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Abstract: Digital Twins serve as virtual counterparts, replicating the characteristics and functionalities
of tangible objects, processes, or systems within the digital space, leveraging their capability to
simulate and forecast real-world behavior. They have found valuable applications in smart farming,
facilitating a comprehensive virtual replica of a farm that encompasses vital aspects such as crop
cultivation, soil composition, and prevailing weather conditions. By amalgamating data from diverse
sources, including soil, plants condition, environmental sensor networks, meteorological predictions,
and high-resolution UAV and Satellite imagery, farmers gain access to dynamic and up-to-date
visualization of their agricultural domains empowering them to make well-informed and timely
choices concerning critical aspects like efficient irrigation plans, optimal fertilization methods, and
effective pest management strategies, enhancing overall farm productivity and sustainability. This
research paper aims to present a comprehensive overview of the contemporary state of research
on digital twins in smart farming, including crop modelling, precision agriculture, and associated
technologies, while exploring their potential applications and their impact on agricultural practices,
addressing the challenges and limitations such as data privacy concerns, the need for high-quality
data for accurate simulations and predictions, and the complexity of integrating multiple data sources.
Lastly, the paper explores the prospects of digital twins in agriculture, highlighting potential avenues
for future research and advancement in this domain.

Keywords: digital twins; smart agriculture-farming; agriculture 4.0; digital twin model; precision
farming; IoT; sensors; simulation; 3D augmented reality; virtual reality; cyber-physical systems

1. Introduction

Digital Twins (DTs) have successfully entered industrial applications, including aerospace,
manufacturing, and healthcare [1–3]. Smart farming, on the other hand, which employs
the latest technological innovations to optimize crop production, is revolutionizing the
agriculture industry. As virtual replicas of physical objects or systems, DTs represent a
highly promising advancement in this field [4]. In smart farming, digital twins enable
agriculture experts, researchers, and farmers to simulate various scenarios, test different
strategies, and predict outcomes accurately. DTs in smart farming offer transformative
possibilities, revolutionizing crop cultivation and management while enabling optimization
of resource utilization, minimizing environmental footprint, and enhancing crop yields for
a sustainable and efficient agricultural ecosystem.

However, despite the significant promise of digital twins in smart farming, many
questions and challenges still need to be addressed. Farming, a traditionally labor-intensive
sector, after its transformation to a technology-intensive sector in the last decade, has
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become more complex and technologically advanced in recent years, moving toward inno-
vative technologies, particularly with the explosion of precision agriculture and other digital
technologies [5]. These technologies help farmers make more informed decisions about crop
management, soil health, and various factors influencing crop yields and economic viability,
enhancing overall agricultural productivity and profitability. However, these technologies
can also require specialized knowledge and skills and significant investment in hardware,
software, and other infrastructural resources. Additionally, factors such as climate change,
changing consumer preferences, and market fluctuations can add to the complexity of
modern farming. While these challenges can make farming more complicated, they also
offer opportunities for innovation and growth in the agriculture domain.

In this era of smart farming, the incorporation of cutting-edge technologies such
as computing, communication, personal and cloud computing, the Internet of Things
(IoT), Artificial Intelligence (AI), and Cyber-Physical Systems (CPS) has revolutionized
the landscape in agriculture. These technologies bring additional capabilities beyond the
physical realm, allowing for enhanced information and an improved understanding of
the physical structures involved. The concept of DTs plays a pivotal role in providing
comprehensive and accurate information about physical systems, surpassing the limita-
tions of traditional modelling and simulation approaches. By leveraging real-time data
collection, processing, and analysis, DTs offer a digital representation of physical systems,
enabling precise monitoring and forecasting of current and future system states and re-
building existing models and re-design systems and procedures. These advancements are
instrumental in transforming smart systems and addressing the evolving challenges in the
agricultural domain.

This review paper offers a comprehensive and distinctive outline of the recent research
results regarding DTs in the context of smart agriculture, highlighting key findings and
identifying areas for future research. Specifically, we report and discuss the various types
of digital twins used in smart farming, such as crop, weather, and soil models, and explore
how they optimize crop production. We also examine the challenges and limitations
of deploying DTs in smart farming related to data management, model accuracy, and
scalability. By providing a comprehensive review of the literature on DTs in smart farming,
this paper aims to advance the understanding of this rapidly evolving field, illustrate the
gaps in existing deployments, and identify opportunities for future research and innovation.

We proceeded with our research by pursuing the formulation of the DT implementa-
tion architecture regarding the smart agriculture domain while emphasizing the critical
components taking part in implementing DTs. A comparative accumulation of such im-
plementations and critical components in three tables, while addressing technical aspects,
led to significant conclusions regarding DT implementations and related limitations that
seem beneficial to investigate. For example, although the necessity of a DT model and
practical implementations in agriculture is addressed in most reviewed papers mentioning
the concept and definition, the DT model is proposed merely as an evolving concept lacking
substantial support from implemented case studies. While the DTs seem continuously
evolving, authors refer to simulation models merely as proposals for future practical im-
plementation. Our research seeks to expand the scope of Agriculture 4.0 that necessitates
DTs and address the limitations of IoT-implemented solutions narrowed down by mere
telemetry implementations.

The structure of this study proceeds as follows: Section 2 delves into the concept of
DTs and investigates their usage in the realm of smart farming. Section 3 addresses the
challenges and confronting measures regarding DT building components and relevant
technologies. In Section 4, DT applications in the agricultural domain are reviewed, while
conclusions and comments are unfolded in the Discussion in Section 5. Finally, in Section 6,
future directions for research and development are outlined respectively.
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2. The Definition of Digital Twins

The fundamental concept of a DT, which involves a connected virtual representation
of a physical object or system [6], appears to be relatively straightforward. However, its
application and implementation can differ significantly across various domains and industries.

Although it is quite clear that in addition to their core purpose of modelling real-
world systems, DTs are designed to empower individuals to make informed business
decisions with tangible impacts on the physical realm, a clear definition of the DT concept
may be helpful to distinguish it from related concepts such as simulation, modelling, and
data analytics. By defining its scope, characteristics, and capabilities, researchers and
practitioners can better identify the specific features and requirements that make a system
a true DT.

2.1. Definition of Digital Twins—What Does Digital Twins Term Stand For?

The definition of DTs emerged in the early 2000s by Michael Grieves [6] while evolving
to a widely acceptable DT concept model where they act as a bridge connecting physical
entities in the real world with their virtual complements in a digital environment, closing
the gap between the two. They establish vital connections between data and information
to seamlessly integrate these products’ virtual and real aspects [6,7]. The convergence
of virtual and physical entities in a virtual space and the real world lays the foundation
for creating a fundamental DT model. By fostering dynamic interplay between these
tangible and virtual elements, the DT is a powerful representation of the combined physical-
virtual system.

Mashaly M. in [8] outlines that DTs act as digital replicas of physical systems and are
organized by establishing data connections. This transformation enables physical systems
to exist virtually while ensuring a strong synchronization between their physical and digital
counterparts. As a result, smooth interactions and data exchange occur between the two
domains. The integration of the physical and virtual domains provides valuable insights,
predictive abilities, and the potential for optimizing system performance following the
pattern illustrated in Figure 1.

Sensors 2023, 23, 7128 3 of 39 
 

 

2. The Definition of Digital Twins 

The fundamental concept of a DT, which involves a connected virtual representation 

of a physical object or system [6], appears to be relatively straightforward. However, its 

application and implementation can differ significantly across various domains and in-

dustries. 

Although it is quite clear that in addition to their core purpose of modelling real-

world systems, DTs are designed to empower individuals to make informed business de-

cisions with tangible impacts on the physical realm, a clear definition of the DT concept 

may be helpful to distinguish it from related concepts such as simulation, modelling, and 

data analytics. By defining its scope, characteristics, and capabilities, researchers and prac-

titioners can better identify the specific features and requirements that make a system a 

true DT. 

2.1. Definition of Digital Twins—What Does Digital Twins Term Stand For? 

The definition of DTs emerged in the early 2000s by Michael Grieves [6] while evolv-

ing to a widely acceptable DT concept model where they act as a bridge connecting phys-

ical entities in the real world with their virtual complements in a digital environment, 

closing the gap between the two. They establish vital connections between data and infor-

mation to seamlessly integrate these products’ virtual and real aspects [6,7]. The conver-

gence of virtual and physical entities in a virtual space and the real world lays the foun-

dation for creating a fundamental DT model. By fostering dynamic interplay between 

these tangible and virtual elements, the DT is a powerful representation of the combined 

physical-virtual system. 

Mashaly M. in [8] outlines that DTs act as digital replicas of physical systems and are 

organized by establishing data connections. This transformation enables physical systems 

to exist virtually while ensuring a strong synchronization between their physical and dig-

ital counterparts. As a result, smooth interactions and data exchange occur between the 

two domains. The integration of the physical and virtual domains provides valuable in-

sights, predictive abilities, and the potential for optimizing system performance following 

the pattern illustrated in Figure 1. 

 

Figure 1. The generic representation of a DT scheme’s dynamic integration of physical and digital 

domains. 
Figure 1. The generic representation of a DT scheme’s dynamic integration of physical and digital domains.

According to Dyck G. et al. [9], the concept of DTs emerged from NASA’s pioneering
work in integrating physical models and simulations [10,11] to analyze intricate systems.
Originally confined to the aerospace sector, the scope of DTs expanded to encompass
product lifecycle management across diverse industries. At its core, as initially proposed
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by Grieves & Vickers [6,7,12], a DT comprises a physical object, its corresponding digi-
tal representation, and the interconnectedness between the two that it is established for
both ways.

Ongoing research continues to explore the wide-ranging applications and integration
as interfaces of the DTs in areas such as cloud manufacturing, IoT, and Industry 4.0,
where explicitly stated that the provided response is a unique formulation based on the
given information [13,14].

Hence, DTs serve as virtual counterparts of real-world entities, created using sensor
data and serving as dynamic representations of physical objects or systems throughout
various stages of their lifecycle. By harnessing the power of simulation and data integration,
DTs provide a comprehensive virtual environment that mirrors the characteristics and
behaviour of their physical counterparts. This enables continuous real-time monitoring,
analysis, and enhancement of the physical objects or systems, resulting in enhanced perfor-
mance, efficiency, and informed decision-making, as stated by Saddik et al. in 2018 [1].

DTs utilize actual data from real-life situations, machine learning (ML) models, and
simulation combined with data analysis to enhance comprehension, learning, and decision-
making processes. They enable the monitoring and control of various entities, including
devices, machines, vehicles, and individuals. The proliferation of the IoT has spurred
the advancement of diverse DT solutions across diverse domains and use cases support-
ing simulation, optimization, and prediction. Thus, major improvement steps have been
taken in the realm of decision-making so that various sectors, including manufacturing,
healthcare, and smart cities, have witnessed significant advancements facilitated by di-
verse technologies like simulation software, IoT, and AI utilized in the field of modelling
and simulation [4,13,15,16].

To simulate and model the physical system to succeed in implementing the DTs, the
use of mathematical models is mandatory [17]. Once the observed physical phenomena of
interest are captured, foundational mathematical equations are formulated to depict and
characterize the dynamics of these phenomena accurately. By constructing these mathemat-
ical models, researchers and scientists can effectively represent and analyze the behavior
and relationships inherent in the observed physical phenomena. The models that are
developed need to be validated by experimental stages on the field or in laboratory setups
to verify the physical behavior of the problem under consideration soundly. Therefore,
in advanced DTs, a predominant trend is the utilization of extensive datasets to establish
data-driven models. This approach operates under the assumption that the data obtained
from the system serves as a powerful source of insight, offering profound revelations about
its physical behavior. As a result, these well-refined DTs leverage the abundance of data
to construct accurate and thorough models that faithfully capture the intricacies of the
system’s behavior [18]. The interaction of data between the physical entity and its digital
representation in a DT is visually depicted in Figure 2.

