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Abstract: Although craft and home brewing have fueled the beer renaissance in the last decade,
affordable, reliable, and simple sensing equipment for such breweries is limited. Thus, this manuscript
is motivated by the improvement of the bottle-filling process in such settings with the objective of
developing a liquid level sensor based on a novel application of the known optical phenomena of
light refraction. Based on the different refraction indices of liquid and air (and critical angle based on
Snell’s law), along with a novel LED light source positioning, a reliable liquid level sensor system
was built with the aid of an embedded microcontroller. The used operating principle is general and
can be used in applications other than the proposed one. The proposed method was extensively
tested in a laboratory and limited production settings with a speed of 7 Hz using different liquids
and container shapes. It was compared for accuracy to other sensing principles such as ultrasound,
infrared, and time-of-flight. It demonstrated comparable or better performance with a height error
ranging between −0.1534 mm in static conditions and 1.608 mm for realistic dynamic conditions and
good repeatability on the production line with a 4.3 mm standard deviation of the mean.

Keywords: bottling; home-brewing; liquid level measurement; machine vision; optical refraction;
optoelectronic sensors

1. Introduction and Motivation

In recent decades, craft brewing has undergone a renaissance [1]: from being an outlier
in the beer industry to becoming a dominant niche with 5234 out of 5302 breweries in the
USA identifying as craft breweries. In Europe, the beer market has experienced the change
caused by the so-called craft beer revolution, especially in regions with a long history of
brewing [2,3]. There are thought to be more than 10 thousand craft breweries around the
globe [4]. According to the Brewers Association, the craft market share grew from 5.7%
in 2011 to 13.1% in 2021 with craft brewers providing more than 172,643 direct jobs [1].
The sector grew double the “standard” beer market rate between 2008 and 2013, with an
average of 2.8% [5].

The rise of craft beer is thought to have been fueled by several factors, such as the
introduction of “By Local” movements as well as the willingness of consumers to pay more
for unique beer taste [6,7]. Its effects are so profound that even some lawmakers [7] have
agreed to change their beer laws to facilitate local and regional craft breweries. One of the
reasons for the sudden expansion of craft breweries in Europe is that modern consumers
choose simple procedures and raw materials that give them a feeling of uniqueness [8].
Recent research for Spanish breweries concluded that the consumption of craft beer does not
present health issues for consumers since it is free from mycotoxins, pesticides, pollutant
residues, and elemental compositions. In contrast, the same research concluded that 100%
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of mainstream beers presented at least one mycotoxin, which is another reason to prefer
craft breweries [9].

The American Brewers Association (ABA) defines craft beer as one produced by small,
independent, and traditional brewery [6], a definition which consumers have interpreted
as equal to high-quality products [10]. However, it should be noted that this definition is
variable depending on the country. For example, in Italy, craft breweries are considered
those not producing more than 170,502 barrels a year, while this threshold is in the USA
set to 6 million barrels [6]. Still, in the manuscript, we will refer to craft breweries as
those that produce beer on a small(er) scale than industrial ones (regardless of the actual
limits). Here, we also include a home-brewing, often considered a seed for craft brewery [7].
Home-brewing is exhibiting an increasing trend in the USA, with around 1.4 million barrels
of beer produced by about 1.1 million people in 2017 [11].

One of the main challenges craft breweries faced in their early ages (in the 1980s
and 1990s) was the lack of appropriate equipment [6], since much of it was customized
for large-scale operation. However, due to the increasing importance of the craft beer
market, and the advent of low-cost electronic components, the equipment market for craft
brewing is rapidly developing. While some of the developed equipment is available, due to
physical dimensions, and other requirements, this equipment might not be suitable for the
home-brewing type of producers (or micro-brewers). There have even been some attempts
to make the brewing equipment for bottling open source (https://openbook.hr/site/c
v.htm (accessed on 18 July 2023)). However, all of the measurement equipment needs to
comply with a number of standards and recommendations, including those defined by the
International Organization of Legal Metrology in [12]. The recommendation extension [13]
introduces referent conditions and procedures for testing setups, including those for beer,
but within the holding tanks and not inside the bottles during the filling process. Some
research on liquid level measuring in tank-type containers is based on such international
recommendations [14].

It is also worth noting that the benefits of the Internet of Things have been recognized
in the so-called Internet of Beer, which increases efficiency in the processing, delivery,
and service areas of beer production [15]. Due to technological advancements, and a
decrease in the cost of electronic components, these technologies are becoming accessible
to medium and small-sized brewing companies and individuals. Researchers found that
off-the-shelf technologies connected to a cloud-connected sensor system, combined with
machine learning, could accurately predict alcohol content during fermentation. This is
part of the new Industry 4.0 concept, where the digitalization of the manufacturing process
leads to an economic benefit for the producer (brewer) by reducing the amount of wasted
materials (beer and resources) [16].

