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Abstract: Unmanned aerial vehicle (UAV) collaboration has become the main means of indoor and
outdoor regional search, railway patrol, and other tasks, and navigation planning is one of the
key, albeit difficult, technologies. The purpose of UAV navigation planning is to plan reasonable
trajectories for UAVs to avoid obstacles and reach the task area. Essentially, it is a complex opti-
mization problem that requires the use of navigation planning algorithms to search for path-point
solutions that meet the requirements under the guide of objective functions and constraints. At
present, there are autonomous navigation modes of UAVs relying on airborne sensors and navigation
control modes of UAVs relying on ground control stations (GCSs). However, due to the limitation
of airborne processor computing power, and background command and control communication
delay, a navigation planning method that takes into account accuracy and timeliness is needed. First,
the navigation planning architecture of UAVs of end-cloud collaboration was designed. Then, the
background cloud navigation planning algorithm of UAVs was designed based on the improved
particle swarm optimization (PSO). Next, the navigation control algorithm of the UAV terminals
was designed based on the multi-objective hybrid swarm intelligent optimization algorithm. Finally,
the computer simulation and actual indoor-environment flight test based on small rotor UAVs were
designed and conducted. The results showed that the proposed method is correct and feasible, and
can improve the effectiveness and efficiency of navigation planning of UAVs.

Keywords: navigation planning; unmanned aerial vehicles; end-cloud collaboration; improved
particle swarm optimization

1. Introduction

Navigation planning is one of the key technologies for UAVs to synergistically per-
form regional search [1], communication support [2], logistics transportation [3], forest
prevention and control [4], and other tasks. Navigation planning refers to the formulation
of the optimal flight path from the initial point to the target point via the UAV platform
or background assistance after task assignment, meeting the constraints of the UAV per-
formance and environmental conditions, and taking into account the terrain, threats and
other factors [5]. The cluster of UAV collaborative navigation planning is different from
single-UAV navigation planning, and the factors to be considered are more complex, as
they include collision avoidance between UAVs and the arrival of synchronization time in
the flight process, making the whole cluster mission benefit the most or the flight cost the
least [6]. Conducting research on navigation planning technology can ensure the safe and
reliable flight of UAVs in complex environments and achieve mission objectives. In general,
the main ways to solve the current UAV navigation planning rely on traditional remote
control and ground control stations [7], as well as autonomous sensors and navigation
algorithms such as the visual navigation system and inertial navigation system (INS), to
achieve simple autonomous control planning [8].

As an important component of the UAV system, the ground control station is the
man–machine interface of UAVs [9]. UAVs return information and images to the ground
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station through the downlink and receive navigation control commands from the ground
station through the uplink. One type of control command comprises UAV flight control
commands, such as speed, acceleration, heading angle, etc., which can be sent via a remote
controller or ground station; another is the flight path target point position information,
which is generally sent by the ground station to make the UAV fly to the target position [10].
At present, the common UAV ground station system developed by the mission planner
can realize the configuration and simple flight control of the UAV [11]. DJI has developed
DJI GS PRO ground station based on iPad, which can realize UAV fixed-path planning
and automatic return based on a remote sensing map [12]. In addition to being directly
selected by the operator, the location information of the path target point can also be
analyzed and calculated by the intelligent algorithm. For example, in [13,14], the deep
migration reinforcement learning method and gray wolf algorithm, respectively, were
used to achieve the task assignment of multiple UAVs. In [15], the authors used an
improved mayfly algorithm to realize UAV path planning. The advantage of background
control and navigation planning based on a ground control station is that if accurate
environmental situation information can be obtained, the flight path obtained by high
background computing power can often be a high-quality solution. However, under the
conditions of a complex mission environment and limited communication, it is difficult
to ensure the real-time and accurate return of environmental situation information and
transmit flight instructions to the front end of the UAV in real time [16].

On the other hand, autonomous navigation based on visual positioning and onboard
navigation processing has always been the research focus of UAV navigation control [17].
UAVs realize autonomous positioning through the information fusion of an airborne visual
sensor and IMU, and then realize autonomous navigation capabilities such as obstacle-
avoidance flight partly through the airborne autonomous path planning algorithm. For
example, reference [18] realized obstacle avoidance of a UAV in a dynamic environment
based on point-cloud image; reference [19] adopted deep reinforcement learning to realize
an end-to-end obstacle-avoidance decision of UAVs. The advantage of navigation decision
planning based on airborne autonomous sensors and processors is that the real-time
requirement can be satisfied. However, depending on the existing autonomous navigation
algorithm in a relatively complex task environment, there are often problems such as
insufficient processing capacity and credibility of the autonomous navigation decision of
UAVs. In particular, when facing the problem of cluster navigation planning, the key is to
design the navigation planning algorithm and technology at a fast speed and with high
accuracy [20].