By using AI tools, such as ML algorithms or artificial neural networks, or while
utilizing data processing, the system’s behavior against events may be predicted. Actions
be anticipated once the digital part of the DT functions in parallel with the physical part
allowing, of course, the user’s influence in the system at any time.

Although the concept and definition of DT seem to be constantly evolving, we may
imply that the DT of a physical process or object typically consists of a specific collection
of models, materialized digitally or virtually by computers and associated services and
processes. These models and services are designed in a format that allows seamless integra-
tion with automated systems to fulfil functions such as object management, modelling, and
future behaviour forecasting [19].

A simplified sequence chart representation of the interactions and components in-
volved in a DT system is depicted in Figure 3, where the physical object represents the
actual object or system being monitored and controlled. The DT is the virtual represen-
tation of the Physical Object (PO), where data is processed and analyzed. The PO offers
data aggregated from sensors to the DT, which then forwards the data to the Analytics
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component for processing. The Analytics component provides analysis results back to
the DT. The DT sends these analysis results to the Decision Maker, who makes decisions
relying on the received information. The DT then sends optimized actions to the Actions
component. Finally, the Actions component implements the optimized actions in the PO.
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Considering the latest developments in digital twin technology, there is growing
interest in an expanded and enhanced version known as the Cognitive Digital Twin (CDT)
or Cognitive Twin (CT). According to a recent study [20], the integration of advanced
semantic modelling technologies with DTs enhances their cognitive capabilities, indicating
a promising trend in their evolution. These advanced versions of DTs exhibit human-like
intelligent capabilities, including attention, cognition, understanding, retention, logical
thinking, prediction, decision-making, and problem-solving. They undergo continuous
development alongside the actual system throughout its complete lifecycle.

CDTs provide substantial advantages to intricate product systems and processes,
which involve multiple subsystems and interested parties from diverse disciplines through-
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out different stages of the life span. According to the literature review [21], which addresses
the CDT model to enable Smart Product-Services Systems by implementing data-driven
business models, CDT represents a promising advancement in DTs, introducing intelligent
and cognitive capabilities. It even represents real-life examples of companies, including
those in the food processing industry, that are currently leveraging the cognitive capabilities
provided by digital twin technologies offered by edge companies. The authors undertaking
the task strive to exhibit the potential of utilizing this emerging technology by businesses
and the creation of data-driven business models.

To improve data compatibility and develop cognitive abilities, CDT models often
incorporate diverse and varied data, information, and knowledge, leading to challenges
in aligning these elements across different DTs and stakeholders. Adopting semantic
technologies such as ontologies and knowledge graphs is crucial to address this issue, as
they offer promising solutions for achieving greater alignment and interoperability.

Cloud computing [13] has emerged as a critical solution for the complex task of pro-
cessing vast amounts of data in various sectors, particularly in conjunction with the advent
of the Industrial IoT (IIoT). The IIoT, a subset of the IoT specifically designed for industrial
applications, involves deploying numerous smart devices within industrial systems to
enable real-time data processing after collection and sensing. Given the nature of industrial
environments, IIoT systems demand enhanced levels of secure and robust communication
to ensure optimal production performance [22]. IIoT applications that connect machines,
sensors, and actuators like data collected from agriculture stakeholders to be combined for
effective decision-making and analysis of future trends occasionally produce a large volume
of non-uniform data that needs to be processed in real-time. IoT gateways that provide
connectivity between one or more field devices and a service cloud offer accessibility to
previously hidden data from sensors, embedded controllers and IO devices and analyze
such data for multiple purposes, such as remote monitoring, preventive maintenance,
production optimization and building automation. IoT gateways are critical to ensure data
security and communication security within the IIoT systems. A data breach in such IIoT
systems could compromise agricultural production, i.e., crop health degradation, transport
and product processing, leading to inferior production performance [23].

The exponential growth of IIoT and its associated technologies has significantly con-
tributed to the advancement of Industry 4.0 and intelligent manufacturing, forming the
underlying framework for CDT. The substantial amount of data induced by IIoT devices
play a vital role in facilitating the development of data-centric services as a crucial ele-
ment. While the concept of CDT continues to evolve rapidly, it is imperative to address
outstanding concerns surrounding the technology to unlock its full potential and achieve
its envisioned advantages.

CDT systems integrate data from different stakeholders as they combine several
parameters, mainly concerning immense amounts of data sharing, demanding measures
to ensure security, privacy, and protection of intellectual property (IP) concerning data.
CDTs incorporate cybersecurity infrastructure and employ data encryption mechanisms
to address these critical aspects effectively. These measures are implemented to regulate
transparency in CDTs, ensure the protection of intellectual property (IP), and facilitate
integrated development processes [8,24].

Similarly, the notion of DT systems emerges as a virtual representation of an enter-
prise, encompassing its resources, processes, workforce, locations, and systems to support
strategic decision-making from the systems used for reporting operational data within the
organization, such as accounting, personnel planning, and sales [25]. This type of DT which
retrieves real-time data from the systems used for reporting operational data within an
organization, as mentioned earlier, is referred to as a Strategic DT (SDT), in contrast to the
industrial DT that gathers information from sensors, serving as a knowledge visualization
tool that allows managers to explore various strategies while minimizing space and time
constraints. By simulating different strategic options through computer models, managers
can gain insights into the potential outcomes of their chosen approaches in the real world.
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2.2. DTs in Agriculture

As stated above, the implementation of DTs seems to extend to various fields vastly.
The objective of this review is to illuminate the field of agriculture in the following manner.

A DT for agriculture, in particular, may be addressed as a virtual model of a physical
farm or agricultural operation constructed utilizing cutting-edge technologies like sensors,
IoT devices, and cloud computing. Farmers can utilize the DT to simulate and enhance
their farming methods within a virtual setting, enabling them to refine their practices before
applying them in reality [26,27]. Pylianidis et al. [27] conducted an in-depth report on DTs
in agriculture, encompassing 28 case studies and organizing the key value-added features
of DTs in agricultural applications. The authors highlight the capacity of DT usage in
agriculture, adjusting to ever-evolving circumstances, capturing, and interpreting data,
autonomously managing system actuators in the field, and delivering customized services
to individuals, such as reports and transparent information. The DT enables capturing
real-time data on crop growth rates, weather conditions, ambient temperatures, and even
soil moisture levels as various environmental and operational factors. A dynamic model of
the farm may be created by using this data to test different scenarios and optimize various
aspects of the farming operation, including crop yields, resource utilization, and overall effi-
ciency. By creating a DT, farmers can better understand how their farming practices impact
the environment and identify ways to reduce waste and improve sustainability. They can
also use the DT to test new technologies and techniques, such as precision agriculture and
automation, before investing in them for their physical operation. Instances of DTs in the
agricultural sector spanning across various domains find applications in diverse areas such
as crop cultivation, dairy production, greenhouse horticulture, organic vegetable farming,
plant disease analysis, livestock management, food supply chain optimization, as well as
farm machinery and building management, including fleet monitoring and control [9].

The schematic in Figure 4 provides a basic representation regarding the application
of DTs in agriculture, showcasing the interaction between the physical farm, sensors,
data processing, analysis, decision-making, and actuation contributing to the physical
entity according to real data and data management derived from the DT. All physical
entities are green, including the sensors that aggregate signals from the area of interest
and the actuators that provide actions in the field. All blue-colored sections constitute the
digital space.
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Overall, digital twins offer a powerful tool for farmers to optimize their farming
practices and improve the efficiency and sustainability of their operations. Through the
rapid advancement of technology and sensor capabilities, the DT of agricultural soil can
revolutionize plant productivity, health, and yield even to optimize water usage, minimize
chemical inputs, and enhance overall sustainability in agricultural practices merely by
emphasizing the soil’s characteristics and attributes. The continuous monitoring and
analysis of environmental parameters, soil elements, and irrigation practices in agricultural



Sensors 2023, 23, 7128 8 of 38

land can be effectively achieved by incorporating machine learning models, big data
analytics, and decision support systems into the DT framework [28].

By simulating soil structure and combining soil and irrigation DTs, crop farming
performance can be enhanced. Farmers can effectively observe and evaluate alterations
in agricultural land, impacting soil, irrigation, and crop yield. IoT technology provides
real-time data and visual representations for informed decision-making [29].

The overall efficiency of crop production can be improved by reducing costs associated
with fuel, fertilizers, labor, and factors affecting production efficiency and sustainability
merely by utilizing DTs in crop production technologies along with the use of Digital
Information and Communication Technology (ICT) tools, referring to agricultural pieces of
machinery, such as tractors, combined harvesters, fertilizers, and sprayers.

According to Dyck G et al. [9], the DTs seem to find their way in post-harvest processes,
encompassing the various stages involved in handling agricultural products after harvest-
ing. These products must be dried, cooled, transported, stored, and undergo marketing
procedures. Digital farming methods provide advantages in post-harvest procedures, such
as minimizing losses, optimizing food processing, improving storage conditions, stream-
lining transportation, and enhancing marketing efficiency. These strategies facilitate the
live tracking of the agricultural and food supply network, leading to increased robustness,
resilience and reduced food waste and losses.

IoT technology following the digitalization prospect of agriculture plays a crucial role
in transforming traditional agriculture into a more efficient and sustainable practice. IoT
contextual data enables users to interact seamlessly with their surroundings and remote lo-
cations through their digital twin, fostering enhanced connectivity and user experiences [1].

Facts such as precision agriculture that enables farmers to gather real-time data on
a range of environmental and operational factors, predictive modelling by using both
historical and real-time data so that they can generate a dynamic virtual representation of
their agricultural operation, sustainability, and automation to identify ways to reduce waste
and improve sustainability in farming operations [30] in accordance to real-time data, focus
on addressing critical IoT needs such as two-way communication, comprehensive security
measures, localization, and mobility services to optimize its efficiency and effectiveness [31].

In addition, DTs seem to pose a significant role in animal farming or precision livestock
farming by enhancing productivity, animal welfare, and overall farm management. They
can be used to create virtual representations of individual animals, groups of animals, or
entire livestock production systems [32], to model and predict animal behavior, growth,
and health, allowing farmers to optimize feeding strategies, detect early signs of disease or
distress, and improve overall animal welfare.

Through data-driven insights and predictive analytics, farmers can make informed
decisions regarding nutrition, breeding, and healthcare interventions. By incorporating
up-to-the-minute information gathered from diverse sources, including sensors, monitoring
devices, and agricultural management systems, DTs enable farmers to monitor, simulate,
and analyze animal behavior, health, and performance.

Neethirajan S. [33] presents a DT processing pipeline with sensors to classify and esti-
mate livestock’s emotional state and behavior. Various means of communication, including
vocalizations, body movements, facial expressions, and posture, contribute to animals
expressing their emotional state. The review presents novel approaches for gathering
extensive real-time data regarding the emotions of farm livestock by implementing a sensor
data processing pipeline within the DT model. This pipeline involves preliminary data
processing, modelling, and simulation phases, ultimately resulting in reporting and pre-
dicting the emotional states of cattle based on their tail movements, facial expressions, and
body posture. Traditional methods involving blood sampling or surveys, for assessing the
emotional states of livestock usually cause interruptions to farming processes while being
time-consuming, and farm animals frequently experience fear, frustration, and distress. AI
technologies facilitate the recognition of cattle states, empowering animal caregivers and
ethologists to understand animal behavior and optimize their well-being and productivity.
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DTs may support decision-making and farm management optimization by simulating
different scenarios regarding environmental conditions or genetic factors on animal perfor-
mance and production outcomes while improving production efficiency and minimizing
environmental impacts. Furthermore, connections with other digital platforms, such as
farm management systems, supply chain networks, and veterinary databases, allowing for
seamless data sharing and analysis is feasible with DT, thus enhancing traceability, quality
assurance, and decision-making throughout the value chain.