While there are several stages of brewing a (craft) beer, from malting to conditioning [17],
the manuscript deals with the final stage, which includes bottling and associated sensory
systems. It should be noted that, besides bottling, there is also kegging, but this is usually a
more complicated process and one that is more expensive and is, in turn, not appropriate
for smaller breweries (https://grainfather.com/a-guide-to-bottling/ (accessed on 18
July 2023)). Regardless of the process under consideration, non-contact measurements
are preferred due to the hygienic requirements of the brewing and packaging processes
(https://cdafrance.com/en/our-packaging-solutions-by-sectors/labelling-mach
ines-and-filling-machines-for-the-beer-industry/ (accessed on 18 July 2023)). Thus,
we hypothesize that an image-based system using a special case of optical refraction
in conjunction with computationally effective image processing algorithms and of-the-
shelf components can lead to an accurate, reliable, and affordable type of sensory system
appropriate for liquid level measurement during the bottling process with an application
to small-scale breweries.

The remainder of this manuscript is structured as follows. Section 2 gives a brief
state-of-the-art review of related fields. Section 3 presents the used experimental setup
and the proposed approach’s main operational principles and algorithms. The obtained
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results are presented in Section 4, where they are also analyzed and discussed. Finally,
in the Section 5 a summary of the developed approach is given, along with its observed
advantages and disadvantages and some possible ways of improving it.

2. Literature Review and Contributions

Today’s food-related industry in all its branches imposes strict process control re-
quirements and regulatory demands. Accurate and reliable level measurements (at all
stages of the production process) make for a more straightforward implementation of those
demands [18]. These measurements can have different operational principles depending
on the type of material being measured (e.g., liquid or a solid), but due to hygienic require-
ments, should be contactless and should accommodate specifics of the production line (i.e.,
moving parts like conveyor belts). When considering the beer-filling process, it should
be kept in mind that the sensor cannot be attached to the container itself (like it can in
tanks). Beer color and bottle size also vary depending on the country and/or producer
(https://beerandbrewing.com/dictionary/yIINroTsFH/ (accessed on 18 July 2023)).
Finally, additional challenges associated with measuring the liquid level during beer bottle
filling are based on the fact that beer foams, thus, are usually filled under CO2 pressurized
atmosphere. Also, if bottling is performed after labels have been put on the bottle, it can
interfere with the sensor system.

The visual identification of liquid levels is one of the most used application scenarios
when dealing with liquids, including a wide variety of applications: from bottle-filling to
chemistry experiments [19]. Many examples of machine vision-based approaches in food
and pharmaceutical industries can be found in [20,21]. However, there are other measure-
ment techniques available like those based on resistive [22], inductive [23], load or pressure
sensor [24,25], radar-based [26,27], capacitive [28], piezoelectric [29], ultrasonic [30–32],
and fiber-optic transducers [33], as well as ones that are being experimentally tested from
a scientific point of view like thermal cameras [34]. Many of these techniques have the
disadvantage of being intrusive or having a discrete output (e.g., fiber-optic). Some meth-
ods, like the one in [35], use modified techniques to improve performance parameters in
particular measurement environments like fuel tanks.

An example of the usage of cameras and machine vision in a large-scale beer produc-
tion process is, in short, presented in [36], where it is stated that a system named SpeedView
from French company R&D Vison has been deployed in the Heineken facility in France.
The system uses a Mako G-30 camera with a CMOS image sensor with a global shutter.
It is a GigE camera with a maximum pixel resolution of 644 × 484 and a capture speed
of 309 fps but using a pixel resolution of 300 × 200 (in a windowing mode). The system
processed green Heineken bottles at a rate of 80,000 bottles per hour. The simple use of a
vision-based technique in detecting the liquid level in amber glass bottles was presented
in [37]. The proposed system applied Python and OpenCV for image processing. The
study successfully detected and classified filled bottles into three categories: under-filled,
within-target, and over-filled. However, it still needs more development since it cannot
address the problem of bubbles.

In [38], a web camera (with 30 fps) and a proximity sensor (for triggering image
acquisition) were used alongside an infinite symmetric exponential filter (ISEF) edge
detector to detect liquid levels in bottles moving on a conveyor belt. For bottle defect
detection, the Hough transform and watershed algorithm in conjunction with the support
vector machine are mentioned as possible candidates, while for the edge detection, the same
authors in [39] tested three of them (Canny, ISEF, and the Laplacian of Gaussian—LoG)
and found that ISEF is the most suitable for bottle liquid level detection. It was noted that
different edge detection algorithms could be used depending on whether the bottle defect
or liquid level is targeted application.

In [40], the machine vision-based approach for the high-speed monitoring of the quality
of olive oil on the conveyor belt and detecting bottle cap anomalies was proposed and
tested. Simple image-processing techniques were used: one based on image thresholding
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and the second one based on edge detection. It is interesting to note that special care was
given to light source design and placement for optimal performance. This was performed
since darker bottle colors can interfere with liquid edge detection algorithms (as is the
case in our research) and additional lighting is needed to accentuate liquid level edges for
detection purposes. The used camera had a resolution of 640 × 480 pixels and worked
on a 124 fps frame rate, and was placed to capture a side view of the bottle with the LED
light source placed on the other side of the bottle. Based on the obtained results, it was
concluded that the threshold-based approach was the fastest, but no accuracy results were
given (for binary-based classification: Pass/Fail).