In terms of path planning algorithms, those used at present mainly include three types:
traditional algorithms, algorithms based on graph search, and heuristic intelligent search
algorithms. Specifically, the authors in [21] proposed a method based on an improved A*
algorithm for three-dimensional path planning, and in [22], the coverage path planning
problem of autonomous heterogeneous UAVs was studied over a limited number of areas,
the region classified into clusters, and approximate optimal point-to-point paths for drones
obtained. In [23], the authors used the particle swarm optimization beetle antennae search
(PSO–BAS) algorithm to plan the spatial 3D route. The three types of algorithms have
their own characteristics. Traditional algorithms can search for the optimal solution, but
do not meet real-time requirements due to the high computational intensity. Algorithms
based on graph search reduce the computational intensity, but often lack the ability to
search for excellent solutions. In terms of balancing the search speed and solution quality,
as well as improvement of the algorithm, heuristic intelligent search algorithms have
more advantages. The focus of this study is to solve the navigation planning problem of
UAVs in complex and communication-limited environments. To this end, an end-cloud
collaborative navigation planning algorithm for UAVs was proposed, which combined
the background cloud navigation planning algorithm based on an improved PSO and the
autonomous navigation control algorithm for UAVs based on a multi-objective hybrid
swarm intelligence algorithm. This end-cloud collaborative navigation planning method
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combines fast real-time path search algorithms on the UAV onboard part and high-quality
path planning algorithms on the ground control part, solving the contradiction between
the high-quality and real-time path planning that other navigation planning algorithms
are difficult to balance. Simulation verification based on software and actual dynamic
flight experiment verification based on UAVs and ground station were carried out. The
results showed that the algorithm can meet the real-time requirements and improve the
accuracy and efficiency of UAV navigation planning. Compared with other navigation
planning algorithms, the results show that this algorithm has advantages in search speed
and objective function evaluation value.

2. System Architecture and Algorithm Design
2.1. UAV Navigation Planning Modeling

UAV navigation planning mainly comprises three components: environment model-
ing, objective function modeling, and navigation planning algorithm design.

Environment modeling includes the total area size and location of the UAV flight
tasks, the positions of takeoff start points and mission target points, as well as obstacle and
threat information (coordinates, range, altitude, etc.) in the area. Environmental modeling
is a prerequisite for UAVs to successfully complete navigation planning. The specific
modeling process is shown in Section 3.1.1. The algorithm design part is described in detail
in Section 2.2. This section focuses on the modeling and design of the objective function for
UAV navigation planning.

The objective function is a key indicator for evaluating the performance of navigation
planning, consisting of multiple constraint terms. Constraints usually involve UAVs
themself, and the task and environment, which together determine the quality of the
navigation planning solution. For the convenience of research, the article does not consider
the UAV flight control model, and adds dynamic constraints of UAVs in the objective
function model section. The main constraints are as follows:

• Flight distance

Assuming that the flight speed of the UAV and the average energy consumption
remain constant, due to the limited energy capacity of the UAV itself and the limited
communication distance with the background, a maximum range must be set to constrain
it. On the premise of completing the task, the smaller the range, the better. Assuming that
the UAV trajectory consists of N trajectory nodes and N − 1 segments, the length of the i
segment trajectory is Li and the flight distance constraint of the UAV is:

L =
N−1

∑
1

Li ≤ Lmax (1)

• Flight altitude

During flight, the UAV should maintain a low flight altitude to ensure communication
with the ground station, but this will increase the probability of colliding with obstacles
such as the ground and mountains. Therefore, a minimum value was set to minimize the
flight altitude of the UAV, while ensuring that the altitude is not less than this value. The
flight altitude constraint is represented as follows:

H =
N

∑
1

Hi ≥ Hmin (2)

In the formula, Hi is the flight altitude of the UAV at the ith track point and Hmin is
the minimum flight altitude value for UAV.

• Distance from the UAV to obstacles
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Contrary to flight altitude constraints, in order to ensure effective collision avoidance,
the larger the distance between the UAV and the obstacle, the better.

λ =
N

∑
1

λi ≥ λmin (3)

In the formula, λi is the distance from the UAV to obstacles at the ith track point and
λmin is the minimum distance value.

• Distance between UAVs

This parameter is the sum of the distances between UAVs in the cluster during flight.
The distance between UAVs should not be small enough to increase the risk of collision,
and it should not be large enough to cause communication barriers between UAVs.

ρ = ρmin ≤
N

∑
1

ρi ≤ ρmax (4)

In the formula, ρi is the average of the distances between the UAV and other UAVs at
the ith track point. ρmax is the maximum average distance between UAVs that can ensure
cluster communication and ρmin is the minimum average distance between UAVs to ensure
collision avoidance.

• Dynamic constraints of UAVs

The flight dynamics constraints of UAVs include the turning radius and climbing
angle. When UAVs encounter obstacles or threats, they need to turn or climb to avoid
them. When turning, the larger the turning radius while avoiding threats or obstacles, the
smoother the trajectory. If the turning radius is too small, it will cause the UAV to lose
control and crash. When climbing, in contrast to turning, the smaller the climbing angle,
the smoother the trajectory while achieving obstacle avoidance. If the climbing angle is too
large, it can also cause the UAV to lose control. The constraints are represented as follows:

R =
N

∑
1

Ri ≤ Rmax (5)

θ =
N

∑
1

θi ≥ θmin (6)

In the formulas, Ri is the turning radius of the UAV at the ith track point, Rmax is the
maximum turning radius value, θi is the climbing angle of the UAV at the ith track point,
and θmin is the minimum climbing angle value.

Based on the above constraint analysis, different constraint terms are selected for com-
bination and coefficient allocation according to different needs. Through single objective
or multi-objective optimization, the UAV navigation planning objective function (detailed
in Sections 2.2.2 and 2.2.3, respectively) can be obtained, which is an evaluation function
for the quality of path points, used to judge the quality of the solutions searched by the
navigation planning algorithm.