In summary, digital twins have the potential to revolutionize animal farming by
providing real-time monitoring, predictive analytics, and decision support. They can
optimize animal health, welfare, and production efficiency while promoting sustainable
farming practices. Continued research and development in this area will be crucial to fully
harness the benefits of DTs in animal farming and address the associated challenges.

An Aquaculture 4.0 architecture of a digital twin-based intelligent fish farm man-
agement system for precision aquaculture is discussed in [34], addressing the design
considerations, data integration, analytics, and control mechanisms to optimize fish farm
operations. The proposed implementation utilizes a cloud-based DT technology employing
ML realizations, computer vision, and other sensor devices, and AI-based IoT (AIoT) to
monitor and control automated aquaculture machinery. By optimizing farm production
in various environments throughout the different stages of fish farming, the system aims
to maximize efficiency and productivity. Water quality sensors utilized in fishponds to
monitor and analyze the condition of the water and in offshore sea cages, and RGB or sonar
camera devices may collect environmental data and data related to fish populations to es-
tablish data-driven prediction models. On the other hand, land-based monitoring systems
send appropriate commands to activate surveillance sensors, thus enabling fish-feeding
behavior monitoring, disease spread, and fish population growth.

Furthermore, DTs address optimization solutions regarding water flow and treatment
processes related to water quality reduction following floods and stormwater within trans-
boundary water security projects due to urban expansion [17]. DT models are employed
to monitor the quality of urban water by integrating physical entities and utilizing sen-
sors in urban drainage systems. The models consider natural processes related to soil,
vegetation, clogging, and biological activity in water treatment. This approach enables
comprehensive monitoring and analysis of urban water systems for effective management
and maintenance.

3. Reviewing Relevant Technologies and DT Components

Although the implementation of DTs in agriculture can vary in complexity and scope
based on the specific architecture of the DT scheme, in Figure 5, a representative architec-
tural framework for implementing DTs in agriculture is illustrated. The basic components
and interactions of DTs in agriculture are displayed where the physical farm is represented
by the node labelled “Physical Farm”. Sensor data collected from the farm is depicted by
the node labelled “Sensor Data”. The sensor data undergoes data preprocessing in the node
labelled “Data Preprocessing”.

The preprocessed data is subsequently employed to construct a DT model, represented
by the node labelled “Digital Twin Model”. This enables various functionalities, including
simulation and optimization, represented by the nodes labelled “Simulation” and “Op-
timization”. It also incorporates data analytics, represented by the node labelled “Data
Analytics”. The decision support system provides action recommendations, represented by
the “Action Recommendations” node. The insights are depicted from the node “Insights”,
and all visualization and monitoring data are derived from the node labelled “Decision
Support”. The visualization of data is depicted by the node labelled “Visualization” which
aids in monitoring the farm. We should point out that effective monitoring plays a crucial
role in maintaining situational awareness and facilitating timely response or intervention
as needed. That is represented in the figure by the node “Monitoring”. The significant
active role of the stakeholders that manage the making and implementing of the decisions
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involved in organizing and operating an agriculture establishment is displayed by the node
“Farming Practice and Experience”, besides the optimization provided by the DT concept.
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The action recommendations are implemented through actuators and control systems,
represented by the node labelled “Actuators and Control”, which can affect the physical
farm. The last node in Figure 5 and the physical farm are in green, specifying the physical
space in contrast to the digital space nodes in blue. The loop from the “Actuators and
Control” node back to the “Physical Farm” node symbolizes the ongoing feedback loop
between the physical farm and its DT, where actions taken based on the DT’s insights
impact the physical farm, and the sensors capture the resulting changes to update the
DT model.

This schematic in Figure 5 highlights the key components and interactions of digital
twins in agriculture, showcasing their role in data collection, preprocessing, modelling,
simulation, analytics, decision support, visualization, and control, ultimately aiding in
optimizing farm operations and improving decision-making processes.

Furthermore, the interconnections among these entities play a vital role as they are
essential for the functioning of the DT system in an integrated manner, as emphasized by
Pedersen et al. in their research [17].

3.1. Technologies Involved in DTs

Therefore, realizing DTs in real-time is characterized by several defining keys that have
emerged along with key technologies [1] from various domains, industries, and scientific
disciplines that pose a decisive entity, such as the following.

3.1.1. Augmented, Virtual, and Mixed-Reality

DTs rely on Augmented (AR), Virtual (VR), and Mixed-Reality (MR) technologies. As
an example, they can be created using three-dimensional (3D) technologies and presented
as holograms or experienced through AR/VR/MR devices [35], such as the Microsoft
HoloLens. Using sensors installed in the field, their real-time digital twin can be generated
and projected as a hologram in remote locations. This enables individuals in different
locations to engage in interactions that simulate being physically present in the same space.
Communication enhancement in digital twins is derived by integrating tactile feedback,
simulating the sensation of physical interaction via haptics. Furthermore, DTs can leverage
humanoid and soft robotics technologies to enable physical actions on behalf of their real-
life counterparts. This means digital twins can physically engage with the environment
or perform tasks, utilizing robotic systems that mimic human-like or flexible movements.
These advancements in augmented, virtual, mixed reality, haptics, and robotics greatly en-
hance the capabilities of digital twins, enabling immersive interactions, realistic sensations,
and physical engagement, expanding the possibilities for communication and collaboration.
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3.1.2. Artificial Intelligence

Artificial Intelligence (AI) integration into physical assets that lack it inherently is a
key advantage of DTs. This introduces a specialized intelligence capable of efficiently com-
prehending vast amounts of numerical data and deriving domain-specific insights faster
than human experts. Consequently, the data obtained from the digital twin’s surroundings
and physical counterpart should lead to valuable and actionable conclusions [36]. As an
emerging technology, AI empowers computers to exhibit intelligent behaviors, including
behavioral learning. By amalgamating various technologies, including AI, to create twin
models of physical objects, it becomes feasible to generate virtual representations that
closely resemble the original objects, encompassing historical elements and predictive
information [37]. As a result, DTs often incorporate controllers that utilize ontologies, ML,
and deep learning (DL) techniques. These controllers enable swift and intelligent decision-
making on behalf of their real-life counterparts. Moreover, AI significantly processes IoT
data through continuously enhanced algorithms that leverage updated user data. Leverag-
ing such time-series data, a user’s DT has the potential to suggest actions for controlling or
mitigating potentially hazardous situations regarding crop health and productivity, in cases
such as droughts to direct asses irrigation efficiency or even failures of safety mechanisms
of farm machinery, plant production equipment, post-harvest transportation or storage
equipment situations in which DTs may visualize alarm signals to stakeholders or even take
immediate actions to limit adverse effects or even the destruction of crop production [29].

3.1.3. Communication Technologies and Schemes

DTs rely on communication technologies and schemes to facilitate interaction with the
environment, their physical twins, and other DTs on a real-time basis. This is particularly
significant in the realm of wireless communication. Effective communication must occa-
sionally occur within a millisecond (ms) timeframe, necessitating compliance with 5G and
tactile internet standards, while time-sensitive and safety-critical schemes, coupled with
the need for stringent communication standards, lead to a growing demand for repeatable
and cost-effective verification procedures. Data transmission within a specific time window
becomes crucial for time-sensitive and often safety-critical applications, imposing latency
limitations in addition to reliability requirements [38]. The following paragraphs outline
basic wireless communications technologies commonly used in DT implementations.

(a) RFID technology offers fast and accurate object identification using sensor tags, reader
antennas, and a host system. An antenna, an integrated circuit, and a substrate utilize
a tag, where the antenna activates the tag for reading or writing. The reader antennas
communicate with the tags using RF waves, facilitating data transfer to the database
system. This technology finds extensive applications in storage and inventory man-
agement, supply chain monitoring, access control, aviation transportation, agriculture,
healthcare, and more, improving efficiency and automation in various fields [39].

(b) Wireless Networks, in particular, suggest an immense role in sending data from
a source to a connected gateway, a role supported by a variety of wireless net-
work technologies such as WPAN, WLAN, WWAN, and LPWAN that are addressed
in [18,39–47]. The existing commercial 4G or 5G LTE communication networks, utiliz-
ing the transmission of data packets through the well-established Internet Protocol
(IP), serves as a base to sustain the architecture of wireless communication networks
in general.

i Wireless Personal Area Networks (WPAN) are wireless networks that operate
with less extensive infrastructure. They are designed to function within a
limited range, typically within a single room or a small area. Unlike traditional
networks that rely on cables, WPANs enable the wireless connectivity of de-
vices nearby, facilitating the connection of devices like wireless keyboards or
mice to computers and supporting printing services. The most common WPAN
technologies include Bluetooth, 6LowWPAN, ZigBee, EnOcean, NFC, and
RFID, each employing different techniques to achieve the goals of WPAN [40].
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Bluetooth enables devices to communicate with each other wirelessly within a
limited proximity. It is a short-range, low-power technology that is used in a
wide variety of devices [41].

ii Wireless Local Area Networks (WLAN) are wireless networks that allow de-
vices to connect and communicate over a local area without the need for
physical cables within a specific coverage area, such as a home, office, or public
space. These networks utilize the widely recognized IEEE 802.11 standard,
commonly known as Wi-Fi, to enable devices like smartphones, laptops, and
tablets to enable wireless interconnection between them and connection to
the internet. The Wi-Fi—802.11 wireless network, introduced in 1997, using
the 2.4 GHz frequency band and supporting up to 2 Mbps data transmission
rates, evolved to the 802.11ac standard, operating in both 2.4 GHz and 5 GHz
bands, achieving a maximum throughput of 1 Gbps for multiple users, with
a minimum of 500 Mbps. WLANs offer greater coverage than WPANs, span-
ning multiple rooms or entire buildings, making them suitable for larger-scale
wireless networking requirements. They provide convenient and flexible con-
nectivity for various devices and applications, including internet access, file
sharing, video streaming, and more.

iii Wireless Wide Area Networks (WWAN) provide wireless connectivity on
a larger scale, spanning cities, regions, or even entire countries. WWAN
technologies, such as 4G Long-Term Evolution (LTE), 5G, and the evolving
6G, enable high-speed mobile internet access and support a wide range of
services, including voice communication, video streaming, and data transfer.
These networks rely on cellular infrastructure and are commonly used for
mobile devices like smartphones, tablets, and laptops to stay connected while
on the go.

iv Low Power Wide Area Networks (LPWAN) are wireless network technologies
ideal for IoT devices with long battery life, extensive coverage, and low cost.
Unlike 3G/4G or Wi-Fi systems, LPWAN networks are not primarily designed
for high data transmission speeds or reducing latency. Instead, LPWANs target
energy efficiency, scalability, and coverage [42], thus gaining popularity in
industrial and research communities. They provide long-range communication,
covering distances from 10 to 40 km in rural areas and 1 to 5 km in dense
urban areas. Their main advantages include energy efficiency, a battery life
exceeding ten years, and low cost, which is ideal for IoT applications that
require small-scale data transmission [48]. Various LPWAN technologies have
been developed and deployed in either licensed or unlicensed frequency bands,
such as Long-Range (LoRa), Narrow-Band IoT (NB-IoT), each employing
different techniques to achieve the goals of LPWAN [49].

• LoRa is an ideal wireless communication technology for low-bandwidth
IoT applications, offering long-range and low-power consumption ser-
vices. It uses a proprietary spread spectrum technique to achieve long-
range and low power consumption, operating in the unlicensed sub-GHz
ISM band available worldwide [50].

