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Abstract: The small-drone technology domain is the outcome of a breakthrough in technological
advancement for drones. The Internet of Things (IoT) is used by drones to provide inter-location
services for navigation. But, due to issues related to their architecture and design, drones are not
immune to threats related to security and privacy. Establishing a secure and reliable network is
essential to obtaining optimal performance from drones. While small drones offer promising avenues
for growth in civil and defense industries, they are prone to attacks on safety, security, and privacy.
The current architecture of small drones necessitates modifications to their data transformation and
privacy mechanisms to align with domain requirements. This research paper investigates the latest
trends in safety, security, and privacy related to drones, and the Internet of Drones (IoD), highlighting
the importance of secure drone networks that are impervious to interceptions and intrusions. To
mitigate cyber-security threats, the proposed framework incorporates intelligent machine learning
models into the design and structure of IoT-aided drones, rendering adaptable and secure technology.
Furthermore, in this work, a new dataset is constructed, a merged dataset comprising a drone
dataset and two benchmark datasets. The proposed strategy outperforms the previous algorithms
and achieves 99.89% accuracy on the drone dataset and 91.64% on the merged dataset. Overall,
this intelligent framework gives a potential approach to improving the security and resilience of
cyber–physical satellite systems, and IoT-aided aerial vehicle systems, addressing the rising security
challenges in an interconnected world.

Keywords: aerial vehicles; autonomous vehicles; cyber-security; Internet of Things; machine learning

1. Introduction

Over the past 20 years, pervasive environments have gained significant popularity,
primarily due to the significance of pervasiveness and the intelligence of objects found in
various environments, including buildings, towns, playgrounds, shopping malls, and more.
Pervasiveness in an environment enables improved task control, efficacy, and efficiency by
linking multiple devices and sensors. Additionally, pervasive environments allow for better
event response and facility provision. Drone technology has advanced in recent years,
resulting in the development of small-sized drones like quadcopters and mini drones [1–3].
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These drones offer several advantages, including their ability to enter and hover inside
buildings for monitoring and surveillance purposes. This feature is particularly useful for
various fields, such as industrial area surveillance, military operations [4], catastrophe man-
agement, rescue missions [5], shipping services [6], precision crop sciences [7,8], and other
miscellaneous applications. Commercial drones also have potential applications in areas
like weather forecasting, and aerial photo and video shooting.

UAVs (unmanned aerial vehicles), commonly known as drones, are airborne machines
that operate without human operators. These vehicles are frequently employed using
aerodynamic forces to remotely pilot a machine [9]. Additionally, drones have impacted
numerous industries and thus everyday life aided by their commercial usage. Drones
collect and transmit aerial views and related data to base stations for informed decision
making for monitoring and surveillance purposes [10]. However, the usage of drones on a
mass scale in routine life has impacted lives in a variety of ways. It has hampered the safety
and security of the masses and created a need for the regularization of policies regarding
liability and the privacy of individuals as well as the public [11]. Small-sized drones are
becoming increasingly prevalent in agriculture, shipping, and manufacturing due to their
many advantages. The privacy and security threats posed by the widespread use of drones
are major challenges and need to be addressed [12]. To make drones smarter, researchers
have been exploring the addition of sensors that are small enough to be carried by these
devices. Incorporating transmitters, sensors, and cameras can enhance the capabilities of
drones, making them more useful and effective in a wide range of complex applications.

The defense and civil industries are the most benefited horizons of drone application.
Inappropriate design and architecture make it vulnerable to security and privacy threats.
New possibilities are created by the Internet of Things (IoT) and IoD despite posing
security- and privacy-related challenges. Basic architecture and design changes are needed
to address the privacy and security concerns posed by drone gadgets. Previously [1],
layered architecture has been used to produce drones comprising a drone layer, an edge
processing layer, a device connection layer, a data processing layer, a data storage layer,
and a data visualization layer.

In an industrial drone design with multiple layers [1], the drone layer (DL) is the very
first layer, via which a mini camera-equipped drone is connected to an IoT hub via an IoT
gateway. This gateway plays a vital role in facilitating communication with base stations
aided by a cloud-based IoT hub. The footage obtained from the drone is then transmitted
to the data processing layer for analysis. The data storage layer is used to store the data
analysis outcomes in the data centers for future reference and can be visualized by the
data visualization layer. This architecture can be implemented using hub services and
Microsoft’s Azure cloud storage. Data privacy and lack of support are the major drawbacks
of this system in cyber-security. The IoDT (Internet of Drone Things) is a modern concept to
integrate drones and IoT networks to enable connectivity between drones and IoT devices.
This research introduces the concept of the IoDT [13] and highlights the connected security
and privacy concerns.

Drones, like other IoT devices, are prone to security lapses and unauthorized access.
Malicious actors may take advantage of a drone system’s weaknesses to compromise
data security and privacy. In addition, concerns regarding data security and possible
misuse are raised due to the transmission and gathering of enormous volumes of data
by drones. A robust security system is required to unlock the full potential of the IoDT.
The proposed research is largely concerned with increasing the cyber-security of drones and
IoT devices. To ensure the security and privacy of this smart drone gadget, this research
proposes the implementation of blockchain technology. This framework is based on seven
layers, including an edge processing (EP) layer, a drone layer (DL), a data storage layer,
a data connection layer, a security and privacy layer, a data processing layer, and a data
visualization layer. In addition to standard drone operations, this layered approach includes
data security and analytic techniques. Machine learning (ML) models are employed to
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improve the security of drones. The primary objectives of the proposed architecture in the
current study are as follows:

• The study discusses the most recent developments in drone safety, security, and pri-
vacy, as well as the Internet of Drones (IoD), highlighting the need for secure drone
networks that are resistant against hacking and other intrusions.