2.2. UAV Navigation Planning Algorithm Design
2.2.1. End-Cloud Collaboration Navigation Planning Algorithm Architecture

The study designed the architecture of the UAV end-cloud collaborative navigation
planning system, as shown in Figure 1. In the background cloud navigation planning part,
an improved PSO algorithm is used to plan the approximate track points for the UAVs. In
the UAV onboard navigation planning part, an improved multi-objective hybrid swarm
intelligence algorithm and B-spline curve are used to be responsible for the local navigation
control and path optimization of the UAVs.
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Figure 1. End-cloud collaborative navigation planning system architecture.

The design of the navigation planning algorithm based on the background cloud
processor can rely on the high computational power, so the more complex intelligent
optimization algorithm can be used. However, the problem of real-time navigation planning
due to the limitations of communication links should be taken into consideration, so only
the approximate route point planning with lower frequency can be carried out for UAVs. If
the communication conditions with front-end UAVs are non-existent, the UAVs can only
rely on an airborne intelligent planning algorithm to achieve navigation flight. When the
communication link from the front-end to the background cloud is available, the reasonable
track points that meet the requirements are planned based on an improved PSO and sent to
the front-end UAVs to realize the navigation flight based on the approximate track points.

2.2.2. Background Cloud Navigation Planning Part

Particle swarm optimization (PSO) is an optimization algorithm jointly proposed by
Kennedy, Ph.D. of American social psychology, and Eberhart, Ph.D. of electronic engineer-
ing in 1995 [24]. In classical PSO, the individual is regarded as a particle without mass
and volume, and the target is regarded as the solution of the optimized problem. The
movement direction and speed of each particle are affected by their own, as well as group
information. The information sharing and cooperation between individuals in the group is
used to make the group move toward the direction of the optimal solution, completing the
search of the whole particle swarm in the solution space.

The velocity and position update formula of PSO particles are as follows [25]:

vt
i = ωvt−1

i + c1r1(pBesti − xt−1
i ) + c2r2(gBest− xt−1

i ) (7)

xt
i = xt−1

i + vt−1
i (8)

xt
i represents the position of the ith particle after tth iteration and vt

i represents the
velocity of the ith particle after the t iteration. ω is the inertia weight factor, c1 and c2 are
the learning factors, pBesti represents the historical optimal position of the ith particle itself,
and gBest represents the historical optimal position of the entire population. Usually, Ns
represents the number of particles and f (xi) is the evaluation function of the optimized
problem. The particle position depends on the value of f (xi). Each particle performs
the following operations: obtaining the particle position xt−1

i after t − 1th iteration, the
corresponding f (xt−1

i ) can be calculated. According to Formulas (1) and (2), the speed and
position are updated and the next iteration is carried out to get f

(
xt

i
)
. Then, the above

operation is repeated until f (xi) meets the requirements or reaches the maximum number
of iterations [26].

Figure 2 is a schematic diagram of solving optimization problems with PSO. The
search space is two-dimensional. The global optimal solution is at the black spot. The
particles are updated from the initial position to the updated position after iteration, where
v1 is the original velocity of the particle, v2 is the velocity caused by pBest, and v3 is the
velocity caused by gBest. The final velocity of particle v is determined by v1, v2, and v3
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together, to make the particles arrive at the updated position from the initial position, and
then the speed and position are updated in the same way. The particles will gradually
approach the optimal solution position [27].
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Formulas (1) and (2) are the speed and position update formula of standard PSO,
and the main parameters involved include inertia weight ω, learning factors c1 and c2,
particle population size Ns, and maximum flight velocity of the particles vmax. According
to traditional parameter settings, it is easy to encounter situations where the algorithm
searches too fast and skips over high-quality solutions, or falls into local optima. Faced
with the problem of UAV navigation planning, a series of improvements need to be made
to these parameters [28].

• Inertia weight ω

In PSO, small inertia weight is conducive to the local precise search of the algorithm,
while large inertia weight is conducive to the fast global search of the algorithm. Therefore,
dynamically changing inertia weight can achieve better optimization results than a fixed
value of inertia weight. The improvement methods of this study are as follows:

ω =

{
ωmin, δ ≥ λ1
ωmax, δ ≤ λ2

(9)

In the above formula, δ is the degree of particle position change after continuous k
iterations. If the change of particle position after continuous k iterations exceeds λ1 , then it
can be judged that the algorithm is in the fast global search stage. In such case, ω is made
into a smaller value, ωmin, to slow down the search speed and prevent the algorithm from
missing the optimal solution due to the fast search speed. If the change of particle position
does not exceed λ2, then it can be judged that the algorithm has fallen into local optimum,
in which case ω is made a larger value, ωmax, to improve the search speed of the algorithm
and make the algorithm jump out of the local optimum. k, λ1, and λ2 are determined by
the complexity of the UAV navigation planning problem, and the required search speed
and accuracy.