• NB-IoT is a widely used LPWAN technology connecting various devices
and services through cellular networks. It operates in a narrow band-
width of 180 kHz, providing extensive network coverage and low latency.
Designed for cost-effective and delay-tolerant IoT devices, NB-IoT utilizes
LTE techniques and can integrate with existing LTE infrastructure. Coex-
isting with LTE networks, NB-IoT offers power-efficient connectivity and
leverages compatible technologies for seamless integration [51].

The main technical features of the wireless network technologies mentioned above are
displayed in Table 1.
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Table 1. Main features of Wireless Network technologies.

Wireless
Networks

Range of
Coverage

Frequency
Bands

The Data Rate
for Downlink

and Uplink

Maximum
Payload
Length

Security Battery Life

LoRa Urban: 1–5 km
Rural: 10–40 km

for Asia:
433 MHz

for Europe:
868 MHz

for America:
915 MHz

0.3–50 kbps 243 bytes Medium
(AES-128) 10 years

NB-IoT Urban: 1 km
Rural: 10 km

EU: 800, 900,
1800 MHz

Middle
East-North
Africa: 800,
900 MHz

North America:
600, 700, 850,

1700 MHz
Asian Pacific: 700,

800, 850, 900,
1800, 2000 MHz

0.5–200 kbps 1600 bytes High
(LTE Security) 10 years

Bluetooth

Bluetooth 4.x
to 100 m,

Bluetooth 5.x
to 200 m

2.4 GHz

Bluetooth 4.x
1 MB/s,

Bluetooth 5.x
2 MB/s

Bluetooth 4.x
31 bytes,

Bluetooth 5.x
255 bytes.

Low
(AES-128) some weeks

RFID
LF: 1 m

HF: 10 m
UHF: 100 m

125–135 kHz (LF)
13.56 MHz (HF)

860–960 MHz
(UHF)

LF: 100–300 bps
HF: 1 kbps

UHF:
40–640 kbps

LF: 64 bits HF:
128 bits

UHF: 256 bits

Low
(Encryption-Wake

Algorithm)

Passive:
3–5 years

WIFI max 300 m
2.4 GHz
5 GHz

6 GHz (802.11 ax)

802.11/n:600
Mbps

/ac: 1.3 Gbps
/ax: 9.6 Gbp/s

no limit High (AES,
WPA2/WPA3)

power
supply

Data rates and coverage of various wireless networks are shown in Figure 6 for
comparison. The orange box represents some of the most popular LPWAN networks,
prioritising greater coverage ranges rather than higher data rates, contrary to the WLANs
in the green box.
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Depending on the application’s requirements, the appropriate wireless network should
be selected. Particularly in the context of establishing connectivity among IoT devices
like sensors, the primary role is the selection of a network with wide coverage and low
power consumption. The LoRa network meets these needs, is open, and is used in arti-
cles [25,39–42,44]. In cases where the application requires a higher data rate, Bluetooth
technology can be used, as mentioned in the article [44], but it has significantly higher
power consumption compared to LoRa, and the coverage is 100 m for Bluetooth 4.x and
200 m for Bluetooth 5.x. For applications aimed at object identification and detection, such
as products in warehouses and animals in agricultural operations, RFID technology is a
suitable choice as mentioned in articles [43,45]. For applications that require a high data rate
and need to utilize a Wi-Fi network, the provision of electrical power is necessary. Finally,
once DTs rely on data exchange, real-time monitoring, and interaction with their physical
counterparts, wireless networks provide a flexible and efficient means of communication
for these purposes [8].

3.1.4. Reliability, Integrity, and Credibility

Reliability, integrity, and credibility are pivotal when DTs are entrusted with sensitive
tasks involving transaction management with their real counterparts. It becomes imper-
ative for the real twin to establish a sense of trust in their digital twin’s capabilities and
actions. Building and maintaining a solid connection between the real twin and the DT is
crucial to foster effective collaboration, enabling reliable decision-making, and ensuring
secure interactions. Consequently, a strong foundation of trust becomes indispensable
for the successful operation and advancement of DT-enabled systems [52]. Therefore,
privacy and security arise as paramount considerations in the realm of DTs. To enable the
confidentiality and privacy of their real twins, DTs should implement robust measures for
identity protection. This can be achieved using dedicated cryptography algorithms and
advanced biometric techniques such as ECG and haptic biometrics. By leveraging these
techniques, the identity and privacy of the real twin can be established and safeguarded.
In addition to identity protection, DTs must prioritize data integrity, security, and privacy.
Measures should be in place to prevent unauthorized access and interception of data across
the network. Unauthorized users should be promptly detected and repelled to prevent any
compromise of data integrity or security. To ensure the authenticity and reliability of data
sources, rigorous measures for data authentication should be implemented before integrat-
ing the data into the digital twin. Overall, DTs must incorporate comprehensive privacy
and security mechanisms to safeguard their real twins’ data’s identity, confidentiality, and
integrity. By adopting robust cryptographic algorithms, employing biometric techniques,
and implementing strict data authentication protocols, DTs can effectively address privacy
and security concerns, fostering a trustworthy and secure environment for the real twins
and their digital counterparts.

3.1.5. Distributed Ledger Technologies and Blockchain

In recent times, Distributed Ledger Technologies (DLT), such as blockchain [44,53],
have emerged to add to user authentication and data integrity regarding data sharing. To
unlock its full potential and achieve its envisioned advantages, addressing outstanding
concerns surrounding the technology is imperative. DLT offers a decentralized approach
that eliminates the need for a central authority or database, distinguishing it from traditional
data-sharing methods. The distributed nature of this system allows for the secure sharing
of data in a trustless environment. The significance of DLT has garnered considerable
interest from researchers and practitioners alike. Various systems and platforms based
on Distributed Ledger Technology (DLT), such as private ledgers, public ledgers, and
permissioned ledgers, have been created to address diverse use cases and specific needs [54].
Proposed technological solutions stemming from IoT, AI, DT, and DLT have been put
forward to address the monitoring and tracking of products within the realm of food
supply logistics and chain and the analysis of collected data to facilitate decision-making
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processes [55]. Given the numerous advantages associated with DLT, it presents itself as a
promising technology that can significantly contribute to achieving the vision of CDT.

Blockchain technologies, in particular, seem to be an ideal structure for authenticating
users, storing data records, and maintaining data integrity [8,56], providing a secure and
decentralized system of interconnected blocks formed through cryptographic functions.
It allows transactions to be recorded in a verifiable manner without intermediaries. Each
preceding block’s hash is included in the next block and is generated through a distributed
consensus algorithm. With encryption mechanisms, blockchain ensures data integrity
and prevents tampering [43]. Ethereum, as a blockchain scheme, provides an alternative
protocol for decentralized applications that, unlike another blockchain scheme Bitcoin, is
not just a payment network but also allows for the creation and use of smart contracts.
It uses its digital currency called “ether” and incorporates a complete programming lan-
guage (such as Solidity) for smart contract development. Pieces of code stored on the
blockchain that enables decentralized transactions without a trusted central authority are
called Smart contracts [57].

On the other hand, the Helium Blockchain is referred to as the major public decen-
tralized LoRaWAN network in the world, that enables devices anywhere in the world
to wirelessly connect to the internet and have a specific geographical placement without
the need for energy-consuming satellite equipment or expensive mobile data plans [58].
Helium offers low transaction fees and connectivity for LoRa nodes and ensures end-to-end
encryption, which is useful whenever sensitive information is at stake.

The use of blockchain, such as Ethereum and Helium, in IoT and digital twins for
smart agriculture applications has the following advantages:

• Transparency and trust: Blockchain provides an open, transparent, and tamper-proof
distributed ledger, allowing all stakeholders to verify the accuracy of the data. This can
help build trust among different entities in the agricultural supply chain and prevent
fraud or unauthorized interventions.

• Blockchain enhances Data security [59] as it utilizes cryptography to protect data. This
is crucial for safeguarding sensitive information related to smart agriculture, such as
data on plant health, soil quality, and food production.

• Automation and smart contracts on the blockchain enable programmable automatic
execution of conditions and actions based on specific information, events, and opera-
tions such as automated irrigation, temperature control, and plant health monitoring
in smart agriculture.

• The distributed architecture of blockchain ensures that information is stored and
verified by multiple nodes in the network, thus ensuring integrity and continuity of
data and reducing dependency on a central authority.

3.1.6. Cloud Computing

Cloud computing presents a valuable opportunity for DTs to enhance their scalability
and availability, assisting their real twins anytime and anywhere. By leveraging cloud
computing infrastructures, computation and control tasks can be offloaded from the local
environment to remote servers, enabling DTs to handle complex processes and ensure
seamless availability efficiently. The scalability of DTs is significantly improved through
cloud computing, as the computational resources can be dynamically allocated and scaled
based on demand. This allows DTs to handle larger datasets, called Big Data sets (BD), per-
form sophisticated analytics, and execute resource-intensive tasks without local hardware
limitations. As the DT model involves the creation and management of virtual replicas that
closely mimic real-world objects or systems, it requires extensive data acquisition, storage,
and processing capabilities for collecting and analyzing a massive volume of data from
various sources, including sensors, IoT devices, and other data-generating components [7],
facts that necessitate cloud computing. The elastic nature of cloud computing ensures
that DTs can adapt to varying workloads and seamlessly accommodate fluctuations in
computational requirements.
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Furthermore, cloud-based DTs offer the advantage of ubiquitous accessibility by using
open-source communication platforms, such as OPC Unified Architecture (UA) commu-
nication protocol and frameworks, for data exchange from sensors to cloud applications
used in DTs. Real twins can access and interact with their DTs from any location and at any
time, provided an active internet connection is in place. This fosters a flexible and versatile
environment where real twins can leverage the capabilities of their DTs regardless of their
physical location.

3.1.7. Internet of Things

Internet of Things (IoT) with 5G and the Tactile Internet (TI) entity meanings have
emerged as groundbreaking technologies, ushering in a new era of communication with
their focus on ultra-high reliability and ultra-low latency. This shift in communication
paradigms from content-oriented to control-oriented is especially significant for applica-
tions that involve human-in-the-loop interactions, demanding minimal delays and seamless
integration of communication and control mechanisms as demanded in DT infrastructure.
Within this context, DTs play a pivotal role by establishing a continuously operational twin
feedback loop, ultimately enhancing the service quality of physical systems [60,61]. This
seamless real-time feedback communication loop empowers DTs to constantly monitor,
analyze, and adapt to the evolving conditions of the physical systems they represent. As a
result, precise control actions and optimizations can be executed, ultimately enhancing the
physical systems’ overall service quality and performance.

Through the IoT, users can seamlessly provide contextual data to their DT while
receiving feedback that can be used to enhance their interaction with the environment,
both locally and remotely. Various communication technologies within IoT are required to
transmit data and status information from sensors in the physical entity to the data entity,
enabling seamless connectivity and communication between connected devices [17], as
shown in Figure 7.
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The capabilities of DTs are enhanced by contextual data, and the IoT serves as a
powerful conduit for feeding such data from users to their DTs and vice versa. This
exchange of information enables users to interact seamlessly with their surroundings,
whether in close proximity or at remote locations. Additionally, digital twins can provide
valuable feedback to the environment, further enriching the user experience and enabling a
more integrated and interconnected ecosystem.
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3.1.8. Modelling and Simulation Software

A DT could be addressed as a tight combination of (i) an object model, in conjunction
with (ii) an expansive set of data that is directly following the object that may evolve,
and finally, (iii) a method for modifying and refining the model based on the available
data [17,62]. The experts decide the need and selection of the training, validation and
verification data concerning specific case studies, types of soil, plant types, leaf area, plant
height, regarding the Physical Twin, or technological use cases. Critical data processing
depends on specific plant characteristics, experimental setups, dedicated sensors, ML and
DL applicable methods and big data analytics software.