• The proposed framework incorporates advanced machine learning models into the
design and structure of IoT-aided drones to prevent cyber-security vulnerabilities.
This integration improves the flexibility and security of the technology.

• This research work involves the construction of a new dataset performed by merging
a drone dataset and two benchmark datasets (KDD CUP 99 and NSL-KDD). This new
dataset serves as a valuable resource for further analysis and evaluation of drone-
related algorithms and techniques.

• The proposed strategy surpasses previous algorithms by achieving 99.89% accuracy
on the drone dataset and 91.64% on the merged dataset. This demonstrates the
effectiveness of the intelligent framework in enhancing security and resilience in
cyber–physical satellite systems and IoT-aided aerial vehicle systems.

• The intelligent framework presented in this research article offers a means to improve
the security and resilience of various systems, including cyber–physical systems,
satellite systems, and IoT-aided aerial vehicle systems.

Section 2 of this research paper discusses the existing studies related to identifying
vulnerabilities and loopholes in targeting IoT systems and drones. A limited number of
studies found that the incorporation of authentication methods can enhance the security of
these drones. In Section 3, the drone architecture and the layered framework for foolproof
drone systems are described. Section 4 covers the topics of authentication and access control
related to drones. The trials and their upshots are presented in Section 5, while Section 6
presents the conclusions and recommendations for future endeavors.

2. Related Work

Drones are commonly utilized for military and defense applications. They come in
a range of sizes, from large, 200-foot war machines to small, inch-wide micro drones that
fly through the air. Size is a critical factor in determining the appropriate use of a drone.
Additionally, the flying range of a drone can vary significantly depending on the type,
with some advanced military drones being capable of flying up to 17,000 miles without the
need for ground control. Maximum flight time also varies based on factors such as altitude,
surface area, and terrain. Drones can fly at varying heights, from just a few meters off the
ground to as high as 65,000 feet [1].

2.1. Threats to Drone Security

Drone security measures comprise multiple layers and types, which are dependent on
their usage, size, and control techniques. Typically, drones utilize an IEEE 802.11-based [13]
Wi-Fi communication protocol [14] and include both ground stations and a Wi-Fi network.
Due to the absence of encryption technologies in the drone, these gadgets are vulnerable
to cyber-attacks and hijack [4]. Man-in-the-middle attacks, which can occur within a
range of 2 km, are also a common method used to hijack drones [15]. In the military
industry, the IoD has become increasingly popular, posing a challenge to privacy and
security concerns during design [16]. To ensure data protection, privacy issues such as
data accessibility, information leakage, encryption, and decryption techniques need to
be addressed [17]. In recent years, researchers have identified four categories of security
threats related to sensor- and protocol-based threats, jammers, and conceded components.
Table 1 presents a literature review of these categories.
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Table 1. Frequently occurring data privacy and cyber-security threats to smart drones.

Attack Cyber-Security Threats Threats Found in Countermeasures Introduced in

Protocol-based attacks

Security of communication link [13,17–19] [17]
Data confidentiality protection [9]

Replay attack [20,21] [22]
Privacy leakage [9,19]

De-authentication attack [4,13]

Sensor-based attacks
GPS-spoofing/-jamming attack [12] [23]

Motion sensor spoofing [24] [25]
UAV-spoofing/-jamming attack [12]

Compromised component IoT security threats [12]
Control/data interception [12,18]

Jammers Denial of service [4,12,13]
Stop packet delivery [16] [16]

Table 1 demonstrates the review of the literature that primarily focused on identifying
cyber-security loopholes in drones, with limited discussions on potential solutions. One
potential research avenue has been to utilize encryption algorithms to ensure safe and
secure data transmission between the drone and its base station [16]. Small drones have
obtained popularity due to their size and likely peril to the government and general public’s
data privacy [26]. Researchers also established a risk challenge for drones [14,27–30].
For instance, Tian proposed an operative and smart validation model for the IoD assisted
by edge, ensuring the drone networks’ data-related security [31]. Similarly, a system was
presented by Hell to ensure the safety of drone data in a commercial industrial/factory
area [2]. In 2019, a gas leakage-sensing drone idea was projected by the authors to ensure
timely action to curb the fatal scenario [3]. Drones are mainly used for monitoring in the
agriculture and security fields.

Over the last decade, drone-related security threats are the talk of the town in the
research arena. The privacy issues associated with smart-city drone applications are
discussed in [19], and Table 1 highlights other important issues. Drone network attacks,
prospects, and limitations are also the interest areas of researchers in the cyber-security
domain [32]. The business sector has similar challenges and applications, as presented
by similar studies [5,33,34] using blockchain/crypto technology using 5G and drones
based on the IoT for the safe transmission of data [34]. This system has limitations in
manually identifying the intensity and nature of the threats. A secure and smartly effective
drone system with the ability to investigate attacks and implement security measures
for drone data integrity is the need of the hour. Some studies have attempted to solve
device authentication problems by using key agreement [35] and key-enabling data [6]
for secure drone data delivery. Commercial drones [6,35–37] are facing the general issue
of the hijacking of drones, UAVs, and drones in the agricultural sector [22,38] aided by
the IoT. Solutions to these general issues are proposed in [7,8]. Another concern relating
drones and UAVs is GPS (global positioning system) tracking [39], which requires robust,
authentic, and foolproof resolution. Drone interception and hijacking are also part of the
studies carried out in this domain [23–25,40].