Another system based on the optical effects of the measured liquid was presented
in [41]. The measurement part of the system consisted of a CMOS camera (with a high
frame rate enabling capacity of up to 70.000 bottles per hour) and LED lighting, which could
be independently controlled and allowed high-contrast images. When the bottle passed
near the proximity sensor at the exact location, it triggered a brief LED flash and image
acquisition. Then, based on the transmitted light method, image analysis was performed,
and the liquid level was determined. The declared accuracy of the system was up to 99.8%
with overfill/underfill from 3 mm (depending on the placement of the system within the
production/filling line).

In [42], an offline computer vision-based method was used to track the size and
frequency of the occurrence of bubbles in champagne. The proposed approach was based
on a photo camera (Olympus OM2 with a 50 mm f/1.8 objectives) and photos that were
enlarged ten times. Here, it is of special interest that stroboscopic-type diffused light was
used to obtain better-quality images. In [43], a brief overview of computer vision methods
for beer quality monitoring is presented. While the paper does not go into methods
for the bottling process, it does present basic computer vision techniques (as well as a
state-of-the-art review) of the beer quality measures. The authors note that the strongest
arguments for using computer vision in evaluating beer’s external quality are its reliability
and reproducibility. In [44], similar quality parameters for beer (including foam) were
tested and analyzed using modern hardware and data processing algorithms (an ensemble
of artificial neural networks).

In [45], a vision-based system (implemented on an ODroid-X2 embedded computer)
was proposed for controlling Coca-Cola level during the filling process. The proposed
system consisted of two photoelectric sensors for detecting and rejecting the bottle. After
bottle passage detection, an RGB image was taken, transformed into HSV format, and
analyzed for the fill level. It should be noted, however, that the approach was tested only
in a limited laboratory setting and not in the plant itself.

In [46], an integrated system for fill level detection and cap inspection (not limited to
the beer/brewing industry) was proposed. While the authors did not present any numeric
results, they state that the method could reliably detect the liquid level in a plastic bottle
without any label and could detect nine conditions regarding the cap and liquid level. It
should be noted that vision-based methods could also be used within (nontransparent)
containers/tanks like in [47,48], but these are not in the current focus of our research and
thus will not be further reviewed.

Medically related applications can also benefit from the application of machine vision
algorithms for liquid-level monitoring. In [49], a system for medical purposes has been
developed based on two lasers with different wavelengths for the detection and analysis of
liquid meniscus within the container. In such applications, the proper calibration of used
glassware is essential, as well as the identification of primary sources of uncertainty [50].
Another example of liquid level monitoring using camera and Sobel filter-based segmenta-
tion techniques alongside ellipsoid fitting (for container-size estimation) was introduced in
[51]. Here, the camera was placed on the rim of the drinking cup with the aim of monitor-
ing/estimating the patient water intake during the day. The processing took 438 ms per
image (160 × 120 pixel grayscale image), resulting in a correlation between the estimated
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results and the ground truth with the variation of 3% from the mean. The standard error of
the mean for ellipsoid fitting was between 4.26 and 4.13 mL.

In [52], a measurement system for liquid level detection in an infusion bottle was
proposed. The system was based on the Internet Protocol (IP) camera (HIKVision DS-
2CD812PF) placed parallel to the infusion bottle. Liquid level was detected utilizing the
edge detection algorithm with the problem of additional horizontal edges being detected
(e.g., bottle label). This issue was resolved by observing the dynamic nature of edges. The
system was tested with changing light conditions and a tilted infusion bottle with 99%
accuracy.

Other areas of applications also use machine-vision-based measurements of the liquid
level. In [53], the authors introduced a real-time system for detecting the liquid level and
color in a laboratory setting during chemical reactions. The proposed system used a (web)
camera with 640 × 480 pixel resolution and was positioned in front of the chemical cylinder
at a distance of 36 cm. The approach also used the thresholding edge-detection method and
required calibration for pixel-to-metric unit conversion. The obtained results demonstrated
an average accuracy of 99.103% with a maximum absolute difference of 0.1130 mL. While
the obtained accuracy is good, it was obtained under ideal conditions, as noted by the
authors, and it might degrade if additional, more realistic effects are considered. In [19], the
computer vision-based method for detecting liquid surfaces and liquid levels for chemistry
applications (within the transparent container) was used. The same author updated the
approach in [54].