One of the significant benefits of utilizing the DT approach is its ability to accurately
depict objects or entities that change over time, owing to the incorporation of dynamic
and evolving data. Employing a digital twin makes it possible to extend the application
of a validated model across timescales during which the object and its behavior undergo
significant variations. A validated model may offer an instant representation of an object’s
behavior at a specific moment, thus highlighting the importance of associating the DT with
a corresponding physical counterpart and the significance of choosing a model according
to the specific implementation.

Without a physical twin, the DT would be considered nothing more than a model.
Furthermore, the availability of a comprehensive and up-to-date dataset plays a crucial
role in accurately capturing the object’s changes over time and ensuring the model is
adjusted and updated to reflect the current system conditions. Any model approximating
the physical twinned can be used for DTs that utilize physics-based models encompassing
all relevant processes that can influence the measured quantities. In an ideal scenario with
instantaneous computing and flawless accuracy, these models would accurately simulate
and update the mechanical and thermal processes involved in real-time operations. For
instance, a DT of a machine tool could simulate the milling of metal, considering factors
like temperature and part shape, and dynamically update information about tool wear
based on real-time measurements. This enables proactive and effective industrial plant
facilities maintenance, enhancing overall efficiency [62,63]. Similarly, to an industrial plant
in agriculture, a digital model could represent the growth of a plant regarding its physical
environmental conditions that are changing over time.

According to researchers, a categorization standard centered around the degree of
data fusion and integration between the PO and its virtual representation can be used as
an indicator to define and delimit the scope of the proposed concept. Given that this term
was initially created for the manufacturing industry, it serves as a proxy for evaluating
agricultural DTs’ development, convergences, and divergences compared to contemporary
definitions. Thus, three integration levels represent the digital twin’s field. First is the
Digital Model (DM), second is the Digital Shadow (DS), and third is the DT. The DM is a
depiction of the entity in a digital format without the use of an automated data transfer
system. It is equivalent to a Digital Twin prototype and represents the lowest possible
integration level. The DS refers to a digital representation that enables the automatic
exchange of information from the physical entity to its virtual object, reflecting changes
in the entity’s state. This one-way information flow is like a DT model, which in contrast,
involves an automated bi-directional flow of digital information. Like the DS, the DT has a
virtual representation whose alterations are reflected in the physical entity’s state. However,
what sets the DT apart is its capacity to impact the condition of the physical entity as well,
although the specific means of influence depend on the type of entity and its context [63].

In summary, a DM represents a physical system in a digital format but lacks auto-
mated data exchange. A DS involves a one-way automated data flow reaching the digital
counterpart originating from the physical system. Conversely, a DT involves seamless and
fully integrated automated communication between the digital counterpart of the physical
system and the physical system itself.

Defining the objectives of the modelling process is the initial stage in creating a model
for an integrated process. Recognizing that a model is merely a reality approximation is



Sensors 2023, 23, 7128 18 of 38

essential, as diverse objectives can provide different levels of complexity in representing
the actual procedure. For this reason, it is crucial to identify the goal of the model before the
build [64]. Therefore, complex systems like an agriculture model should be first designed
and objectively defined so their DT model is accurate. Spreadsheet software such as
Microsoft Excel is commonly employed for process calculations and analyses. This is
due to its widespread availability and familiarity among scientists, engineers, and other
professionals. In contrast, the concept of DTs is somehow new and still emerging. The
spreadsheet’s cells allow users to enter data, make computations, and produce results
while they can plot data from them in several graphs. Software programs like process
simulators allow users to describe and analyze integrated processes. The purpose of
these tools is to simulate continuous processes and their transient behavior. The scientific
literature concerning process simulation tools is continuously growing, encompassing
various areas such as techno-economic analyses, economic feasibility studies, structural
process enhancements, and the exploration of alternative processes to existing ones [64].
Given that a DT model is much more than a simulation tool, by nature, never being an
exact representation of reality. Still, really an approximation of it, and different objectives
may produce various modelling abstractions with varying levels of detail concerning the
actual process. It is crucial to identify the goal of the model before we develop it.

Since cloud computing has many benefits, it is the most practical method for introduc-
ing DT services. Due to its ability to provide on-demand services, computational resources,
and ubiquitous network access, the implementation of the next-generation information
technology architecture is highly compatible with DT environments. In such environments,
data owners generate data from assets, transmit it to cloud servers, simulate the DT in a
virtual environment, and subsequently share the insights and findings of the simulation
with the data owner. Users can request access to the data at any time [59]. In construct-
ing complex DT production systems, like industrial or agricultural systems, “machine
learning” and “simulation tools” are two complementary technologies. Creating stochastic
simulations for complicated systems takes time and effort. However, these simulations
are essential for DT construction because they have two crucial capabilities. The first is
“uncertainty modelling” and the second is “explainable analytics”. Focusing on how ML
and reinforcement learning (RL) improve simulation, many issues arise in digital twin use
cases. The rapid advancement of IoT, edge computing, and cloud computing technologies
has significantly accelerated the progress of digital twins. It is widely believed that digital
twins will soon become a vital catalyst for digital transformation, as evidenced by the com-
mon theme present in various research studies [65]. The primary hurdle lies in establishing
a secure, reliable method to share simulation and real-time data. Additionally, there is a
need for a robust and privacy-centric authentication system that leverages the benefits of
blockchain technology to address the security prerequisites mentioned earlier.

3.2. Notable Components of DT Implementations

In the realm of digital twins, components denote the distinct constituents or elements
that constitute a digital twin system. A representative ensemble follows.

3.2.1. Sensors and Actuators

DTs embody sensors and actuators as parts of great significance that offer valuable
data and information about physical phenomena and enable the replication of sensory
capabilities. In today’s interconnected world, an enormous number of sensors and actuators
are deployed across various domains, ranging from consumer products to industrial set-
tings such as smart factories and smartwatches. These sensors capture critical information
related to temperature, humidity, velocity, pressure, chemical components, and material
composition, forming the foundation for digital twin technology [47,66]. By equipping real
twins (physical entities) with sensors, DTs can replicate and harness the senses of sight,
temperature, sound, humidity, and touch through appropriate actuators. For example,
in the agricultural domain, a DT of a plant could leverage sensors to create predictive
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maintenance services or simulate and optimize the production process. This allows for the
generation of actionable insights and the enhancement of operational efficiency. DTs rely on
the integration of actuator and sensor technologies to gather continuous and accurate data.
The representation of a physical asset in digital forms, like a sensor-equipped machine,
relies on the synchronized operation of virtual sensors and actuators. These software-based
counterparts replicate the functionalities of physical sensors and actuators, aggregating
data from multiple sources. Integrating sensors and actuators within the digital twin
framework enables real-time monitoring, data-driven analytics, and the ability to simulate
various scenarios for optimization purposes. By bridging the physical and digital realms,
digital twins empower industries and sectors to achieve enhanced performance, increased
efficiency, and cost savings.

3.2.2. Identification of Entities

In the context of DTs, each twin is assigned a distinct identifier that facilitates seamless
communication with its physical counterpart. This unique identifier encapsulates vital
information about the physical object’s structure, capabilities, and technical specifications,
as well as its expected performance under specific conditions. When creating a DT, it is
crucial to consider the unique circumstances of the object to ensure an accurate represen-
tation [67]. Even if two physical items are identical, they may exhibit different behaviors
when subjected to varying conditions. Hence, each digital twin is assigned its unique iden-
tifier, reflecting the individual characteristics and attributes of the corresponding physical
object. By leveraging the DT’s unique identifier, we can accurately simulate and analyze its
properties and behaviours.

Furthermore, the expansive network of interconnected devices, sensors, and actuators
highlights the need for real-time collection and sharing of identified contextual data with
digital twins. This data encompasses various parameters such as location, environmen-
tal conditions, user preferences, and behavioral patterns. By integrating this uniquely
identified contextual data into the DT model, a deep understanding of the user’s context
and needs can be achieved. Adding to that notion, a Geographic Information System
(GIS) as a versatile system generates, controls, examines, and maps various data types and
links IoT data to a map. Thus, GIS combines location information, referred to as spatial
data, with descriptive details of a DT, forming the basis for mapping and analysis utilized
across multiple industries and scientific fields. With GIS, users gain insights into patterns,
relationships, and the geographical context of their data, as in [68].

3.2.3. Visualization and Representation

Visualization and representation play a vital role in DTs, offering various forms
of virtual representation depending on the specific application. DTs can leverage 3D
visualizations to facilitate collaborative design or planning [69]. Depending on the context,
these connections can manifest in various forms, such as a 3D representation, hologram,
humanoid social robot, or purely as software components without physical attendance.
Consequently, DT commonly refers to the digital depiction of a real-world object, system, or
entity’s physical twin that faithfully replicates a unique item, process, person, organization,
or even a legendary narrative. Composite digital twins are formed when multiple digital
twins merge. These DTs, as reflections of the actual world, share similar characteristics,
necessitating the modelling of digital processes and objects with composition, flexibility,
sensing, collaboration, and simulation capabilities. Furthermore, predictions suggest that
future DTs will evolve toward a holistic virtual world [70].

3.2.4. Devices

Devices that continuously capture data concerning physiological and environmental
factors information can serve DTs to gain a comprehensive understanding of the real
twin’s well-being and lifestyle. Such wearable devices, for example, smartwatches, fitness
trackers, and other health monitoring devices have enabled individuals to collect and
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track various physiological parameters effortlessly. The abundance of such data presents
a unique opportunity for digital twins to enhance their support for their real twins more
efficiently [71]. By integrating the data from wearables into the DT model, real-time
insights and personalized recommendations can be generated as feedback or alerts based on
specific needs and goals. Furthermore, the continuous monitoring and analysis of wearable
data by DTs enable proactive interventions whilst identifying patterns or deviations from
normal physiological parameters and providing early warnings or interventions to address
potential health risks or optimize performance. This proactive support can contribute to
preventive healthcare, early detection of health issues, and overall well-being management.

In summary, the DT is an advanced data management system that integrates 3D ani-
mation, modelling, IoT, AI, and other technologies such as ML. It enables the seamless con-
nection and management of physical and virtual models within a digital environment [72].
As human civilization grows, agriculture remains crucial for our progress and well-being.
Intelligent DT systems can analyze and digitize agricultural areas, enabling macro and
micro-level visual processes. These systems can provide intelligent recommendations and
suggestions that can be implemented to achieve multiple benefits in agriculture.

4. Reviewing DT Applications in Agriculture and Farming Domain

Regarding the methodology, we opted for our research. Initially, an extended search
for literature and bibliography referring to DT in agriculture was conducted in Google
Scholar, Scopus, and Web of Science. We used the query item “digital twin” incorporating
the logical operation of conjunction with the concepts of “agriculture” including concept
association as “crop”, “farm”, “aquaculture”, “animal” and “smart farming” to step on
cases of DT in subfields of agriculture. Queries as such provided 144 relevant papers from
Google Scholar, 153 papers from Web of Science, and 135 papers from Scopus.

Secondly, we narrowed down all references to 105 papers by omitting duplicates,
research papers with almost identical titles, with insufficient or less relevant content, and
following our research individual issues related to the main criteria and title as initially
stated in the introduction, i.e., crop modelling, precision agriculture, and predictive mainte-
nance in smart farming via the DT concept.

Diving deeper into the selection criteria, we used keywords such as plants, smart
agriculture, agriculture 4.0, IoT, aquaculture, food, horticulture, urban farming, DT models,
3D simulation, AR, VR, and Blockchain ledgers. Totally 89 papers, including those for
initially referenced material, were chosen as being deemed relevant to the context of
our research.