2.2. Implementation of Drone Security with Machine Learning

ML techniques are classified into semi-supervised, supervised, and unsupervised cate-
gories. Cloud computing [41], mobile networks [42], IoT systems [43], and sensor-based
wireless networks [44] are the areas where ML models have been widely used by researchers
to handle cyber-attacks. For example, self-learning models were combined with supervised
learning models by Vedula et al. [45] to use two features to detect DDoS attacks. They com-
bined LSTM Autoencoder and RF classifier. For the scenarios of all and sparse traffic, their
window identification approach achieved accuracy rates of 94% and 93.5%, respectively.
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ML techniques are classified into semi-supervised, supervised, and unsupervised
categories. Cloud computing [41], mobile networks [42], IoT systems [43], and sensor-
based wireless networks [44] are the areas where ML models have been widely used by
researchers to handle cyber-attacks. For example, self-learning models were combined
with supervised learning models by Vedula et al. [45] to use two features to detect DDoS
attacks. They combined LSTM Autoencoder and RF classifier. For the scenarios of all and
sparse traffic, their window identification approach achieved accuracy rates of 94% and
93.5%, respectively. Their proposed hybrid LSTM-RF model showed the best results, with
a window size of 100.

No research on ML model usage in drone networks for cyber-attack recognition was
found. However, another study suggested a probabilistic approach in a constrained cyber–
physical system to control and detect actuation attacks [46]. Their research was primarily
concerned with the PA2 attack, in which the attacker blocks communication between the
actuators and the controller. Based on a hypothesis-testing methodology, a group of parallel
detectors was suggested. The detection and control goals were written as two distinct
stochastic objective functions using a probabilistic technique to cope with uncertainty.
The authors also proposed a drone security access control system and have previously used
ML for wireless networks (wi-net) security systems, as shown in Table 2.

Table 2. Machine learning for frequently occurring data privacy and cyber-security threats to
smart drones.

Attack Security Technique Machine Learning Solution

Jamming Secure offloading Q-learning [42,44], DQN [47]
Denial of service Secure offloading Neural networks [41], Multivariate correlation analysis [48], Q-learning [49]

Malware Access control Q/Dyna-Q/PDS [50], K-nearest neighbors [51], Random Forest [51]
Intrusion Access control Naive Bayes [43], Support vector machine [43], neural network [52], K-NN [53]
Spoofing Authentication SVM [54], DNN [55], Dyna-Q [56], Q-learning [56]

Traffic blockage Authentication Q-learning [57]

The literature review suggests that there is a need for a comprehensive solution to
address cyber-security threats and ensure the safety of drone data. While many studies
have identified the challenges and issues related to drone security, few have proposed
effective solutions to mitigate these risks [34]. The use of machine learning models has
shown promise in dealing with cyber-attacks in various networks, but there is a lack of
research on their application in drone networks. Additionally, the authentication system
proposed in some studies may not be suitable for IoT-based drone networks. Therefore,
this research gap needs to be addressed to make drones compliant for the industry and for
commercial use while ensuring their security and privacy.

Existing studies related to drone security have certain limitations that need to be
addressed. First, the architecture and design of small drones have not received sufficient
attention, resulting in vulnerabilities that can be exploited by potential attackers. Addi-
tionally, the current data transformation and privacy mechanisms of small drones may not
align with the specific requirements of the domain, leaving them susceptible to security
breaches. Furthermore, while the Internet of Things (IoT) is utilized for inter-location
services in drones, there is a lack of comprehensive research on establishing secure and
reliable networks for optimal drone performance. Moreover, previous studies have not
fully explored the integration of intelligent machine learning models into the design and
structure of IoT-aided drones, which could enhance their adaptability and security. Overall,
these limitations highlight the need for further research and development to overcome
security challenges and ensure the resilience of drone systems in an interconnected world.

To ensure drone security, a smart vigilant system is a prerequisite to investigate the
attacked data automatically and take corrective measures according to the scenario and
the situation at hand without in-person interference. ML models have previously been
deployed for mobile-based and wireless sensor-based networks for cyber-security, but they
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are yet to be applied to the security of drone-based vehicles. This study addresses the issue
of access control authentication methods for drones with an ML-based solution.

3. Drone Architecture

The main focus of this research is to enhance the cyber-security of IoT drone devices,
particularly small drones, by improving their basic framework. Privacy threats, cyber-
security concerns and interception chaos prevention, and reliable security are the aims
of this study. A layered approach is a framework that addresses analysis methods and
security issues in each layer, ensuring added data security in conventional drone operations.
This layered architecture enables the easy upgradation of the anticipated method. Machine
intelligence through ML models is incorporated to enhance drone data security. Figure 1
illustrates the proposed framework.

Figure 1. Smart security drone-layer-wise architecture.

The emergence of tiny drones has initiated the latest promises in civil and defense
activities. The lack of advanced architecture and design has made these modern gadgets
susceptible to security and privacy threats. Advancements in the IoD and IoT have pre-
sented innovative prospects but with additional security and privacy challenges. The cur-
rent context is inadequate in terms of ensuring data privacy and security, thus making
it unreliable.

3.1. Layered Architecture for Secure Smart Drones

The architecture commonly used for smart drones [1], illustrated in Figure 1, is a
layered design. To enhance its security and privacy features, a new layer is added, while
the layer processing data is updated with components related to machine intelligence.

The drone data layer is the first layer in an industrial drone’s architecture having a
camera-equipped mini drone or quadcopter. IoT sensor data update this layer. Sensors like
cameras, GPS, and radar types of advanced sensors are employed. It enables a drone to
sense and capture data and communicate them to the subsequent layer.

The next layer comprises a UAS (unmanned aircraft system) drone responsible for
data capturing and flight operations of drones. A UAS drone includes a communication
connection and a ground controller. Phantom 3 drones by DJI Company (Shenzhen, China)
are based on these suggested design and architecture with a communication link and a
customized remote controller to control the flight, and auxiliary sensors can also be attached
as needed in this architecture.