In [33], the authors proposed a continuous method for monitoring liquid levels in
cylindrical containers (from 100 to 500 mL). An internally black-coated cylinder container
was used, which provides a light wave-guiding structure. The downside was that the
coating might dissolve in liquid media and contaminate it. A red light-emitting diode lit
the liquid from above, which was detected at the flattened and transparent bottom of the
cylinder by a photodetector. The photodetector’s response changes proportionally to the
liquid level in the cylinder. The proposed system achieved a measurement resolution in
the range of 3.2–14.1 µm and could measure liquid levels over 100 mm in depth. The same
authors in [55] proposed a non-contact method for the measurement of the liquid level at
a micrometer (40–50 µm) resolution for the liquid volume of up to 47 mL, which is much
smaller than in our experiments. The proposed theoretical background of the approach
is, however, the closest one to our method: using optically related phenomena due to the
different optic proprieties of different media (i.e., air and liquid). Here, depending on the
height of the liquid in the 46 mm diameter container, light (emitted from 0.25 mW laser
source) covers different distances resulting in circular shapes of different sizes (detected
by photodetectors positioned underneath the container) proportional to the liquid level.
The authors called this effect the lateral displacement effect. Experimental measurements
were performed with a 100 mL container and a maximum of 47 mL effective measurement
range using six different mixtures of water and ethylene glycol. Compared to our approach,
additional hardware for optical manipulation (splitters and mirrors) was needed with the
additional limitation that light needs to be emitted from above the container, which might
be impractical or impossible in the bottling process and for closed containers. Additionally,
as noted by the authors, the method in [55] is best suited for static and not dynamic
conditions and related phenomena (like bubbling) which occur during the filling process.

In [56], the vision-based method was developed for detecting the water content of
crude oil in the transparent glassware after centrifuge. The method first transformed the
captured image in the YUV format of QVGA resolution. It used the Y channel to obtain
a grayscale image and used the image grayscale illumination value difference (IGAVD)
method to detect actual liquid content. The proposed approach used the OmniVision
OV7670 image sensor and STM32F103 32-bit microcontroller, obtaining a measurement
error of less than 1%.

It should be noted that cameras and image-based methods are not only limited to
indoor settings and cylinder-shaped containers [57,58].
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Based on the presented state-of-the-art review and our motivation and hypothesis, the
main contributions of the manuscript can be summarized as follows:

• Development of an image-based sensor for monitoring liquid levels in transparent
(colored) containers during the filling process, utilizing (a special case of) optical
refraction phenomena, made possible by a novel light source positioning (underneath
the container). Although the underlying physical principle is simple and known from
optics, it is functionally powerful and, to the best of our knowledge, not present in the
proposed configuration in the available literature or commercial systems (where the
light source is usually positioned opposite the optical sensor, i.e., camera);

• The developed sensor system does not depend on the container shape, color, size, or
liquid type, as long as they are both transparent. The proposed sensor system enables
insights into the state of the filling process and liquid (which similar methods do not
provide) by allowing the possibility of analyzing different optical refraction patterns
corresponding to the characteristic cases providing answers to important questions
that cannot be easily answered with other sensor systems (e.g., is foaming occurring
during the filling and how much, is there bubbling within the liquid during the filling);

• Construction of a self-contained microcontroller-based, working sensor system that
relies on the proposed working principles, using low-cost, off-the-shelf components
while ensuring a high level of accuracy. This makes it appropriate for small-scale
production plants. The system successfully integrated into the open source filling (and
labeling) filler;

• Extensive testing of the proposed sensor system operating principle within laboratory
and production environments, obtaining results comparable to or better than some
other low-cost sensing options while having the possibility of usage even in setups
where the container is fully closed (e.g., due to the need for a pressurized atmosphere
within the bottle).

3. Materials and Methods

Due to sanitary requirements, the sensors for liquid level measurement in the bottle
during filling should be non-contact. Also, it should provide the continuous measurement
of the liquid level and its numeric values, and not the binary output (i.e., if the level
is lower/higher than the predefined threshold). Thus, the additional, general, design
requirements were implemented:

• Easily obtainable and affordable components should be used;
• The sensor system should be self-contained with dimensions appropriate for the

small-scale production plants;
• Program support should give continuous output values (current state of the level) as

well as discrete values if needed (whether it has reached the desired level value);
• The system should be robust to changes in the lighting of the working environment

and enable the implementation of several measuring stations working in parallel
(without mutual interference);

• The system should be easy to use (especially the alignment phase, if necessary).

3.1. Physical Operational Principle

Since image-based techniques were selected to best fit the listed requirements, differ-
ent optical phenomena were examined to detect the most suitable one. However, other
approaches, such as capacitive-based ones [59], were considered and quickly abandoned
due to the complexity of realizing continuous measurement and implementation in a
production line.

Due to the different refraction indices of liquid and air, image refraction causes a
visible optical distortion in the image perceived through the liquid, as depicted in Figure 1.
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(a) (b)
Figure 1. Testing optical phenomena with a 6 × 3 LED raster light source. (a) Beginning of the test.
Note that the raster column outside the liquid is visible as a straight line but distorted inside it.
(b) The liquid level inside the bottle can be estimated based on the location of the distortion within
the image of the 6 × 3 LED raster.

Please note the bottleneck mask present in the figure, which is not important at this
time and will be elaborated on later in Section 3.2.1. The figure shows that a 6× 3 LED raster
was created in front of which the bottle was positioned or was moving. The size of the raster
was selected based on the size of the beer bottleneck but is of no practical measurement
importance since the raster is only used to illustrate important optical phenomena.