Deriving from the central idea of our research based on our study’s concepts, eminently
disclosed in the preceding paragraphs of the current Section 2, we finally selected a total
number of 26 papers fulfilling the criteria to utilize our review as graphically viewed
in Figure 8.
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Being familiarized with the relevant literature, we achieved insights into the extent of
DT penetration in agriculture, addressing methodologies, designs, data analysis techniques,
technologies, and use cases utilized in application domains to gain a deeper understanding
of the approaches employed by others regarding the DTs in agriculture. The main idea lines
of our study concepts, though, as previously stated, targeting DTs, plants, 3D modelling,
simulation, IoT, and ICT gave reason to review the relevant literature. The main concepts
of our study are graphically displayed in Figure 9.
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4.1. The First Categorization of Researched Literature, According to the Main Research Objectives

Based on the breakdown of the 26 papers concerning the DT application domains and
target applications related to smart farming as a subset of smart agriculture or agriculture
4.0, highlighting the case studies, we gathered a set of related concepts in Table 2. If a
relevant text was found, the “

√
” symbol is included in the cells; otherwise, if not clearly or

at all stated, the “-” symbol is used.

Table 2. The main research objectives and content topics of eligible referenced articles are included in
the review.

Citation
No.

Type of
Paper Case Study Smart Farming DT Case Application

Domains Target Applications

[28] Journal Article
√ √ √

Agriculture, farming Precision irrigation

[73] Journal Article
√ √ √

Agriculture, farming Precision irrigation
for water saving

[19] Journal Article
√ √ √ Arable, dairy, and

farming
livestock farming

Greenhouse
horticulture, organic

vegetable farming

[26] Journal Article
√ √ √ Arable farming, dairy

farming, greenhouse
horticulture

Organic vegetable
and livestock

farming,
smart farming

[74]
Case Study on

Conference
Paper

√
-

√
Virtual nature

applications, the
digital twin of

natural environments

Museums,
arboretums, field trip

experiences,
botanical gardens

[35] Conference
Paper

√
-

√ Art realistic and
botanically correct

plant models

Game design,
environmental art,

GIS, and
computer science

[75] Conference
paper

√ √ √ Precision farming,
management

Construction and
implementation of

plant DT
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Table 2. Cont.

Citation
No.

Type of
Paper Case Study Smart Farming DT Case Application

Domains Target Applications

[76] Book
√ √ √ Precision farming,

management

DT development
stages and
forecasting
plant yield

[77] Journal Article
√ √

-
Automated irrigation

via soil water
monitoring

Greenhouses, vertical
farms, or

outdoor fields

[78] Systematic
Review - -

√
Monitoring,

modelling, and
forecasting

natural processes

Geoscientific
software &

code repository

[79] Journal Article
√ √ √

Smart farming
High-tech

data-driven
greenhouses

[80] Conference
Paper

√ √ √ Sustainable
agriculture 4.0,
vertical arming

DT cultivating model
in sustainable

agriculture

[81] Journal Article
√ √ √ Vertical

farming-greenhouses
and bioeconomy

DT requirements for
vertical farms

[82] Journal Article
√ √ √ DT of greenhouse

production flow,
energy-efficient

DT for the
greenhouse
production

process (WP4)

[64] Journal Article
√

-
√

DTs in agriculture
A digital modelling

approach to the
food process

[27] Review Paper -
√ √ DT adoption

in agriculture

Data acquisition for
automatically

controlled actuator
systems

in agriculture

[29] Review Paper -
√

-

Digital technologies
and techniques in

agricultural
contexts—food

post-harvest
processing in the
agricultural field

A general framework
of digital twins in

soil, irrigation,
robotics,

farm machinery

[9] Review Paper Descriptive - Model

Digital
representation of

grain and inventory
quality in agriculture

Agriculture supply
chain management

[83] Review Paper -
√

- Controlled farming
environment

Monitoring activities
of livestock,

optimization of crops,
reduction of

emissions to air, soil,
and water

[63] Review Paper -
√

- Agriculture, farming,
crops, livestock

New farming
methods supported

by the DT
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Table 2. Cont.

Citation
No.

Type of
Paper Case Study Smart Farming DT Case Application

Domains Target Applications

[84] Review Paper -
√

-

Greenhouse
horticulture, indoor

farming smart
agriculture

IoT Data-driven
food production.

[85] Review Paper -
√

-
Industry 4.0

approaches to the
agricultural sector

Virtualization of an
agro-food

supply chain

[45] Review Paper -
√

- Food safety and
quality, supply chain

Authenticity and
traceability of food

supply in the
agricultural

production process

[86] Review Article -
√

future study Sustainable and
precision agriculture

Remote detection
and monitoring of

vegetation and crop
stress in agriculture

[87]
Review

Conference
Paper

-
√ √

Urban farming,
vertical farming,
indoor farming,

hydroponics,
aeroponics,

aquaculture, and
aquaponics.

Monitor, control,
coordinate, and

execute farm
operations at

agricultural sites

[88] Review Paper -
√ √ DTs applied to

precision agriculture.

Predictive control, for
improving
soil quality

In a total of 26 reviewed articles, 3 were relevant case study conference papers, one
was a published scientific book, 9 were journal articles, and 12 were review papers. To
visually assist in the analysis of the presented information in Table 2 regarding the type of
reviewed literature, Figure 10 presents these types in graphical mode.
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Fourteen articles either being descriptive as in [9] or practically using a case study
project as in [9,19,26,28,35,64,74–77,79–82] address the significance of a DT case study in
agriculture. The concept of DTs is mainly addressed in all reviewed papers. In 16 papers
though [19,26–28,64,73,82], the DT concept is analyzed and utilized in more detail, thus
posing the significance of using DTs in smart farming and agriculture.

According to the reviewed literature summarized in Table 2, smart farming as an
implementation of agriculture 4.0 [19,26–29,45,63,73,75–77,79–88] includes smart irrigation
strategies by monitoring and controlling various farming stages [28], implementing data
acquisition techniques [27] for automatically controlling actuator systems in agriculture or
even in high-tech data-driven greenhouses [79]. Furthermore, via simulation, monitoring,
controlling, coordinating, and executing farm operations at agricultural sites [87], DTs
improve predictive control in precision irrigation [28,73,88], greenhouse horticulture, and
organic vegetable and livestock farming. Smart farming enhances remote detection and
monitoring of vegetation and crop stress in agriculture [86], developing DT stages and
forecasting plant yield in greenhouses, vertical farms, or outdoor fields [76,77], or even in
urban and indoor farming, of vertical agriculture utilizing hydroponics, aeroponics, aqua-
culture, and aquaponics. Smart farming approaches the smart agriculture [85] as well as the
sustainable agriculture 4.0 [80] sector to address precision farming and management [75,76]
via the adoption of digital technologies and techniques in agriculture [27,29,64], leading the
way to digital representations of plants [9], inventory quality in agriculture, greenhouse
production flow, and food safety and quality within the food supply chain [45]. Although
the DTs remain a major issue in our research criteria, in papers [29,45,63,83–85], they are
implied as such. In [9], authors propose a functional DT model; in [86], they are proposed
as a significant future issue to address and study.

4.2. The Second Categorization of Researched Literature, Related to Specific Technical
Research Aspects

Table 3 below gathers various aspects of the target applications related to sensors,
IoT or other smart platforms, smart agriculture, and DT technologies and protocols im-
plemented in the addressed literature for comparison and evaluation. If the topic of a
corresponding cell has no relevant data provided in the literature “-” sign is displayed in
the corresponding cell. If the topic is merely mentioned, a “

√
” sign is displayed in the

corresponding cell.

Table 3. Various aspects of the target applications concerning sensors, IoT, or other smart platforms
relevant to smart agriculture and DT technologies and protocols.

Citation
No.

Case
Study

Type of
Paper

DT
Case

Target
Applications Sensors IoT/Platforms

Deployments/
Technologies-

Protocols

[28]
√ Journal

Article
√ Precision

irrigation

Field probes
measure air and
soil temperature,

humidity, soil
moisture,

ambient light,
geospatial
position,

(Venus GPS)

SWAMP-IoT
smart water

management,
smartphone
application,

real-time IoT
platform

communication.

I2C serial bus,
RPi-3 module

[73]
√ Journal

Article
√ Precision

irrigation for
water saving

Soil probe SWAMP, OPC
UA server

Fuzzy
Interference

System,
Programmable

Logic
Controller (PLC)
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Table 3. Cont.

Citation
No.

Case
Study

Type of
Paper

DT
Case

Target
Applications Sensors IoT/Platforms

Deployments/
Technologies-

Protocols

[19]
√ Journal

Article
√

Greenhouse
horticulture,

organic
vegetable
farming

- IoT addressed -

[26]
√ Journal

Article
√

Organic
vegetable and

livestock
farming,

smart farming

- IoT addressed -

[74]
√

Case Study
on

Conference
Paper

√
Museums,

arboretums, field
trip experiences,

botanical
gardens

Drone image
cameras,

Photographic
cameras,

- -

[35]
√ Conference

Paper
√

Game design,
environmental
art, GIS, and

computer science

Photographic
cameras, -

Virtual nature
construction

low-polygon 3D
plant models

ideal for
augmented

reality (AR) and
virtual

reality (VR)

[75]
√ Conference

paper
√ Construction-

implementation
of plant DT

- SWAMP
An intelligent
digital twin of

plant, IDT

[76]
√

Book
√

DT development
stages and
forecasting
plant yield

Proposal for an
intelligent digital

twin of
plant, IDT

[77]
√ Journal

Article -
Greenhouses,

vertical farms, or
outdoor fields

Infrared (IR)
thermometers,
mini-LiDAR

sensors,
multispectral

cameras

Arduino board,
single-board

computer
Raspberry Pi-3

I2C, serial
peripheral
interface

(SPI), UART

[79]
√ Journal

Article
√ High-tech

data-driven
greenhouses

Handheld
controllers, with

a button and
joystick

interaction
functionality

-

BIM model, A
Meta Quest2

head-mounted
display (HMD)

with 2 handheld
controllers/VR

[80]
√ Conference

Paper
√

DT cultivating
model in

sustainable
agriculture

Mesh of sensors
of temperature,

humidity,
luminosity, and

relative CO2
concentration

Raspberry Pi -
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Table 3. Cont.

Citation
No.

Case
Study

Type of
Paper

DT
Case

Target
Applications Sensors IoT/Platforms

Deployments/
Technologies-

Protocols

[81]
√ Journal

Article
√ DT requirements

for vertical farms

Temperature,
humidity,

luminosity, and
relative CO2,
Data Acquisi-
tion module

Raspberry Pi

Digital, PWM,
I2C, SPI, Serial,

network
attached storage,
Sampling 42sec

[82]
√ Journal

Article
√

DT for the
greenhouse
production

process (WP4)

Mentioned
traditional
sensor data

mentioned -

[64]
√ Journal

Article
√

A digital
modelling

approach to the
food process

- -
Automatically

controlling
system actuators

[27] - Review
Paper

√
Data acquisition
for automatically

controlled
actuator systems

in agriculture

- - -

[29] - Review
Paper -

A general
framework of

digital twins in
soil, irrigation,
robotics, farm

machinery

- - Data recording,
artificial

[9] Descriptive Review
Paper Model

Agriculture
supply chain
management

Bin level, flow,
and

identification
sensors,

RFID-DNA tags

- -

[83] - Review
Paper -

Monitoring
activities of

livestock,
optimization of
crops, reduction
of emissions to

air, soil,
and water

Report - -

[63] - Review
Paper -

New farming
methods

supported by
the DT

Monitoring
physical entity

crops state,
resource

optimization,
and cultivation

support

IoT stated -

[84] - Review
Paper - IoT Data-driven

food production. -

Climate control,
energy, and

lighting
management

Monitoring,
optimization for

controlling
and autonomy

[85] - Review
Paper -

Virtualization of
an agro-food
supply chain

- IoT concepts -
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Table 3. Cont.

Citation
No.