• Learning factors c1 and c2

Learning factors c1 and c2 give particles the ability to learn from their own experience
and the best ones in the population. A small learning factor makes for a particle search
repeatedly outside the target area, and a large learning factor makes the particles fly to or
even cross the target area quickly. Similar to inertia weight, ω, the adaptive adjustment
strategy is segmented based on particle position changes. When the algorithm is in the
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global search stage, c1 is made a larger value, and cmax, c2 a smaller value, cmin to prevent
the premature convergence of the algorithm. When the algorithm is in the local search
stage, c1 is made a smaller value, cmin, and c2 a larger value, cmax, to ensure the diversity
of the algorithm during the local search.

c1 =

{
cmax, δ ≥ λ1
cmin, δ ≤ λ2

(10)

c2 =

{
cmin, δ ≥ λ1
cmax, δ ≤ λ2

(11)

• Population size and topological structure second bullet

For PSO, a large population size means that the particles have strong cooperation
performance and high global search ability, but the search time of the algorithm is long.
However, a small population size will reduce the available global information of the
algorithm, which will lead to premature convergence and fall into local optimization. The
population topology of PSO represents the way that a single particle connects with other
particles, and represents which particles can share information and cooperate with the
iteration. Generally, topological structures can be divided into global and local types.
Global topology means that each particle can share and exchange information with any
other particle, which will speed up the convergence of the algorithm, but it is easy to
fall into the local optimum. On the contrary, local topology can only exchange and share
information with neighboring particles. This topology will slow the convergence of the
algorithm, but it is not easy to fall into local optimum. The two population topologies are
shown in Figure 3. The disadvantage of the fixed population size and topology strategy
is that it cannot balance the contradiction between a global search and local search, and
cannot achieve a good optimization effect in the UAV navigation planning problem [29].
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The study proposed a population size and topology improvement strategy that can
adaptively change population characteristics based on the current iteration update status
of particles, as shown in Figure 4.
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• Maximum particle flying speed, 𝑣௠௔௫ 
The maximum speed of traditional PSO is a fixed value, but it is difficult to consider 
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• Maximum particle flying speed, vmax

The maximum speed of traditional PSO is a fixed value, but it is difficult to consider
both algorithm convergence speed and search accuracy at the same time. Therefore, a speed
regulation mechanism improvement strategy is proposed as follows:

vmax =

{
v1, δ ≥ λ1
v2, δ ≤ λ2

(12)

In the above formula, v1 > v2. The speed regulation mechanism can meet the re-
quirements of both a global fast search and local accurate search, and can flexibly adjust
parameters to meet the versatility of the algorithm in navigation planning.

Using the two-dimensional Ackley function as the objective function, a performance
comparison test was conducted on the traditional PSO and the improved PSO. Figure 5
displays the comparison test results, where the red dot is the true maximum and the blue
dot is the searched maximum. The test results show that the maximum value searched
using an improved PSO is more concentrated and distributed around the true value of 0,
while the maximum value searched using traditional PSO is more dispersed, indicating
that an improved PSO has better optimization effects.
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Section 2.1 has already described the constraints of navigation planning. The article
combines flight distance, flight altitude, and distance from UAV to obstacles into an ob-
jective function, with the distance between UAVs, turning radius, and climbing angle as
boundary constraints. The resulting navigation planning evaluation function is shown by
the following formula: 

f = ∑
i
(ϕ1Li − ϕ2λi − ϕ3hi), i = 1 . . . N

ρmin< ρi < ρmax, i = 1 . . . N
Ri < Rmax, i = 1 . . . N
θi > θmin, i = 1 . . . N

(13)

In the above formula, ϕ1, ϕ2, and ϕ3 are the weight coefficients. The influence of
various constraints on the navigation planning evaluation function is changed by using
artificial weighting methods to adjust their sizes. During the iteration process, the point
that minimizes the value of f is the best track point.

The background cloud navigation planning algorithm based on an improved PSO is
shown in Figure 6.
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2.2.3. UAV Onboard Navigation Planning Part

The UAV onboard navigation planning part mainly solves the autonomous local path
planning and navigation control problems of UAVs after the background cloud provides
them with approximate flight paths. Moreover, UAV onboard processing platforms are
often limited by low computational power, and due to the need for fast algorithm conver-
gence speed in the local navigation control of UAVs, the algorithms are more often to fall
into local optimization. Although the above series of improvements to PSO can help solve
the local optimization problem of navigation planning, making it easier for the algorithm
to search for high-quality solutions, it also increases the computational burden and is not
suitable for onboard navigation planning parts with high real-time requirements; hence,
the algorithm and optimization method that have fast search speed and low computational
complexity are necessarily needed. Based on the advantages of PSO, the study used multi-
objective optimization and tabu search to solve the UAV onboard navigation planning
problem [30].

(1) Improved multi-objective PSO
The navigation planning evaluation function of Formula (7) is to add various con-

straints and transform it into single-objective optimization. This approach can obtain an
optimal solution to a certain extent when the background cloud computer has sufficient
resources, but it cannot meet the requirements of a low computational burden and high
real-time performance for UAV onboard navigation planning. Therefore, multi-objective
optimization can be adopted to solve this problem.

Multi-objective optimization (MOP) problems can generally be defined as the opti-
mization problem of jointly optimizing multiple objective functions under given constraints.
The definition of multi-objective optimization can be expressed in the following standard
form [31]: {

y = min[ f1(x), f2(x), . . . , fm(x)]
s.t.gi(x) ≤ 0

(14)

In the above formula, y = (y1, y2, . . . , ym) represents the target function,
x = (x1, x2, . . . , xn) represents decision variables to be optimized, and{

g1(x) ≤ 0, g2(x) ≤ 0, . . . , gp(x) ≤ 0
}

represents constraints of the decision variable x.
The difference between multi-objective optimization and single-objective optimization

is that a multi-objective optimization problem does not require finding a unique optimal
solution; therefore, the complexity and computational time of the algorithm will be reduced
and it is more suitable for the onboard navigation planning processing of UAVs with high
real-time requirements. In the process of solving multi-objective optimization problems,
the key is to find some “better solutions” that can satisfy the situation where each objective
function achieves a better performance. This set of solutions is called the Pareto optimal
solution set. Pareto domination is defined as follows:

If at least one objective function of the feasible solution p is better than that of the
feasible solution q, and all objective functions of p are no worse than that of the individual
q, that is: {

∀i ∈ {1, 2, . . . , m}, fi(p) ≤ fi(q)
∃i ∈ {1, 2, . . . , m}, fi(p) < fi(q)

(15)

Then, the feasible solution p Pareto dominates the feasible solution q. Pareto domi-
nance in the application of high-dimensional multi-objective optimization problems will
cause a significant increase in the number of non-dominated solutions, making it unable to
select a better solution from among them, and the algorithm unable to converge. Therefore,
the study proposed a new type of dominance-weighted dominance—combined with the
traditional Pareto dominance, that can reduce the computational burden of the algorithm
and optimize the performance.

The definition of weighted dominance is given here:
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For all objective function values for the problem f1(x), f2(x), . . . , fk(x), make:

Fi(x1, x2) = fi(x1)− fi(x2) + ρi∑1...k
i 6=j f j(x1)− f j(x2) (16)

In the above formula, x1 and x2 are both feasible solutions to the problem and ρi is the
weighted dominance factor. If: {

∀i, Fi(x1, x2) ≤ 0
∃i, Fi(x1, x2) < 0

(17)

then x1 is weighted domination x2. The weighted dominance factor ρi is related to the
weight ratio of the ith objective function. If the weight of the ith objective function is larger,
the weighted dominance factor is smaller and vice versa. Compared to Pareto domination,
weighted domination is easier to achieve between particles. This makes it easier for the
algorithm to find a better solution through weighted dominance, rather than using a large
amount of computing resources to search for the Pareto optimal solution.

An important feature of PSO based on multi-objective optimization is to store all non-
dominated solutions generated in a set (called external file) after each iteration according
to the dominant relationship between the particles. The global optimal particle position
gBest that guides the flight of a particle population is selected from the external file. Based
on the weighted dominance, this study proposed an improved external file update strategy,
as shown in Figure 7.
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The global optimal particle location selection strategy is as follows: If there are particles
in the Pareto-dominant position added to the external file for consecutive k generations,
it is judged that the diversity of the population is qualified, while the convergence is not
qualified. The particles Pareto-dominated in the external file are weighed and sorted, and
the particle with the highest ranking in the sorting is selected as the global optimal particle.
If no Pareto-dominated particles have been added to the external file for consecutive
k generations, it is judged that the convergence of the population is qualified, but the
diversity is unqualified, and it is possible to fall into a local optimum. In such case, one
of the particles in the external file that is weight-dominated, but not Pareto-dominated, is
randomly selected as the global optimal particle.

This external file update strategy can greatly reduce the number of particles entering
the external file in each iteration, which is conducive to reducing the computational strength
of the algorithm, and the adaptive global optimal particle location selection strategy can
balance the relationship between diversity and convergence of solutions, better meeting
the needs of UAV navigation planning.

The external file solves the problem of selecting the global optimal location of particles,
but the selection of the individual optimal location of particles is still different from the
single-objective PSO. It is not to compare the magnitude of the evaluation function values
between two particles to determine the good and bad, but to compare the weighted
dominance relationship between two particles, which can be divided into the following
three situations:

• If the individual optimal particle in the previous iteration weighted dominates the new
particle, the individual optimal particle remains unchanged and the optimal position
of the particle is not updated;

• If the individual optimal particle in the previous iteration is weight-dominated by
the new particle, the new particle becomes the individual optimal particle, and the
historical optimal position of the particle is updated;

• If the two are not weight-dominated to each other, a 50% probability is used to choose
whether to update the optimal position of the particle or not.

The external file update strategy of the multi-objective particle swarm optimization
and the selection strategy of particle global optimal and individual optimal position im-
provement have been completed. Combined with the hybrid swarm intelligence algorithm
below, it can further reduce the computational burden of UAV onboard navigation planning
and improve the solution efficiency.

(2) UAV onboard hybrid swarm intelligent algorithm and trajectory optimization
Based on the multi-objective PSO, this section introduced the neighborhood subset of

the tabu search and the tabu list, further reducing the computational complexity of UAV
onboard navigation planning algorithms, while optimizing the trajectory to meet the flight
requirements of UAVs.

The tabu search is a neighborhood search algorithm, characterized by the fact that
it is not necessary to search all the solutions in the neighborhood structure every time in
the iteration, but to randomly select a subset of the neighborhood to search, the spatial
range of each iteration search is small, so it can reduce the computational intensity of the
algorithm. Another feature of the tabu search is the setting of the tabu list, which is used to
store the generated local optimal solution after each iteration. The solutions in the tabu list
will not be searchable in subsequent iterations, and reduce the search solution space, while
preventing the algorithm from falling into local optimum. After several iterations, if the
aspiration criterion is met, in other words, the evaluation value of the tabu object is better
than any solution of the neighborhood subset in that iteration, it will be released and can
participate in the next iteration search.