Due to the refraction of light emitted by the LED raster, the raster image seen by the
camera becomes distorted. This distortion is different in areas with liquid, indicating its
presence. One can measure the liquid level by detecting the distortion’s location in the
image. Depending on the location of the distortion, the effect can manifest itself as a “shift”,
as shown in Figure 1a, or blurring, as shown in Figure 1b. Please also note that the detection
of a liquid level without the (background) light source is not a trivial task due to the similar
bottle and liquid colors in the image as can be seen from Figure 1a.

Considering these initial findings, we discovered that the best position for an LED
light source, which ensured a low possibility of interference with environmental and/or
neighboring light sources, was underneath the bottle to be measured. This LED positioning
also resulted in a more straightforward installation procedure (in terms of integration
within the existing filler station), and it ensured direct contact between the light source and
the bottle, increasing the system’s robustness. In this case, the refraction phenomenon also
occurs, but we exploited a particular (special) case of it. While this phenomenon is well
known in physics, due to its importance for our proposed sensor system, we explain it in
detail with an example.

First, we introduce Snell’s law which states that, if n1 and n2 represent indices of
refraction for two bordering (transparent) media, and Θ1 and Θ2 are the angles of incidence
and refraction that the light ray makes with the normal on the boundary line (between two
media) then it holds

sin Θ1

sin Θ2
=

n2

n1
(1)

The index of refraction for a particular medium is a dimensionless parameter defined
as a ratio between the speed of light in a vacuum and the speed of light in that particular
medium. For example, the index of refraction of air is 1.0003, whilst those of water and
glass are 1.33 and about 1.5, respectively.
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The ray of light that goes into the other media is called transmitted light. It should be
noted that, generally, not all light goes from one media to another (refracting in the process),
but part of it also reflects back in the same media (at the same angle as the incidence angle).
This is referred to as reflected light. Suppose the incidence angle is greater than the so-called
critical angle (Θ1critical ). In that case, the complete ray of light reflects inside the media—a
phenomenon known as total internal reflection. However, an interesting phenomenon occurs
when the incidence angle equals the critical angle in cases when the light passes into the
medium with a lower refraction index (i.e., from liquid to air): according to (1), the light
bends at 90◦ angle, skimming the border plane. This light ray then exits the second media
at the border level. The critical angle can be derived from (1) and is defined as

Θ1critical = arcsin
n2

n1
(2)

With our intended application in mind, a simplified case is illustrated in Figure 2.

Figure 2. Illustration of light ray reflection and refraction phenomena used for the proposed machine
vision system.

In the figure, a LED-diffused light source is located at the bottom of a glass container
(for illustration purposes, the thickness of the glass walls is slightly exaggerated). Among
many, two light rays are highlighted. One light ray (marked with 1 in the figure) goes to
the left and hits the liquid-glass surface: part of the ray reflects back inside the liquid (at
the same angle; 3 in the figure), and part of it is transmitted into the glass. Light ray 3 then
continues its path through the liquid, hitting the liquid–air surface, and since the incidence
angle is smaller than the critical one, part of the ray transmits into the air (with respect to
Snell’s law). The other part reflects back into the liquid (for clarity reasons not shown in
the figure). Light ray 2 in the figure goes to the right, hitting the liquid–glass barrier with
the same effect as ray 1. However, now the reflected ray (4) hits the liquid–air surface at the
critical angle, resulting in it entirely being transmitted along the liquid–air border (5) back
to the glass surface. Since now the incidence angle is 90◦, the light ray passes through
the glass medium in the same path, resulting in a light (6) seen by an observer/camera
outside the glass container at the height of the liquid level. This can be then used as an
easily detectable liquid level marker in the camera image. Please note that during the filling
process (or in any real-life situation where level measurement is needed), the surface of the
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liquid is not ideally still as it is in Figure 2. However, because there are many reflections
and transmissions at various angles and not only a critical angle, neighboring angle values
also result in light rays going in a similar direction.

A real-life example of phenomena illustrated in Figure 2 is depicted in Figure 3. Please
note several facts about the figure:

1. There are some additional transmissive effects in the figure due to the bottle shape,
which will be addressed later in the manuscript in Section 3.2.1;

2. Liquid (water) was poured from another bottle during the recording of this image,
which resulted in splashing and bubbles at the liquid surface which can also be seen
through transmissive effects;

3. Cluttered background and other light sources in the background (e.g., computer
monitor) do not affect the measurement due to the image differentiation approach;

4. In the image where the LED is turned OFF, it is a very challenging task, even for a
person, to detect the liquid level within the bottle.

Figure 3. Image differentiation example used in the proposed sensor (PS). Left—image acquired
when LED in ON. Middle—image is acquired at the next time instance when the LED is turned OFF.
Right—the difference between the left and middle image in which the liquid level is visible, as well
as additional noise artifacts.