Case
Study

Type of
Paper

DT
Case

Target
Applications Sensors IoT/Platforms

Deployments/
Technologies-

Protocols

[45] - Review
Paper -

Authenticity and
traceability of
food supply in
the agricultural

production
process

Data
acquisition—
temperature,

humidity, soil
conditions,

location, RFID

-

Satellites
Robotics

technology
assisted with AI,

ML, and
deep-learning

techniques

[86] - Review
Article

Future
study

Remote detection
and monitoring

of vegetation and
crop stress in
agriculture

LiDAR-light
detection and

ranging—stereo-
photogrammetry

using
multi-spectral

imagery. Passive
microwave

remote sensing.
Active

microwave
remote sensing

(RADAR).
sensors onboard

UAVs and
satellites

- -

[87] - Review-
Assessment

√
Monitor, control,
coordinate, and

execute farm
operations at

agricultural sites

IoT sensor nodes IoT sensor nodes

IoT sensor nodes
acquire and

transmit farm
data to IoT

gateways or
edge devices

[88] - Conference
paper

√
Predictive
control, for
improving
soil quality

Soil probes
sensors

temperature,
relative humidity

(RH), CO2
concentration, air

velocity, and
light level

sensors. Drones

IoT, SWAMP

Programmable
logic controllers

(PLCs) in the
irrigation system,

equipment
and machines

DTs go along with monitoring systems to gather and analyze information. Sensors
pose a critical role in smart agriculture by facilitating the collection of real-time data and
offering valuable insights into a wide range of environmental and agricultural parameters.

Field or soil probes that measure air and ground temperature, humidity, soil moisture,
and ambient light [28,45,73,81,82,88], added to CO2 sensors measuring relative CO2 con-
centration [80,81], and infrared (IR) thermometers provide data acquisition modules for
automatically controlled actuator systems in agriculture approaching digital modelling
to the food process [64] monitoring activities of livestock, optimization of crops, reducing
emissions to air, soil, and water. Drone image cameras [88] and high-resolution photo-
graphic cameras seem ideal for AR and VR by constructing virtual natural low-polygon
3D plant models as proposed in [35,74]. Building Information Modeling (BIM) models of
high-tech data-driven greenhouses are made feasible as in [79] and provide a VR presenta-
tion of the farm or field with the aid of a head-mounted display (HMD) with two handheld
controllers serving as handy sensors for manual stimulus. Mini light detection and ranging
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(LiDAR) sensors and multispectral cameras following an Arduino single-board microcon-
trollers programmable platform or single-board computer Raspberry Pi-3 enhance IoT
sensor nodes to acquire and transmit farm data to IoT gateways or edge devices, thus
cultivating DT requirements for vertical farms, for the greenhouse production process and
finally models in sustainable agriculture.

Remote detection and monitoring of vegetation and crop stress in agriculture seem
feasible based on [86] utilizing LiDAR—stereo-photogrammetry technology, using multi-
spectral imagery, passive microwave remote sensing, RFID schemes [9,45], active mi-
crowave remote sensing (RADAR) and sensors onboard UAVs and satellites [45,76,88].
Location determination in farming via geospatial position (GPS) plays a significant role in
the remote detection and monitoring of vegetation and crop conditions in agriculture [88].

IoT deployments in smart farming are based on serial hardware communication pro-
tocols such as I2C serial bus [28] and UART that uses asynchronous serial communication
with configurable speed and pulse width modulation (PWM) for driving actuators [77,81],
in correlation with programmable logic controllers (PLC) for data recording [29], monitor-
ing, and optimization aided occasionally by fuzzy interference systems (FIS) [73].

The decision-making and actions once undertaken by the farmers now have given
way to data-driven agricultural decision-making, i.e., assisting them to undertake informed
decisions related to planting, fertilization, pest control, harvesting, and overall farm man-
agement. Likewise, derived from the smart water management project (SWAMP) [28,73,75]
a hands-on approach is being utilized to develop a precision irrigation platform based on
IoT technology for smart water management, distributed in Brazil, Italy, and Spain.

4.3. The Third Categorization of Research Literature That Is Related to Specific Technical
Research Aspects

DTs use software to create, operate, and interact with their physical counterparts. The
software component of a DT enables the collection, processing, and analysis of data from
various sources, including sensors, actuators, and other connected devices.

In [28,77], the high-level programming language Python is used for software develop-
ment, scripting, and data analysis, serving the purposes of DT applications, implementing
the Arduino IDE platform, and exploiting the Debian Buster OS to produce a plant simula-
tion model. Likewise, RPi software for the Raspberry Pi platform is used with goal-oriented
requirement language (GRL) for modelling [80]. We should point out the use of an open
standard file format JavaScript Object Notation (JSON) which is used in [73] for data repre-
sentation and communication between systems and is widely adopted and supported by
various programming languages and platforms. Specific software packages are utilized
for constructing 3D plant models, such as Unreal Engine 5, Reality Capture, Photoshop,
Mesh Model Construction, Autodesk, Maya [74], Unreal Engine 5 Nanite technology, and
Reality [35]. Other specific software packages serving, for example, the construction of
a DT flowsheet model as in [64] found in the researched literature are the Aspen Plus
and Aspen HYSYS from Aspen Technology, Inc. (Burlington, MA, USA), ChemCAD from
Chemstations, Inc. (Houston, TX, USA), UniSim Design from Honeywell (Charlotte, NC,
USA), ProSimPlus from ProSim SA (Labege, France) and PRO/II from AVEVA Group plc.

Simulation software was employed in this study [28] to generate a virtual setting for
an irrigation system’s digital twin, incorporating a plant simulation model.

As previously mentioned, in [73], Siemens’s industrial plant simulation software
was used, and in [74], the Virtual UCF Arboretum Application (V1.0) was developed
with virtual plant datasets, plant inventories, VR headsets leading to an AR Holodeck by
multiple captured images taken in 3D space and an AR perpetual garden App.

In [75], a linear model of plant growth is proposed utilizing a wheat multi-agent
planning module close enough to the implied structure modelling simulation in [29],
virtual models are used during the usage phase in [84], an earth system model in [78], a
farm is represented in 3D in [81], the concept of the DT model via data-driven modelling is
assessed [63]. In [76], the authors imply that a software package was developed containing
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an ontology editor, a DT editor, multi-agent planning module for creating a prototype of
an intelligent plant DT system in Java whilst AR implementations to save BIM model files
in Film box (.FBX) in [79] by using Unity game engine to provide 3D modelling software.
Further authors in [9] confronted post-harvest models by discrete event simulation such as
drying, adding to the simulation models for blending and flow DT models [82,83] that rely
heavily on available real-time data a flow for continuous adaption and learning. Finally, DT
modelling implies simulation, analysis, and prediction [88] that may assess the modelling
and simulation of the fertility of seeds, fertilizers, pesticides, pollution challenges, soil
agents (hydrological models, soil data), and crop agents

Table 4 summarises software, 3D, 3D modelling, simulation, and other research as-
pects addressed in our work regarding the reviewed literature. Suppose the topic of a
corresponding cell has no relevant data provided in the literature, a “-” sign is displayed
in the corresponding cell. If the topic is merely mentioned, a “

√
” sign is displayed in the

corresponding cell.

Table 4. Various aspects of the target applications concerning communication technologies, IoT, and
cloud platforms for data and simulation processes.

Citation No. Communication
Technologies

Real-Time
Data,

Visualization,
Analytics

IoT
Cloud

Services

Data
Bases Software Simulation

Software

3D,
Modelling,

AR-VR

[28] Ethernet Grafana,
Real-Time Data

IoT Broker,
FIWARE,
IoT agent

Mongo DB,
Draco,

My-SQL,
Python

Simulation
software to

generate a virtual
environment for

a DT of an
irrigation system

Plant
simulation

model

[73] LoRa,
Ethernet

Grafana,
Real-Time Data

FIWARE
IoT Agent

My SQL,
MongoDB

Fuzzy Inference
System (FIS),

Json, FIWARE
Cygnus

connector, IoT
Agent,

OPC UA agent

Siemens Ind.
plant simulation
software for the
Data model and
weather station,

-

[19] - -
√

- - - Conceptual DT
modelling.

[74] Wi-Fi.
Mobile

AR/VR
Software

√
-

Unreal Engine 5,
Reality Capture,

Photoshop,—
Mesh Model
Construction,

Autodesk, Maya

Virtual UCF
Arboretum
Application,

ESRI GIS, Plant
Datasets, Plant
Inventories and

Density, VR
Headset, AR

Holodeck

Multiple
captured

images were
taken in 3D
space, AR
Perpetual

Garden App

[35] Wi-Fi -
√

-

Unreal Engine 5
Nanite

technology and
Reality for 3D
plant models

-

Multiple
captured

images were
taken in 3D
space/AR
Perpetual

Garden App

[75] - - - Knowledge
Base Java A linear model of

plant growth

A descriptively
wheat

multi-agent
planning
module



Sensors 2023, 23, 7128 30 of 38

Table 4. Cont.

Citation No. Communication
Technologies

Real-Time
Data,

Visualization,
Analytics

IoT
Cloud

Services

Data
Bases Software Simulation

Software

3D,
Modelling,

AR-VR

[76] - - - -

Java
ontology Editor,

digital twin
editor, the

multi-agent
planning module

The software
package

developed
claimed an

ontology editor, a
digital twin

editor, a
multi-agent

planning module

Prototype of an
intelligent
plant DT

system in Java

[77] Wi-Fi, Ethernet - - -
Debian Buster

OS, Python,
Arduino IDE

- -

[78] - - - -

Geo-Soft-Core, a
Geoscientific

Software & Code
Repository,

hosted at the
archive

DIGITAL.CSIC

- Model of
Earth system

[79] - - -

Height value
retrieved

from
CSV files

Spreadsheet
applications—

Microsoft
Excel,

3D modelling
software. BIM
model in Film

box (.FBX)
Unity game

engine

AR

[80] - - Yes SQLite

RPi software,
Goal-oriented
Requirement

Language (GRL)
for modelling

- GRL model

[81] - GUI
prototype SQLite - -

3D
representation

of farm

[82] mentioned

Mentioned-
Industrial Data
Management

System
multilayer

approach with
Developed
IoT models

Big Data
only

Mentioned,
cloud-based
enterprise

- AI, Big Data
analytics Mentioned

DT modelling
relies heavily
on available
data and a
continuous

flow of
real-time for
continuous
adaption

and learning

[64] - - - -

SuperPro
Designer,

Spreadsheet
applications-

Microsoft
Excel,

Aspen
Plus/HYSYS
ChemCAD

(Chemstations,
Inc.), UniSim

Design
(Honeywell),
ProSim Plus
(ProSim SA),

PRO/II (AVEVA
Group plc)

Flowsheet
model

[29]
IoT,

wireless
technologies

Analysis,
prediction - - - -

Structure
modelling
simulation

On the other hand, AI, ML, and DL algorithms seem to be a major issue in [45,63,83,87,88],
leading to Big Data analytics [82] to describe DT modelling that relies heavily on real-time
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available data flow. The immense amount of data is stored in databases such as Mongo
DB [28,73], Draco, My-SQL [28,73], and SQLite [80,81], besides using Excel CSV files for
retrieving height values [79] or generally mentioned Knowledge bases as in [75] leading to
cloud big data manipulation schemes in [45,81,85]. Major cloud computing platforms such
as Alibaba Cloud, Amazon web services, Google Cloud Platform, IBM, and Microsoft Azure
are examples of cloud computing services provided by leading technology companies that
serve the DT idea, as seen in [87].

