity, S = specificity, Dice = Dice score, F1 = F1 score, IoU = intersection over
union, AUC = area under the curve, ROC = receiver operator characteristic, PPV = positive predictive value,
NPV = negative predictive value, FPR = false positive rate, FNR = false negative rate, MCC = matthews correlation
coefficient, ME = misclassification error, and T = execution time.
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