In the edge processing drone layer (EPL), IoT-based unprocessed raw data and drones
are sent to the PL (privacy layer). Here, data authentication is ensured. The layer manages
data transmission and communication with the subsequent layer, which is the cloud layer.
Various gateway devices that facilitate wireless communication exist, with Wi-Fi being a
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fast transmission option. This layer efficiently handles device-to-cloud communication and
flooding, data protection, and cashing. Cloud communication is performed through the
Azure IoT gateway as recommended by research, with the IoT gateway’s design.

The privacy and security drone layer ensures the authentication of the device and
secures access using ML prototypes. It implements data safety and security, which are
crucial elements of the IoT framework. At this level, privacy threats are identified and
addressed, as they pose a significant risk to the system. The following are privacy threats
that can occur in this stage:

i. Physical privacy threat, which refers to the unauthorized access or tampering of
physical devices, sensors, or drones.

ii. Behavioral privacy threat, which pertains to the collection of personal data through
user behavior tracking or monitoring.

iii. Location privacy threat, which concerns the tracking or disclosure of an individual’s
location without consent.

To address these security risks, various authentication schemes and protocols must
be implemented. Unauthorized individuals may use several security breaches to cause
such threats, including intrusion, spoofing, jamming, and DoS attacks. In the proposed
architecture, a machine learning algorithm is utilized to maintain device authentication and
detect potential security attacks. This allows users to be alerted and take action to prevent
such threats from occurring.

In the drone device connection layer, IoT gateways are the backbone of such systems in
linking base stations to a cloud-based hub in the IoT domain. Added security orchestration
and automation are ensured for connectivity to the authenticated devices only by using
an additional module. This hub ensures the inter-communication between IoT devices
and applications as a message medium enabling bidirectional communication between
cloud systems and IoT network-based IoT devices. In this layer, security arrangements are
made to allow only authenticated devices to access the network. Sensor data from tagged
networks and drones are sent to the crypto/blockchain technology client, which ensures
data reliability and storage in a cloud server database. A simple blockchain procedure is
used to ensure real-time security for devices and IoT networks.

Once acknowledged at the IoT hub, data are transmitted to the drone data processing
layer for analysis. A machine intelligence module and a data hub service are the two new
modules implemented in this layer. There are several available ML algorithms that can
be selected based on the situation and data requirements. The intelligent ML approach to
device authentication is the focus of this research. In this layer, the Naive Bayes model,
which is an intelligent ML algorithm, is used as an authentication method. The IoT hub
layer, in this stage, authenticates devices by timestamping drones’ data at stipulated
intervals of time. These data from drone flights are used for testing and training the model.
The model undergoes training before undergoing testing to determine its capability to
detect malicious drone activities. In the case of mixed drone data, the system receives an
alert and inhibits communication with the cloud server. Inappropriate drone behavior
triggers the machine intelligence module to detect it and disallow unauthorized access.
Numerous security risks are linked to flight operations, with interception attack, where
an outsider takes control of the drone, being the most prevalent. Another risk is wrong
information from unauthorized access to drones being spread by unauthorized individuals.

This architecture employs the Naive Bayes classifier to train a model, which is then
utilized to validate newly generated aircraft trajectories. To assess accuracy, precision,
and recall, the dataset named KDD’99 and an instantaneous dataset were utilized. Precision
refers to the percentage of genuinely correct and accurate predictions, while recall refers to
the percentage of incorrect and accurate predictions.

The data analysis results obtained by the drone data storage layer are archived and
stored in data centers in the DSL. NoSQL, a cloud database, is used to store drone-generated
results in the DL (drone layer). The data include drone information, data from drone
sensors, and networks. NoSQL databases provide schema-less data storage, enabling quick
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access and retrieval of information. This technique can handle storing a large number of
data. NoSQL databases are self-indexing, making them more practical and preferred over
SQL databases. Widely used database storage structures are graph, key-value, document,
and column structures.

The drone data analysis layer provides numerous tools and services for data monitor-
ing. The platform utilizes Azure services by Microsoft. DVL results are viewed on a mobile
app presenting the intelligent model’s predictions about the security level (SL) of a drone.
The Naive Bayes model intelligently identifies drone attacks. The BI architecture, in which
stream analytics outcomes are used by the MS Power BI app, is stored in a data center for
real-time modeling and data visualization employing business intelligence upshots.

3.2. Physical Components

Readily available and inexpensive peripherals were utilized in the trials. A Mega
2560 microcontroller by Arduino (Somerville, NJ, USA) with an integrated Wi-Fi module,
ESP8266, was used as the processing device to sense data.

Numerous size and shape options are available when it comes to drones, and these
options are deployed on a use case basis. Phantom 3 Standard, a robust vehicle manufac-
tured and marketed by DJI, was used in this experiment. A wirelessly connected custom
controller is used to operate it in remote locations. Tracking, locating, and identifying
objects are performed by using radar sensors in remote locations. Electromagnetic energy
transmission is used by sensors to operate toward target areas and objects. The detection
accuracy of radar sensors is superior to that of optical sensors. Alternatively, radar sen-
sors can also be replaced with accelerometers. In our recommended system, we used an
ultrasound-based proximity sensor, HC-SR04, for this purpose. Patterns for objects are
calculated by this sensor.

GY-GPS6MV2 (UBLOX, Zurcherstrasse, Switzerland) is a device for receiving GPS
signals with a NEO-6M chip embedded onboard. A battery-connected LED light turns on
while transmitting or receiving GPS data. This module is sensitive up to −161 dBm.