Cloud IoT service broker agents come into place as a software component or intermedi-
ary that facilitates the interaction between cloud service consumers (users or organizations)
and cloud service providers like FIWARE. In [28,73], FIWARE cloud applications are ex-
ploited, adding to IoT broker and IoT agents to facilitate cloud management of context
information. The procedure includes converting various communication protocols into a
shared base protocol and incorporating intelligent functionality through the processing,
analysing, and visualising of contextual data. FIWARE generally is used as an open-
source platform to provide a standardized framework and a set of reusable components for
building smart applications and services in the context of the IoT and Future Internet (FI)
domains. It aims to simplify the development of innovative and interoperable solutions
by offering a collection of open APIs, data models, and software tools that facilitate the
development of smart applications and services.

A fuzzy inference system enhances adaptive and learning capabilities. It handles
nonlinear and complex relationships between variables, as in [73], in addition to Siemens
industrial plant simulation software for plant simulation model production with a weather
station. In [67,79], the Microsoft Excel spreadsheet application is used instead of other
dedicated software such as Geo-Soft-Core, a Geoscientific Software & Code Repository
hosted at the archive DIGITAL.CSIC in [78] or Java ontology editor to elaborate a DT
editor in [75,76].

Lastly, wireless network communication technologies are addressed in the research
literature. Initially, the wired networking technology Ethernet is mentioned in [28,73,77],
while the wireless networking technologies such as Wi-Fi are mentioned in [35,45,74,77,87],
LoRaWAN in [45,73], mobile or cellular in [45,74,87] and generally mentioned as mandatory
in [29,82]. Bluetooth, RFID, and NB-IoT are exploited in [85].

5. Discussion

A first attempt to comment on specific aspects of the reviewed literature has been done
in Section 2. In total, 14 journal articles or conference papers, including a published book,
propose case studies that support the idea of DT implementation in agriculture, contrary to
the rest published review papers that suffice to merely describe the topic and record the
achievements of the scientific community referring to it.

It is interesting to point out that three (3) relevant case study conference papers and a
published book, added to nine (9) journal articles, seem to slightly overcome the amount
of the 12 review papers in a total of 26 articles. The limited practical application of digital
twin technologies is obvious, even stated in the literature by the authors.

Even though [9,86,87] are review papers, the authors either describe the necessity of a
DT model as in [9] for the agriculture supply chain management domain, even addressing
sensors such as level, flow, identification sensors, RFID or DNA tags, or highlight the need
for future study on DT models as in [86] making use of remote detection and monitoring
schemes, LiDAR sensors, passive microwave sensing devices, RADARs or even sensors
onboard UAVs and satellites, for monitoring, controlling, coordinating, and executing farm
operations at agricultural sites by IoT sensor nodes as in [87].

The significance of using Sensors as part of a dynamic IoT control-oriented mechanism
as demanded in DT infrastructure should be acknowledged as in [35,73,74,77,79–81,87,88]
where soil probes, drone image cameras, multispectral and photographic cameras, IR
thermometers, mini-LiDAR sensors, a mesh of sensors measuring temperature, humidity,
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luminosity, and relative CO2 concentration, and air velocity are addressed as essential
elements to materialize relevant IoT platforms accordingly.

In [28,73,75,88], the SWAMP IoT-based smart water management platform is men-
tioned. In [19,26], the IoT scheme is merely addressed, and in the journal [82], IoT is only
mentioned as well in the review papers [63,85,87], where the IoT is stated as a promising
concept. The fact that in [73] an OPC UA server is recommended for implementation,
in [77] an Arduino single-board computer is used as well as the Raspberry Pi-3 platform as
in [80,81] in a total of 14 articles that either describe the use of IoT platforms or vaguely
present a case study project [9,19,26,28,35,64,74–77,79–82] means that the practical imple-
mentation of IoT platforms is quite limited for the time being.

The necessary software to operate such platforms is focused on Python [28,77], ded-
icated FIS, Json, FIWARE Cygnus connector, IoT Agent, OPC agent [73], RPi in [77,80],
Arduino IDE n [77] relevant to the case studies previously mentioned. These make use
of Ethernet communication technologies [28,73,77], LoRa [73], and Wi-Fi, [77] in addition
to [35,74] that make use of Wi-Fi and mobile LTE [74] communication technologies that
facilitate near real-time interaction with the environment.

The concept and definition of DT seem to be continuously evolving, but in general,
it refers to a specific collection of digitally or virtually materialized models that represent
a physical process or object. These models are used for simulation and future behavior
forecasting, guiding the feedback loop from the Actuators and Control node to the Physical
entity, as profoundly visualized in Figures 3–5. The ongoing feedback loop between the
physical farm and the DT is imperative to update the DT model to optimize and enhance
performance and efficiency.

Several attempts have been made in this direction. In the reviews [9,29,63,83,86], the
concept of the DT model is proposed merely as an evolving concept without an imple-
mented case study. Simulation models [83], referring to data-driven modelling, discrete
event simulation blending and flow models [9], and structure modelling simulation and
future multi-domain radiative transfer models (e.g., SCOPE) with dynamic crop growth
models for agroecosystems DTs [86] are described merely as proposals giving way to future
practical implementations. On the other hand, in [28], simulation software utilizing a
simple plant simulation model is employed to create a virtual environment for an irrigation
system’s digital twin. In [73], the Siemens industrial plant simulation software for the
data model is used, a model of the Earth system is mentioned in [78], a 3D representation
of a farm in [81], while in [82] it continuous adaption and learning procedure of the DT
modelling is mentioned as a need that relies heavily on available data. A more concise
proposal to the origin of the holistic DT modelling and simulation concept appears in [76],
where a prototype of an intelligent plant DT system in Java claimed to be developed, includ-
ing an ontology editor, a digital twin editor, and a multi-agent planning module. In [88],
simulation, analysis, and prediction are addressed by making progress in implementing
modelling and simulation of the fertility of seeds, fertilizer, pesticides, and pollution chal-
lenges, making efforts to develop plant modelling with soil agents (hydrological models,
soil data), crop agents and predictive control models, where the adjustment of control
processes such as heating and ventilation is automated based on short-term temperature
predictions, ensuring efficient regulation, as an IoT derivative scheme.

A flowsheet model is proposed taking advantage of the widespread spreadsheet
applications of Microsoft Excel in [64] to tamper with simulation software such as Aspen
Plus and Aspen HYSYS from Aspen Technology, Inc. (Burlington, MA, USA), ChemCAD
from Chemstations, Inc. (Houston, TX, USA), UniSim Design from Honeywell (Charlotte,
NC, USA), ProSimPlus from ProSim SA (Labege, France) and PRO/II from AVEVA Group
plc, merely to implement a digital modelling approach to food processing.

Spreadsheet applications of Microsoft Excel to retrieve height values of plants in high-
tech data-driven greenhouses are used in [79], a fact that proves that process calculations
and analyses may be conducted using popular spreadsheet software like Microsoft Excel
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due to its wide accessibility and familiarity among scientists, engineers, and professionals
from various fields.

Enhanced 3D modelling software derived from the game industry, i.e., Unity game en-
gine dictates BIM models in Film box (.FBX) format to aid realistic VR/AR representations
of greenhouses, providing a promising realistic overview of a Smart Agriculture imple-
mentation. Virtual representation is accomplished via Unreal Engine 5, Reality Capture,
Photoshop, Autodesk, and Maya software platforms to construct Mesh models of Plant
Datasets for Virtual UCF Arboretum Applications, plant inventories, and AR Perpetual
Garden App. as in [74]. These plant datasets are derived from multiple captured images
in 3D space and incorporate VR headsets aided by GIS and AR Holodeck software. Ad-
ditionally, Unreal Engine 5 Nanite technology and Reality are used for 3D plant models
offering a linear plant growth model [35] to descriptively suffice the wheat multi-agent
planning module. Using multiple captured images taken in 3D space to support the AR
Perpetual Garden App, they produce botanically correct plant models for use in museums
and for educational purposes. A promising perspective, if by any chance associated with
the essential elements of the holistic DT scheme, could be capturing real-time data on
various environmental and operational factors via communication technologies leading to
a dynamic 3D model of a farm entity.

Besides the 3D representation of DT models, IoT Dashboards [87], such as Grafana in
particular [28,73] for real-time data presentation and analysis or even GUI prototypes [81],
are proposed, although used on a small scale for facilitating near real-time interaction of
DTs with the environment. To reliably transfer and manage data, Blockchain is used, even
on a smaller scale, as in [45,87], while Big Data Analytics, as in [82], AI and ML methods
that enable data analysis, pattern recognition, and decision-making based on large datasets,
are addressed in [45,63,82,83,86,88]. Cloud-based data analytics pose a major issue for
the advent of smart agriculture as claimed in [45,85,87], not to omit the significance of
databases such Mongo DB, Draco, My-SQL as used in [28,73] or SQLite in [80], and Cloud
computing service providers such as Alibaba Cloud, Amazon web services, Microsoft
Azure and Google Cloud platform [87].

Various factors, with technical hurdles being the primary challenge, seem to be step-
ping behind to allow even further the adoption of the DT technologies. It is essential
to meticulously design and clearly define intricate agricultural systems to guarantee the
accuracy of their corresponding DT models.

6. Future Directions

Once addressing a DT as a tight combination of an object model, in conjunction with
expansive sets of data that directly follow the object that may evolve and continually modify
and adapt the model based on the available data, it is made clear that future research should
be realized to overcome the current profound lack of reference models and case studies
accordingly. That could serve as a direct guidance for DT research and development.

To broaden the aspect of Agriculture 4.0 that needs DTs and overcome the limitations
of mere telemetry narrowed down by IoT schemes implemented till now, further research
in implementations using DT modelling, 3D visualization, and simulation schemes tar-
geting virtual nature applications aided by AR, VR, and GIS information systems should
be realized.

Further research into the holistic model perception of plant DTs to overcome the focus
merely on the phenotype of plants could vastly support DT research. We can pursue
enhancing the accuracy of depicting real-world farms, plants, and crops in the digital realm
by combining non-georeferenced visualizations, like gaming engines, with geospatially
referenced 3D geo visualizations.

Implementing additional case studies of digital twins that adhere to the mentioned
principles can address challenges related to reliable aggregating and handling of data
from diverse sources, integrating multiple streams of information, and employing ad-
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vanced computational methods for data processing and analysis, which could enhance the
understanding of the subject and aid further studies.

Further decommissioning of data in the future resulting from search—Tables 1–3
might be promising. The diverse and abundant potential advantages of DTs in agriculture
create anticipation for the future evolution of this technology and its profound impact on
the farming sector.

We aspire for our work to inspire fellow researchers to explore the application of DTs
in agriculture even further.
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Abbreviations

The following abbreviations are used in this manuscript:

AIoT AI-based IoT
AI Artificial Intelligence
AR Augmented reality
BD Big Data
BIM Building Information Modeling
CDT Cognitive Digital Twin
CT Cognitive Twin
CPS Cyber-Physical Systems
DL Deep learning
DM Digital Model
DT Digital Twin
DS Digital Shadow
DLT Distributed Ledger Technologies
FIS Fuzzy interference systems
GIS Geographic Information System
GPS Geospatial position
GRL Goal-oriented requirement language
HMD Head-mounted display
IR Infrared
ICT Information and Communication Technology
IP Intellectual property
IoT Internet of Things
JSON JavaScript Object Notation
LiDAR Light detection and ranging
LPWAN Low Power Wide Area Networks
LoRa Long-Range
LTE Long-Term Evolution
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ML Machine learning
MR Mixed-Reality
NB-IoT Narrow-Band IoT
OPC Open-source communication platforms
PO Physical Object
PT Physical twin
PLC Programmable logic controllers
PWM Pulse width modulation
SDT Strategic DT
SWAMP Smart Water Management Platform
TI Tactile Internet
UA Unified Architecture
VR Virtual reality
WPAN Wireless Personal Area Networks
WLAN Wireless Local Area Networks
WWAN Wireless Wide Area Networks
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