3.2. Experimental Setup and Hardware

System testing was performed in two main setups: laboratory-based (extensive testing)
and production-based (simple testing). The laboratory-based testing aimed to ascertain
the accuracy of the proposed sensor and compare its performance with other known
sensing principles and sensors for level/distance measurement. Please note two following
facts. Firstly, when selecting sensors for comparison, their physical dimensions were
not considered as a way of integrating them within the filler setup. Secondly, no highly
sophisticated (i.e., expensive) sensors were used for comparison since the open–source
fillers aim to keep the cost low while providing a high level of performance. On the other
hand, limited production-based testing was aimed to showcase that the approach can
be applied in a real-life setting with comparable results. The entire filler is still under
development and production and thus, full-scale testing in a production environment was
not possible.

3.2.1. Laboratory-Based Testing

The full experimental setup used during the laboratory-based testing can be seen in
Figure 4 and will now be described in more detail.

A transparent glass container of 9.53 cm inner diameter was used for testing. The
container had vertical walls with a curvature at the bottom. However, the measurement
was only performed at a specific part of the vertical wall (cca. 3 cm in height, corresponding
to approximately 0.215 L of liquid) due to the easier measurement of the referent value.
The liquid used in these tests was water at heights between 6 and 9 cm from the bottom of
the container. Please note that the water was used as a test liquid since it does not foam
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like beer does. The foam would interfere with the measurement of other sensors used
for comparison making their results less accurate and reliable. Also, the water refraction
index of 1.33 at 20 ◦C is similar to the one that beer has (between 1.33 and 1.34). This, in
turn, preserved the refraction indices relation between glass–liquid–air, making observed
phenomena (and thus obtained results) comparable to those of the beer (as is demonstrated
later on in the experiment when beer was used).

Figure 4. Detailed presentation of used laboratory setup.

In order to achieve dynamic measurement conditions, the water was pumped into the
measurement container from another auxiliary plastic container (seen in Figure 4 but not
annotated) with the help of a generic mini water pump, with a flow rate of 0.1925 L/min (or
3.21 mL/s). As will be explained shortly, a lower filling speed was selected due to timing
constraints enforced by other sensors used for comparison. A generic mini aquarium air
pump was used to simulate the surface bubble-type phenomena present during actual
filling (with a flow rate of more than 2.8 L/min). The container was recorded by a Nikon
Coolpix D700 camera positioned at the height of the targeted liquid level in the glass
container. The purpose of this camera was to provide a record of the measurement along
with LED triggering (which was used to sync all of the measurements) and thus enable a
manual offline reference measurement by an experienced practitioner. The camera was
set to record the video of the whole experiment in full HD resolution (1920 p) and 30 fps.
The recorded video was manually transferred to a personal computer (PC) and analyzed
frame per frame in custom-made software that allowed the practitioner to select only
frames when LED “flashing” was detected (the moment when the proposed sensor does
the measurement) and to manually mark the referent fluid level on the image. Note that a
high-power white LED with a power of at least 1 W (10 W recommended) needs to be used
for best results. The needed LED power is related to the container’s color, shape, and size.

The liquid level in the glass container was simultaneously measured by four sensors:
the proposed sensor (PS) and three sensors mounted on a plastic cover which was placed
at the top of the container: PING ultrasonic distance sensor (US), Sharp GP2Y0A41SK0F
infrared (IR) sensor, and a VL53LOX time-of-flight (ToF) sensor.

Ultrasonic distance sensors PING (https://www.parallax.com/product/ping-
ultrasonic-distance-sensor/ (accessed on 18 July 2023)) is commonly used in mobile

https://www.parallax.com/product/ping-ultrasonic-distance-sensor/
https://www.parallax.com/product/ping-ultrasonic-distance-sensor/
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robotics for obstacle detection and avoidance but can also be used for liquid-level detection
in containers with minimum modifications [60]. Unfortunately, they are impractical in
small-diameter containers where their “large” conical-shaped sensing area can misread
liquid levels due to the sound reflection from container edges. The size and shape of the
container used in our measurement setup were selected with respect to the ultrasonic sensor
properties and limitations. Additionally, ultrasonic sensors can be affected by the tilt of a
liquid level and ripple, as well as foaming. However, methods for addressing such issues
are available in the literature [32]. The measured distance is obtained on the microcontroller
by measuring the signal duration and known speed of sound under the current conditions.
The useful detection range of the sensor is 2–300 cm with a conically shaped detection
area measuring angle of up to 40° (which, according to the datasheet, depends on the
distance and target size). The used version requires only a single shared general purpose
input–output pin (GPIO) for the echo trigger and signal duration measurement (via a
microcontroller-integrated timer), where measurement is executed almost instantaneously
after the trigger signal is issued. The recommended timeout during the measurements for
the ultrasonic sensor is 60 ms.

Another type of sensor used in our setup was the TOF VL53L0X distance sensor
(https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html) (accessed
on 18 July 2023). The time of flight principle is based on approximating the time it takes
a traveling light wave to come in contact with a surface and reflect back to the source.
The laser emits the IR (infrared) spectrum, which is invisible to the human eye and offers
higher immunity to ambient light. In practice, this sensor can measure absolute distances
up to 200 cm, read via digital two-wire interface (TWI). The sensor is set for continuous
measurement at 10 Hz with a 33 ms ranging sequence. Generally speaking, ToF sensors
can be compared in practice with ultrasonic distance sensors, while they are far superior in
tasks involving precise distance measurement with a high refresh rate. The used VL53L0X
sensor is not the best-performing ToF sensor in today’s market. Still, its simplicity of
implementation, small size, and affordability make them a good choice. Similar ToF sensors
have been used in liquid level measurements [61].