The BMP180 sensor is a low-battery-consuming module providing pressure and altitude
measurements for a particular location. It has high accuracy in a very compact size. This is an
OEM module, more precise than other altitude and pressure measurement sensors.

The widespread use of ZigBee wireless transmission technology is due to its unique
features, including its ability to transmit both analog and digital data. In this context,
the XBee Pro S1 module was utilized for its long-distance data transmission capabilities.

4. Drone Security

To ensure the security of drones, an efficient system is needed to analyze attack data
and take proactive measures to maintain the security of drones. For the development of a
reliable and trustworthy system, security, reliability, and consistency are critical factors in
the Internet of Drones (IoD). Although ML models have previously been used for cyber-
security in sensor-based wireless networks and mobile-based networks, they have yet to be
thoroughly applied in drone-based security. Therefore, this study suggests an ML-based
solution for authentication and control access methods for drone security.

Cyber-security systems can be evaluated using various metrics that are effective in
handling diverse performance indices. In this study, we suggest utilizing the following
performance evaluation parameters for the projected system [58]:

• Threat exposure for cyber-security.
• DDos (denial of service) attacks.
• Malicious attacks.
• Jamming.
• Spoofing.

These cyber-security metrics are utilized to enhance the evaluation process of the
system’s effectiveness. This study contributes significantly to access control and foolproof
authentication for IoT devices and drones by introducing an ML-based research solution.
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This research primarily addresses the research gap and enhances the safety and reliability
of drones against significant cyber-security issues, converting them into commercial and
industrial monitoring tools. As described in Section 3, this is a seven-layered drone security
system. Data collected from the DL and EPL undergo protocols related to security and
privacy in the SPL (security and privacy layer) before transferring to the device connection
(DC) layer. The use of machine learning models in the security and privacy layer ensures
data protection from potential identity and privacy threats. In the event of an attack being
detected, a mobile alert is sent.

4.1. Communication Security Threats

Unmanned aerial vehicles (UAVs) offer numerous advantages as technology pro-
gresses, but they are also subject to limitations and concerns regarding privacy, security,
and safety [59,60]. Implementing regulations and licensing measures for drone usage is
crucial to restricting unnecessary aerial photography. Authorities worldwide enforce strict
policies to combat uninformed aerial photography. In terms of network security and risk
analysis, the coverage of UAVs differs significantly from wireless sensor networks (WSNs)
or mobile ad hoc networks (MANETs) due to resource constraints and wider coverage [61].

The framework governing drone operations in a given vicinity is referred to as au-
thentication, authorization, and accounting (AAA). It grants certain privileges to drone
controllers based on administrative rights and imposes stringent authentication procedures
to prevent diversion to unknown entities. It also facilitates tracking down drone operators
in case of uncertainty or illegal activity, thereby limiting illegal surveillance, cyber-attacks,
and privacy threats. Various mechatronic engineering solutions have been proposed to
address these malicious activities [62].

The availability of low-cost drones in the market raises concerns about their potential
misuse for criminal activities. Their capacity to carry external payloads increases their
danger, as they can transport hazardous chemicals or explosives unnoticed [63]. Further-
more, their ability to access hard-to-reach areas poses a significant risk. Safety concerns
arise when drones fly over populated areas due to the potential for accidents or crashes
leading to tragic incidents [64]. Notable incidents, such as the collision between a UAV and
a passenger aircraft (British Airways BA727) in April 2016, highlight these risks. In light of
these incidents and issues, several public safety measures are recommended:

• Incorporating a reset option to allow drones to hover in case of hacking or deviation
from their designated path due to strong winds, enabling regaining control.

• Developing drone filters capable of detecting signal jammers that could potentially
control the drones for cyber-attacks.

• Addressing privacy concerns associated with high-definition cameras on UAVs, ensur-
ing that the recording of private property without permission is prohibited. Canadian
Public Safety (CPS) has explicitly stated the need for mutually agreed-upon permission
before drones can fly over private properties [65].

4.2. Proposed Approach

This section presents a comprehensive approach to augmenting the security system
of drones, encompassing both hardware and software components. The design of the
proposed framework integrates cutting-edge technologies to address security and privacy
concerns in drone operations. Additionally, the datasets utilized in the experiments and
the machine learning models employed in this research are thoroughly described to ensure
transparency and reproducibility.

The drone security system’s architecture comprises seven layers. Information flows
from the drone layer and edge processing layer to the security and privacy layer, which
safeguards the data against security threats using machine learning models. Internal authen-
tication is provided using the edge processing layer; afterwards, the data are transferred to
cloud storage, where access control is provided using the Microsoft Azure authentication
protocol. In the Microsoft Azure cloud storage, a trained model is already placed using the
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drone data integrated with NSL-KDD, STIN, and KDD CUP data. This model makes pre-
dictions about attacks, and when an attack is detected, a mobile alert is triggered. Figure 2
illustrates an example of a mobile alert indicating the identification of an attack within
the system.

Figure 2. Mobile identification of an attack.