The objective terms of the evaluation function for the background cloud navigation
planning of UAVs mentioned in the previous section refer to the length of the flight path
L, the distance between the obstacle and the target λ, the flight altitude h, the average
distance between UAV ρ, turning radius R, and climbing angle θ. In this section, the UAV
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onboard navigation planning adopts a multi-objective optimization approach, with the
first three items as the objective items and the last three item as the constraint conditions.
Therefore, the multi-objective optimization modeling of UAV onboard navigation can be
represented as: 

y = min
[

M
∑
1

Lk,
M
∑
1

λk,
M
∑
1

hk

]
ρmin< ρk < ρmax, k = 1, 2, . . . , M

Rk < Rmax, k = 1 . . . M
θk > θmin, k = 1 . . . M

(18)

The flowchart of the UAV onboard hybrid swarm intelligent algorithm is shown in
Figure 8.

Sensors 2023, 23, 7129 13 of 22 
 

 

conditions. Therefore, the multi-objective optimization modeling of UAV onboard navi-
gation can be represented as: 

⎩⎪⎨
⎪⎧ 𝒚 = 𝑚𝑖𝑛 ൥෍ 𝐿௞ெ

ଵ , ෍ 𝜆௞ெ
ଵ , ෍ ℎ௞ெ

ଵ ൩𝜌௠௜௡ < 𝜌௞ < 𝜌௠௔௫, 𝑘 = 1,2, … , 𝑀𝑅௞ < 𝑅௠௔௫, 𝑘 = 1 … 𝑀𝜃௞ > 𝜃௠௜௡, 𝑘 = 1 … 𝑀
 (18)

The flowchart of the UAV onboard hybrid swarm intelligent algorithm is shown in 
Figure 8. 

 
Figure 8. The flowchart of the UAV onboard hybrid swarm intelligent algorithm. 

Usually, after obtaining the approximate path points planned by the background 
cloud, the UAVs conduct local navigation planning between each path point to form tra-
jectories. However, due to the flight control system limitation of UAVs, the trajectories 
cannot be directly used by the UAVs. Therefore, it is necessary to optimize the trajectories 
obtained by the UAV onboard hybrid swarm intelligence algorithm, and generate smooth 
trajectories. 

The study optimized the planned trajectory based on B-spline curves. B-spline curves 
can be locally reconstructed from the original trajectory, without changing the overall 

Figure 8. The flowchart of the UAV onboard hybrid swarm intelligent algorithm.

Usually, after obtaining the approximate path points planned by the background cloud,
the UAVs conduct local navigation planning between each path point to form trajectories.
However, due to the flight control system limitation of UAVs, the trajectories cannot be
directly used by the UAVs. Therefore, it is necessary to optimize the trajectories obtained by
the UAV onboard hybrid swarm intelligence algorithm, and generate smooth trajectories.

The study optimized the planned trajectory based on B-spline curves. B-spline curves
can be locally reconstructed from the original trajectory, without changing the overall
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shape of the trajectory. The B-spline curve is determined by the B-spline basis function.
Given n + 1 track points and a node vector in space U = [u0, u1, . . . , un+k+1], the k-power
B-spline curve is represented as:

P(u) =
n

∑
i=0

Nk
i (u)Pi (19)

In the above formula, Pi is the vertex of the feature polygon that forms the B-spline
curve and Nk

i (u) is the B-spline basis function, using the Cox–deBoor recursive formula
as [32]: 

N0
i (u) =

{
1, ui ≤ u ≤ ui+1

0, otherwise

Nk
i (u) =

u−ui
ui+k−ui

Nk−1
i (u) + ui+k+1−u

ui+k+1−ui+1
Nk+1

i+1 (u)
(20)

In this study, the cubic B-spline curve is used to smooth the trajectory, where k = 3, a
B-spline curve can be constructed by every four adjacent track sampling points. By using
the formula, it can be obtained that for the four adjacent points P0, P1, P2, P3, there is

P(U) =
1
6

[
u3 u2 u 1

]
−1 3
3 −6

−3 1
3 0

−3 0
1 4

3 0
1 0




P0
P1

P2
P3

 (21)

The specific steps for using B-spline curves to smooth the trajectory are shown in
Figure 9.
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3. Experimental Design and Analysis

For the UAV end-cloud collaborative navigation planning system architecture and
improved algorithm proposed in this study, this part carried out simulation comparison
experiments and analysis, and used the rotor drones and background cloud navigation
planning platform to carry out actual flight experiment verification.

3.1. Simulation Experiment Verification and Analysis

Based on the MATLAB environment, the scenario of several UAVs avoiding obstacles
and reaching the target point position after navigation planning was simulated. Naviga-
tion planning experiments based on the end-cloud collaborative improved PSO (E-CPSO)
proposed in this paper, with traditional PSO onboard, two types of improved PSO onboard
(improved PSO with parameter changes, PSO combined with genetic algorithm), clustering-
based algorithm (CA) [33], and ant colony algorithm (ACA) [34] were conducted, and the
effectiveness of navigation planning was compared and analyzed.

3.1.1. Environmental Modeling and Algorithm Parameter Setting

The modeling of the environment includes three parts: flight range, threat area, and
obstacle area [35]. The flight range is set to the Cartesian coordinate system area. Threat
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areas generally refer to electromagnetic interference areas and enemy detection areas.
A hemispherical model can be used to model the threat area, which is mathematically
described as: {

Wi(x, y, z) = ∑
i
(x− xi)

2 + (y− yi)
2 + z2 = r2

i

z ≥ 0
(22)

In the formula, (xi, yi, 0) represent the center of the threat area, Wi(x, y, z) represents
the ith threat area, and ri represents the radius of the threat area. The modeling of obstacle
areas adopts the mountain peak model, which is mathematically described as:

z(x, y) = ∑
i

hiexp[− (
x− yi

xsi
)2 − (

y− xi
ysi

)2] (23)

In the formula, (xi, yi) represents the geographic center coordinates of the mountain
peak, (x, y) represents the coordinates of each point in the terrain projected onto the plane,
hi represents the height of the ith mountain, xsi, ysi represent the slope vectors of the
peaks in the x-axis and y-axis directions, and z(x, y) represents the height of each point in
the terrain.