The third sensor used in our setup was the infrared beam sensor, namely the Sharp
GP2Y0A41SK0F analog distance sensor (https://global.sharp/products/device/lin
eup/data/pdf/datasheet/gp2y0a41sk_e.pdf (accessed on 18 July 2023)), commonly
used as an obstacle detection sensor. However, it was shown to be usable in water level
measurements [62]. An IR distance sensor uses a beam of infrared light to reflect off an
object to measure its distance, which is then calculated using the triangulation principle
with a distance of up to 30 cm. The sensor is analog, which means it outputs a signal in
the 0–2.3 V range, which is read using the microcontroller’s integrated AD converter. The
relationship between the measured distance and the output analog signal is not linear.
Thus, recalculations must be performed on the microcontroller to obtain the exact distance.
Additionally, the sensor has relatively large minimal measurement distances (4 cm), which
were taken into account during the design of the measurement setup. The aspect that must
be considered to obtain a reliable measure is the internal update period of approximately
40 ms, where the sensor may output faulty readings during a short period of recalculation,
where we do not have any means of controlling the timing of when an internal update
is performed. This issue is handled by executing several readings in a short time and
performing median filtering.

Please note that all of these sensors have different housing heights due to their con-
struction and associated printed circuit boards, meaning a constant value offsets their
measurements. This value was determined before the measurement (by a caliper) and
compensated for during the measurement (i.e., it is not included in the presented results).
All the sensors were connected to an Arduino Mega2560 microcontroller board, selected
due to its multiple UART interfaces (required for communicating with the PS sensor and
the computer) and all other interfaces needed for the sensors. The PS sensor initiates
the measurement and sends a trigger signal to an Arduino Mega2560 board, which then

https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a41sk_e.pdf
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a41sk_e.pdf
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schedules the acquisition by other sensors. Note that the MOSFET switch and supporting
components (which in turn controlled LED illumination) were integrated on the OpenMV
H7 plus cameras customized expansion printed circuit board (PCB).

The PS sensor, through the OpenMV H7 camera (320×240 pixels, with integrated
ARM Cortex-M7 running at 480 MHz and a fast bus @3.84 GB/s) takes two images in two
successive time instances, whereby the LED illuminates the first image. In contrast, the
second image is taken under normal conditions (without an additional light source). Then,
the differences between these images can be distinguished by simple image subtraction.
This effect and its results are shown in Figure 3. In this manner, the PS becomes more
robust to light changes in its environment and the environmental light reflections off the
container/bottle under measurement.

In our setup, we tested several combinations of M12-compatible lenses with an
OpenMV system. The low-distortion lens was an option, that would increase the overall
setup price, but instead, we opted for the integrated OpenMV distortions removal option.
The camera was initially calibrated using a MATLAB Camera Calibration Toolbox with
the aid of an 8 × 7 checkerboard pattern with an 85 × 85 mm cell size. Calibration was
performed on the actual image format and resolution (320 × 240 pix) as in the proposed
sensor setup to avoid errors due to different image cropping and centering. After calibra-
tion, obtained lens distortion coefficients were used to properly remove image distortions
in real time, thus increasing the measurement accuracy.

The entire hardware setup of the PS was enclosed in a custom 3D printed case and is
depicted in Figure 5. Figure 6 illustrates the complete measurement timing of the sensor.
Measurement-enabling signals for US, IR, and ToF sensors were generated 5 ms later to
avoid any optical effects on IR and/or the ToF sensor from the LED light source. This time
delay, taking into account the water pump in-flow, added a slight error to the US, IR, and
ToF measurements, but this had an extremely small value and was thus discarded and not
compensated for (i.e., in 5 ms, the pump added 0.016 mL of water, which was an equivalent
of 225 µm in liquid height for a given container). Please note that the figure only shows
time instances (marked with red dots) for PS at which the liquid level is measured, and not
time instances when the second image for image differentiation is obtained (which is not
an issue since, in that figure, no liquid level can be detected, as can be seen from Figure 3).
One complete processing cycle takes about 150 ms, which should be enough to manage
the filling of the whole bottle, which takes approximately 10–30 s. Considering the filling
time (30 s) and the target volume of the bottle (500 mL), the average filling speed results in
about 16.67 mL/s. With the recording speed of 7 Hz (i.e., seven pairs of images, with and
without the LED turned ON), a division shows that the theoretical maximum resolution of
the system (not taking into account other effects like the ones associated with the camera)
for the particular configuration and filling setup is 2.38 mL.

Figure 5. Close-up of the proposed sensor components and their assembly.
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Figure 6. Timing signals during the measurement.