4.2.1. Smart Drone Components

The smart secure drone is built using the following components: Mega 2560 microcontroller,
HC-SR04 ultrasonic sensor, GY-GPS6MV2 GPS module, BMP180 barometric pressure sensor,
and XBee Pro S1 wireless communication module. The components are sourced from (Amazon,
410 Terry Ave N, Seattle, WA, USA). Initially, the Mega 2560 microcontroller serves as the
brain of the drone, providing the necessary processing power and control capabilities. It
communicates with other components, collects sensor data, and executes flight control
algorithms. The Mega 2560 microcontroller’s current time is noted for collecting drone
runtime data, flight duration, and port attack URL_ID. The HC-SR04 ultrasonic sensor is
used for obstacle detection and avoidance. It emits ultrasonic waves and measures the time
it takes for the waves to bounce back, enabling the drone to detect nearby objects and adjust
its flight path accordingly. It takes decisions like relocation and positioning changing based
on that. The GY-GPS6MV2 GPS module provides accurate positioning and navigation data.
It receives signals from GPS satellites to determine the drone’s latitude, longitude, altitude,
position ID, and accurate x and y angle values. This information is vital in flight planning,
waypoint navigation, and tracking. The BMP180 barometric pressure sensor measures
atmospheric pressure, allowing the drone to estimate its altitude with high precision.
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These data are essential to maintaining stable flight and performing altitude-related tasks.
This sensor also determines the pressure exerted on the drone. The XBee Pro S1 wireless
communication module facilitates secure communication between the drone and a ground
station or other devices. It enables real-time data transmission, remote control, and the
monitoring of the drone’s status. By integrating these components, the smart secure drone
combines advanced sensing capabilities, reliable navigation, and secure communication to
ensure safe and efficient operation.

4.2.2. Dataset

Real-time data from drones that included GPS-based features such as longitude,
latitude, and altitude, along with drone OBD data and KDD intrusion detection features
(data are available at: https://github.com/MUmerSabir/MDPIElectronics accessed on 19
May 2023) were used in this experiment. This prototype was trained and tested to verify the
intended results using the drone dataset and a couple of related benchmarks for invasion
uncovering and cyber-security attack forecast. Table 3 displays the dataset classes.

Table 3. Details of classes in the dataset.

Class Description

DoS Attack Use of resources or services is denied to authorized users.
Normal Connections are generated by simulating user behavior.

User-to-remote attacks Access to account types of administrator is gained by unauthorized entities.
Prob attack Information about the system is exposed to unauthorized entities.

Remote-to-local attacks Access to hosts is gained by unauthorized entities.

4.2.3. Learning Models

ML plays a significant role in enhancing the accuracy of prediction rating based on
reviews. Various ML classifiers are available for ranking classification, and the Python
Scikit-learn library offers a plethora of rich variants. An open-source platform having a
great user support base is a characteristic of Python Scikit-learn. All the classifiers used in
this study were implemented using the Scikit-Learn library. The models used as baseline
are presented in Table 4.

Table 4. Description of machine learning models.

Model Description

RF RF is a classification algorithm employing Decision Trees or estimators in ensemble learning. It utilizes the bagging
technique and bootstrap samples to train the trees. The results of the individual trees are combined by voting
to improve the overall accuracy. All trees are constructed based on the same pattern to test the data to evaluate
the model’s performance. A Decision Tree with a lower error rate is assigned a higher weight, which reduces the
likelihood of a false prediction [66].

DT DT is an ML model that is widely used for the classification of text, and it relies on multiple variables to make
predictions about an independent capricious event. Data are fragmented into branches in it to construct a reversed
tree, which consists of internal nodes, root nodes, and leaf nodes. This algorithm can efficiently handle every type of
dataset without requiring a complex parametric structure [67].

NB The NB classifier is a Bayes theorem-based classifier that assumes objectivity between conjecturers. This theorem
serves as the foundation for the classifier and is easy to construct, requiring only simple iterative parameter estimation.
As a result, it is well suited to large datasets. Despite its simplicity, the Naive Bayes classifier produces excellent
results and outperforms other classifiers of sophisticated nature [68].

SVM SVM is a popular algorithm for text classification that draws hyperplanes by maximizing the marginal distance
to separate classes [69]. In binary classification, the text is divided into two non-overlapping classes by the SVM
hyperplane. Compared with deep learning methods, SVM is simpler and less complex, making it easy to interpret.
In addition to text classification, intrusion detection is also performed using SVM [70].

https://github.com/MUmerSabir/MDPIElectronics
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The hyperparameter values employed for all machine learning models used in this
study are presented in Table 5.

Table 5. Hyperparameter settings for ML models.

Classifier Parameter

ET Number of trees = 200, random state = 52, maximum depth = 15
DT Number of trees = 200, random state = 52, maximum depth = 15
RF Number of trees = 200, random state = 52, maximum depth = 15
LR Solver = ‘lbfgs’, penalty = ‘l2’
SVM C = 1.0, kernel = ‘rbf’, gamma = ‘auto’
NB Binarize = 0.0, alpha = 1.0
MLP Hidden layers = 3, neurons = 200, activation function = ‘reLU’, batch

size = 16, dropout rate = 0.5, optimizer = ‘adam’
VC (LR + MLP) Voting = ‘soft’

The proposed approach combines two models, an ML model and a simple neural
network model. The LR algorithm [71] is a statistical approach that examines the data and
variables used to predict results. It is an effective method for classification tasks with low
variance. This model can also extract features from the data. Updating the model with new
data is easy by employing Stochastic Gradient Descent.

A simple deep learning prototype, Multilayer Perceptron (MLP), demonstrates reason-
able classification performance. It consists of multiple layers, where features are indicated
by input layer neurons, while hidden layers process input data using weights to feed into
the output layer, where the output value is represented by the neurons. Optimal results
are obtained by selecting the neurons and hidden layers as per requirements. To develop
classification training efficiency, appropriate hyperparameters are used to train the model.
Gradient Descent-based backpropagation is generally used to manage MLP layer weights.
Rectified Linear Unit (ReLU) is commonly used as the activation function in the hidden
layers, while sigmoid is used as the activation function ( f (x)) in the final layer.

f (x) =
1

(1 + e(−x))
(1)