The terrain parameter settings are shown in Table 1.

Table 1. Parameters of the terrain.

Flight Range
Parameters (m)

Obstacle Area
Parameter OPR 1 (m)

Threat Area
Parameter TPR 1 (m)

Parameters 2000 × 2000 × 1000 (600, 500, 100)
(500, 1500, 200) (1000, 1000, 400)

1 where OPR represent the center positions and bottom radius (x, y, r) of the obstacle area, and TPR represent the
center positions and radius (x, y, r) of the threat area.

The terrain environment model is shown in Figure 10. The red part represents the
threat area, and the green parts represent the peaks.
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Figure 10. The terrain environment model.

The number of UAVs was set to 5, which arrange at (0, 0, 0), and the number of task
target points was set to 5, which were spread at (2000, 1200, 900), (2000, 700, 750), (2000,
680, 280), (2000, 1100, 140), (2000, 1400, 500). The results after task allocation are shown in
Figure 11. Where * are the target points after task allocation.
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As a comparison, the traditional PSO as UAV navigation planning algorithm was
unilaterally set according to the most common way, inertia weight ω = 0.6, learning factor
c1 = c2 = 2, number of particle populations Ns = 300, maximum number of iterations
T = 200, maximum particle flight speed vmax = 2. The parameter settings of the improved
PSO with parameter changes (IPSO) was according to the onboard navigation planning
section of the article as follows. The parameter of the PSO combined with the genetic
algorithm (GAPSO) was set in a traditional way: the crossover probability was 0.3 and the
mutation probability was 0.1. Other parameters were set according to traditional PSO. The
parameters of clustering-based algorithm (CA) were as follows: the number of clusters
k = 8, the selection probability β = 0.7, and the population size and evolution times were
the same as those of IPSO. The parameters of the ant colony algorithm (ACA) were as
follows: the pheromone factor weight α = 1, the heuristic factor weight γ = 7, and the
pheromone evaporation and enhancement coefficient µ1 = 0.3, µ2 = 1.

The parameter settings for E-CPSO proposed in this article were as follows. In the
dynamic parameter adjustment strategy, considering the actual needs of UAV navigation
planning, λ1 = 0.3, λ2 = 0.1, k = 5, the maximum and minimum inertia weight ωmax = 0.9,
ωmin = 0.4, the maximum and minimum learning factors cmax = 3.5, cmin = 0.5, the initial
population size Ns = 300, and the maximum particle flight speed v1 = 3, v2 = 1.5. The max-
imum and minimum average distance constraint between UAVs ρmax = 300, ρmin = 50, the
weight coefficients in single-objective optimization functions ϕ1= 0.2, ϕ2 = 0.3, ϕ3 = 0.1,
the initial external file size in multi-objective optimization Ms = 50, the weighted domi-
nance coefficient ρ1 = 1− ϕ1= 0.8, ρ2 = 1− ϕ2 = 0.7, ρ3 = 1− ϕ3 = 0.9.

3.1.2. Experimental Steps and Result Analysis

The testing steps are as follows:

• Step1: Start the simulation software and select the UAV end-cloud collaborative
navigation planning algorithm;

• Step2: Set environmental conditions and task target points and allocate them;
• Step3: Set the parameters of the E-CPSO navigation planning algorithm;
• Step4: Start UAV background cloud and onboard navigation planning simulation,

obtain the approximate trajectory and precise trajectory of UAVs;
• Step5: Set the parameters of traditional PSO, IPSO, GAPSO, CA and ACA, and start

the UAV navigation planning simulation;
• Step6: Observe and record the navigation planning results of the algorithms;
• Step7: Draw graphs of the number of iterations and evaluation function separately

and conduct comparative analysis;
• Step8: End the experiment.

The results of UAV navigation planning based on the algorithms are shown in
Figure 12. The black dots and connecting lines represent the trajectory results of the
navigation plan. From the figures, it can be intuitively seen that the navigation planning
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result based on E-CPSO was smoother compared to the others, and the track length of each
UAV was shorter.
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In order to evaluate the performance of the E-CPSO, the relationship between the
number of iterations and the objective function value of the four algorithms were com-
pared as shown in the following figure. As the algorithm proposed in this study involves
multi-objective optimization, its objective function value was directly calculated from the
evaluation value of the track point position. The objective function values of ACA and CA
were also calculated based on each track point position.
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From Figure 13a, it can be seen that under the same environmental conditions, number
of UAVs and location of task target points, the objective function of UAV traditional
PSO, IPSO, and GAPSO tended to flatten out at around 80, 90, and 100 iterations. The
objective function of the E-CPSO began to flatten after about 50 iterations, indicating that
the convergence speed of the latter was faster than that of the formers. Overall, the objective
function value of the E-CPSO was smaller and separately decreased by approximately
42%, 25%, and 13% compared to the traditional PSO, IPSO, and GAPSO when convergence
was completed, which indicated that the algorithm proposed in this article had better
performance in UAV navigation planning. Figure 13b shows that compared with CA and
ACA, E-CPSO still had advantages in the rate of convergence and objective function value
when convergence was completed.
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The terrain parameters and the number of UAVs were changed, and the performance
of the algorithms tested separately. The results are shown in Table 2. From the data in
the table, it can be seen that the E-CPSO can complete navigation planning of UAVs in
different terrain environments, achieved better target evaluation values for track points,
and got a lower average number of iterations compared to traditional PSO, IPSO, GAPSO,
CA, and ACA. When the number of UAVs increased to 10, the traditional PSO and GAPSO
were no longer able to complete navigation planning in complex environments, while the
E-CPSO was still valid, though increasing the number of iterations. The results showed
that the effectiveness, timeliness, and adaptability of the algorithm proposed in this article
are superior than that of the other algorithms.