Voting classifiers combine the results of various classifiers to make a final decision
based on voting. There are two types of voting classifiers: soft- and hard-voting classifiers.
The weight percentage of each classifier is computed using soft voting, while classifiers’
result prediction is performed using hard voting. For every entry, class probability multi-
plied by classifier weight and then averaged to determine the final result is predicted by
this prototype. In our research, a voting classifier, Logistic Regression, and Multilayer Per-
ceptron (MLP) are used in combination, outperforming other tactics applied individually
for intrusion detection. Algorithm 1 illustrates the methodology of the projected voting
classifier, presented as follows:

p̂ = argmax{
n

∑
i

LRi,
n

∑
i

MLPi}. (2)

where
n

∑
i

LRi and
n

∑
i

MLPi predict the probability-based results for each test model using

Logistic Regression and Multilayer Perceptron, respectively.
Figure 3 shows the visual representation of the proposed ensemble model. Logistic

Regression and Multilayer Perceptron instance probabilities are passed through soft voting
criteria in Algorithm 1.
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Figure 3. RegressionNet architecture.

Algorithm 1 Ensemble approach using LR and MLP (LR-MLP).

Input: input data (x, y)N
i=1

MLR = Trained_ LR
MMLP = Trained_ MLP

1: for i = 1 to M do
2: if MLR 6= 0 & MMLP 6= 0 & training_set 6= 0 then
3: ProbLR− dos = MLR.probibility(dos− class)

4: ProbLR− normal = MLR.probibility(normal − class)

5: ProbLR− probe = MLR.probibility(probe− class)

6: ProbLR− r2l = MLR.probibility(r2l − class)

7: ProbLR− u2r = MLR.probibility(u2r− class)

8: ProbMLP− dos = MMLP.probibility(dos− class)

9: ProbMLP− normal = MMLP.probibility(normal − class)

10: ProbMLP− probe = MMLP.probibility(probe− class)

11: ProbMLP− r2l = MMLP.probibility(r2l − class)

12: ProbMLP− u2r = MMLP.probibility(u2r− class)

13: Decision function = max( 1
Nclassi f ier

∑classi f ier(Avg(ProbLR−dos,ProbMLP−dos)

, (Avg(ProbLR−normal,ProbMLP−normal)
, (Avg(ProbLR−probe,ProbMLP−probe)
, (Avg(ProbLR−r2l,ProbMLP−r2l)
, Avg(ProbLR−u2r,ProbMLP−u2r)))

14: end if

15: Return final label p̂

16: end for
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5. Results and Discussion

This section explains the results obtained from the experimentation conducted after
presenting a list of suggested algorithms and sensors in the previous section. The results
showcase the security prominence of the drones and the IoT network identified using ma-
chine learning in the mobile system. Four measures were used to evaluate and compare the
performance of the prototypes, with the confusion matrix serving as a tool for calculations.
The confusion matrix includes True Positive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN) elements. Table 6 presents the performance measures used in
this study.

Table 6. Performance evaluation parameters.

Evaluation Parameter Formula

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+FN

F1-score 2* precision.recall
precision+recall

5.1. Experimental Results

This section presents the results of the experiments conducted. The proposed model’s
performance is compared and evaluated with other state-of-the-art ML prototypes em-
ployed on the drone-based dataset. The dataset was divided into training and testing sets
in a ratio of 70:30. The experiments were conducted on a Dell PowerEdge T430 GPU, which
has an 8 GB capacity graphics card, along with 2x Intel Xeon eight-core CPUs running at
2.8 GHz and 32 GB DDR4 RAM. The experiments took place within the Jupyter Notebook
environment, utilizing the Python programming language and Anaconda. Further details
are shown in Table 7. The researched classifiers included Random Forest, MLP, Logistic
Regression, Decision Tree, Naive Bayes, and RegressionNet (which is a voting ensemble of
Logistic Regression and Multilayer Perceptron). All activities were conducted using Python
and implemented using Keras, Sklearn, and Tensorflow. The data used in the study were
divided into three categories, namely, jamming, spoofing, and DOS attacks. The achieved
accuracy score for this task was higher than 99%, the highest score obtained in accuracy in
controlling processes related to cyber-security.

Table 7. Experimental setup for the proposed system.

Element Details

Language Python 3.8
OS 64-bit window 10
RAM 32 GB
GPU Nvidia, 1060, 8 GB
CPU Intel Xeon eight-core CPUs with 2.8 GHz processor

The drone dataset was comparatively analyzed with respect to the classifiers, and the
results are presented in Table 8. The results reveal that both ML and simple deep learning
prototypes demonstrated substantial success in intrusion detection on the drone dataset.
Table 8 shows that NB displayed the lowest recall, precision, accuracy, and F1 score results.
However, a slightly better accuracy was shown by MLP, at 99.64%. Furthermore, DT, RF,
and SVM attained more than 99% value in terms of all evaluation measures. The suggested
RegressionNet method demonstrated strong results, with 99.80% values in terms of F1-
score, precision, accuracy, and recall, in classifying attacks into Prob, DoS, R2L, and U2R on
the drone dataset.
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Table 8. Comparison of the proposed approach and other learning models.

Model Accuracy Precision Recall F1-Score

Random Forest 99.15% 99.82% 99.86% 99.84%
Decision Tree 99.11% 99.11% 99.21% 99.16%
Logistic Regression 99.53% 99.82% 99.90% 99.86%
Naive Bayes 97.32% 98.41% 97.27% 97.89%
Support Vector Machine 99.14% 99.22% 99.30% 99.26%
MLP 99.64% 99.76% 99.88% 99.82%
RegressionNet 99.80% 99.81% 99.89% 99.86%

The analysis of Table 8 reveals that the voting group of the two top-notch models
could classify attacks effectively into four categories—U2R, R2L, Prob, and DoS—with
99.80% accuracy. Additionally, the graph compares the performance of the drone dataset
with the system data. The drone data are utilized by the ML model to generate alerts and
identify cyber-attacks.