Table 2. Algorithm performance comparison under different conditions.

Terrain Parameter
(m) Algorithm IBC 1 of 5 UAVs FVC 1 of 5 UAVs IBC 1 of 10 UAVs FVC 1 of 10 UAVs

1 threat area, 2
obstacle areas

PSO 82 3128.6 113 6034.5
E-CPSO 56 1834.4 86 3179.6

IPSO 88 2465.2 121 4528.3
GAPSO 96 2104.3 134 4019.1

CA 72 3104.6 98 6194.4
ACA 105 2923.5 107 5478.5
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Table 2. Cont.

Terrain Parameter
(m) Algorithm IBC 1 of 5 UAVs FVC 1 of 5 UAVs IBC 1 of 10 UAVs FVC 1 of 10 UAVs

2 threat areas, 1
obstacle area

PSO 78 3364.7 121 6823.1
E-CPSO 52 2023.2 92 4435.3

IPSO 84 2675.4 125 5287.2
GAPSO 95 2392.9 138 4963.4

CA 74 2989.6 111 5892.3
ACA 96 3045.2 103 6102.2

2 threat areas, 2
obstacle areas

PSO 134 3578.6 -- --
E-CPSO 112 2149.1 157 4752.8

IPSO 146 2538.3 172 6272.2
GAPSO 151 2414.7 -- --

CA 128 3192.2 169 6490.5
ACA 123 3234.7 174 6189.8

1 where IBC represents iterations at the beginning of convergence and FVC represents objective function value
at convergence.

3.2. Verification of Actual Flight Experiments of UAVs

The actual flight tests by using drones and a ground control station computer loaded
with the UAV end-cloud collaborative navigation planning algorithm were conducted.

The UAVs used in the experiment were small quadcopter drones, equipped with visual
sensors and inertial sensors to achieve environmental perception and self-positioning, along
with equipped with communication equipment to receive control commands and transmit
image information to the ground station. The patrol speed was set to 3 m/s, the flight
speed during obstacle avoidance was 1 m/s, and the flight task time did not exceed half an
hour. Figure 14 shows the equipment used in the flight testing.
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Figure 14. Actual flight testing equipment: (a) drones; (b) ground control station computer and software.

The flight test site was selected as an indoor environment of 20 m × 15 m × 4 m,
which included two simulated obstacles. The drones flew from the starting point to the
target point according to the calculated trajectory of the algorithm. Figure 15 shows the
indoor drone flight testing site.
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drones loaded with the E-CPSO started from the starting point, flew along the trajectory 
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Figure 16. Drone flight trajectory in rviz: (a) flight trajectory of drone 1; (b) flight trajectory of drone 2. 
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The specific steps of the experiment are as follows:

• Step1: Start drones and ground control station loaded with the UAV end-cloud collab-
orative navigation planning algorithms;

• Step2: The ground control station calculates the track point position and sends it to
the drones based on prior environmental information;

• Step3: The drones fly toward the target trajectory point position, continuously calcu-
lating and optimizing their own trajectory during the flight process, and transmit the
trajectory and observed environmental information back to the ground station;

• Step4: The ground station further calculates the trajectory points based on the environ-
mental information transmitted by the drone and sends them to the drone;

• Step5: Repeat step 3 and 4 until the drones complete obstacle avoidance and reach the
final target point, and display the dynamic trajectory of the drones.

The test trajectory results of navigation planning of the two drones were, respectively,
displayed in rviz as shown in Figure 16. From the figure, it can be seen that the two drones
loaded with the E-CPSO started from the starting point, flew along the trajectory planned
by the algorithm, avoided obstacles and reached the task area, and ultimately reached the
target point. The experimental results showed that the algorithm is correct and feasible,
and can meet the needs for drone navigation planning.
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4. Discussion

The study proposed an algorithm of UAV end-cloud collaborative navigation planning,
combining the onboard navigation planning part of UAVs with the background control
station part. In addition, an improved PSO for the navigation control onboard and a
multi-objective hybrid swarm intelligent navigation planning algorithm for the navigation
control of background were, respectively, designed.
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For the algorithm proposed in the article, simulation testing and actual flight ex-
periment verification of UAVs were conducted. The simulation results showed that the
algorithm converged with lower objective function values and fewer iterations compared
to traditional PSO, IPSO, GAPSO, CA, and ACA navigation planning methods, indicating
that the optimization ability and timeliness of the algorithm were significantly improved,
and the actual flight test results of UAVs showed that the algorithm can meet the needs of
UAV navigation planning in mission and obstacle environments.

There are still some shortcomings in the application of the algorithm in navigation
planning under the limited communication resources of UAVs. Follow-up studies will focus
on the actual communication situation and other constraints under practical application
conditions to improve the algorithm, conducting actual flight tests with more drones in
multi-task scenarios.
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