5.2. Validation of the Proposed Approach

In this section, we investigate the significance of the proposed RegressionNet model
using two further datasets. The first dataset is the benchmark STIN security dataset, and
the second one is our own developed security dataset, which is a combination of features
and attack types of the KDD CUP 99, NSL-KDD, and STIN datasets [72]. The purpose is
to extend the feature set and develop a database in which training models get trained on
all types of attacks at once. The STIN security dataset [73] includes nine terrestrial and
a couple of satellite attacks. Flow-based features were utilized to construct this dataset.
Table 9 outlines the dataset’s characteristics while Table 10 highlights the accuracy of the
classifiers on STIN security and merger of all datasets.

Table 9. Detail of STIN dataset.

Domain Attack Type Attack Time

Terrestrial attacks

Web attack 15:21→15:31
Botnet 15:01→15:10
LDAP DDoS 16:01→16:11
Backdoor 15:41→15:52
NetBIO DDoS 16:41→16:50
MSSQL DDoS 16:21→16:30
Portmap DDoS 17:01→17:13
UDP DDoS 17:41→17:52
Syn DDoS 17:21→17:32

Satellite attacks DUP DDoS 16:52→17:20
Syn DDoS 15:23→15:57

Table 10. Accuracy of classifiers on STIN security and the merger of all datasets.

Attack Type Accuracy

Terrestrial Attack

UDP_Dos 100.00%
Syn_DDoS 95.81%

Average accuracy 97.90%

Satellite Attack

Backdoor 97.41%
LDAP DDoS 94.22%
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Table 10. Cont.

Attack Type Accuracy

MSSQL DDoS 96.24%
NetBIO DDoS 97.37%
Portmap DDoS 92.19%

Syn DDoS 98.41%
UDP DDoS 98.99%

Average accuracy 97.90%

Merged Dataset

All attacks 91.64%

5.3. Performance Comparison of Proposed Approach and State-of-the-Art Models

Table 11 provides an accurate comparison of the anticipated voting classifier with
advanced models from the literature review. Various techniques have been implemented
by researchers, such as PCA + MCA, SVM-ANN, and DT-RFE, to improve the models’
performance in intrusion detection, while the latest deep learning methods, such as the
Deep Hierarchical Model, have also been utilized. Nevertheless, the suggested approach
outperformed others with an accuracy score of 99.89% in intrusion detection.

Table 11. Performance comparison of the proposed approach and state-of-the-art models.

Method Dataset Accuracy

RegressionNet Drone dataset 99.89%
RegressionNet KDD CUP 99 99.87%
RegressionNet NSL-KDD 99.90%

PCA + MCA [74] KDD CUP 99 94.20%
Deep Neural Model [75] KDD CUP 99 92.49%

DT-RFE [76] KDD CUP 99 99.21%
SVM-ANN [77] NSL-KDD 91.48%

Deep Hierarchical Model [78] NSL-KDD 83.58%
DT-RFE [76] NSL-KDD 99.23%

To demonstrate the strength and generalizability of the offered methodology, experi-
ments were conducted on the NSL-KDD [79] and KDD Cup 99 [80] datasets, as shown in
Table 11. The model RegressionNet outperformed the rest of the models from the literature
on both datasets, indicating its supremacy in intrusion detection.

5.4. Discussion

Unlike previous studies that might have primarily concentrated on single-layered ar-
chitectures for drone systems, the proposed framework introduces a multi-layered approach
that incorporates advanced machine learning models for enhanced security. The integra-
tion of machine learning not only boosts the robustness of the technology but also enables
adaptive responses to evolving cyber-threats.

A new dataset is constructed by merging drone data with benchmark datasets, namely,
KDD CUP 99 and NSL-KDD. This new dataset serves as a valuable resource for bench-
marking and validating the efficiency of the proposed algorithms in a diverse range of
attack scenarios.

The intelligent framework achieves high accuracy and offers the potential for improv-
ing security in interconnected systems, including cyber–physical systems, satellite systems,
and IoT-aided aerial vehicle systems. By presenting a novel integration of blockchain
technology into drone architecture, we address the concerns related to data security and
unauthorized access that have plagued previous designs.

Finally, this research presents cutting-edge developments in drone technology and its
intersection with the Internet of Things (IoT) and introduces a framework that significantly
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enhances security and resilience. Through a comparative analysis with prior works and
an evaluation of our proposed approach on a merged dataset, we establish our study’s
novel contributions and advancements, paving the way for more secure and efficient drone
deployment in various fields.

6. Conclusions

The current study focused on proposing an IoT drone-based cyber-security framework
network. This framework employs a voting ensemble of ML algorithms and employs data
from various sources, such as network information, drones, and sensors, to identify security-
level patterns and detect security attacks. The proposed architecture combines several
cutting-edge technologies, such as machine learning, artificial intelligence, data fusion,
and anomaly detection, to build a powerful and adaptable security solution. The framework
can identify both known and unknown threats by utilizing the strength of advanced
algorithms, allowing for quick response and mitigation actions.

The proposed framework was tried on the drone dataset and was able to demonstrate
robust results for cyber-attack identification in real time, achieving an accuracy rate of
99.89%, which surpasses previous approaches. The performance of the proposed frame-
work was evaluated on a newly constructed merged dataset in terms of accuracy, recall,
precision, and F1-score. The RegressionNet model is proposed to accurately identify attack
types and shows its authority and strength. This framework can be deployed to detect
vulnerabilities in other domains as well in the future. Furthermore, in future work, we will
also focus on adding a malware attack prevention layer in the proposed framework.
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