In the second part of the laboratory-based measurement, only the PS system was
used, but this time with a real beer bottle (without any labels) and using a light beer as a
liquid. The rest of the setup (minus the air bubble pump) remained the same as in Figure 4.
Note that the used beer bottle was dark brown, and a tape measure was attached to its
wall for reference measurement. Also, the flow rate was slightly increased (to 0.476 L/min
or 7.93 mL/s) to better approximate the actual dynamic working conditions. During the
measurement, one unplanned effect occurred (as depicted in Figure 3). Namely, due to
different bottle shapes, different reflections can mainly be observed at the base of the
bottleneck.

To eliminate these effects, the (bottom) beginning of the bottleneck is excluded from
the analysis, and only the reflections on the rest of the bottleneck are observed with a
predefined size, represented by the (red) mask visible in Figure 7. In a standard bottle, this
area corresponds to the liquid level between 470 mL and 520 mL. This was possible since
the liquid level measurements are most interesting in this part of the bottle since they are
used as a stopping condition for the filling process.

Figure 7. Image mask (in red) defining the measurement area important for completing the bottle
filling process.

Thus, system–camera alignment is an essential first step when installing the system
(performed only once and additionally only if the load-bearing parts of the filling machine
move). This alignment implies adjusting the camera and supporting structure so that the
bottle (while being filled) is set in the part of the image where the camera expects it to
apply masking from Figure 7 accurately. The current control interface (with 5 PS measuring
stations) for the filling machine prototype can be seen in Figure 8.
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Figure 8. Screenshot of the fill level control dashboard for all five PS cameras used for filling (each
camera monitors one filling station). Please note the bottleneck template’s thin red lines in the image,
with which the bottle needs to align before the filling process starts. The first camera was offline for
this screenshot.

3.2.2. Production-Based Testing

Once the proposed sensor system accuracy was tested in the laboratory-based setting, it
was implemented and tested in a limited scope on the filler prototype. The implementation
was limited (and mainly focused on repeatability since accuracy was already demonstrated)
because the prototype is still under development and is not yet fully operational. An
overview of the PS positioning within the filler system and filler area can be seen in
Figure 9a. In Figure 9b, a detail from the actual measurements is depicted. Please note
that the light transmission line within the bottle (corresponding to the liquid level within
the bottle) is visible even from a significantly larger distance than the one at which the
PS camera is positioned. The figure also demonstrates that up to five bottles can be
simultaneously filled while the bottle is positioned and stationary over the LEDs. This
means that the extensive sloshing of the liquid within the bottle during the filling process
is not present. Here, a referent measurement camera was a mobile phone camera and a
triangle aligned with vertical bottle walls was used for height reference.

An enlarged image of a bottle during the filling process (which is performed with
a pressurized CO2 filler head to reduce beer bubbling) is shown in Figure 10. Here, a
light transmission line within the bottle can also be seen, as well as the LED source at the
bottom of the bottle (ProLight Opto white neutral LED, 720 mA, Pmax = 27.58 W). The
measurement was performed ten times, with a (constant) set targeted liquid level within
the bottle. Note that, due to delays present within the other components of the filling
system (outside the proposed sensor, e.g., valve actuator), the error between the actual and
desired level was not considered, but the repeatability of the level (under the hypothesis
that other components’ delays are quasi constant).
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(a) (b)
Figure 9. Opinau filler system during the measurements. (a) An overview of the complete Opinau
filler system with two main parts. For the experiment, we only focused on the filler part. (b) A
snapshot of measurements during the filling process. Please note that Figure 10 represents an image
taken by the camera in this image.

Figure 10. Overview of a single bottle filling in actual production conditions using the proposed
system.

3.3. Computer Vision Processing Method

The proposed method is based on a simple computer vision principle, where the
system takes two images, one image where the container is lit with a strong but short flash
(as shown in Figure 11a) and one image without extra light (as shown in Figure 11b). The
result of the frame differentiation of those two images (along with the application of the
bottleneck mask) is another image (Figure 11c) where a horizontal line can be observed due
to light diffraction, with few possible extra artifacts due to foaming, bubbles, reflection on
bottle base, and similar. After image binarization (Figure 11d), the image is processed with
a few (adaptive) morphological operations (to fill discontinuities, remove small blobs, and
similar) as shown in Figure 11e. The algorithm searches for all blobs present in images after
image processing and finds one which best suits the horizontal line (analyses horizontal vs.
vertical ratio). The vertical pixel position which localizes the best candidate blob is, in fact,
the position of the fluid fill level in the image, as shown in Figure 11f.

Please note that, before actual measurement, to function properly, the whole system
must be calibrated to calculate the exact pixel-to-mm ratio, where the exact mm level is
taken from the pre-calculated lookup table. Nonlinear mapping, which creates a lookup
table, is calculated from at least ten referent measurements using nonlinear interpolation.
The lookup table is unchanged if the setup is also unchanged (camera and container
position), which is true when the camera and container filler are fixed in an assembly line.
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The whole algorithm has to be kept simple and light because it has to be run in real time on
a camera-enabled microcontroller with extremely limited resources. Our sensor prototype
outputs measured information using an integrated USART interface towards the central
computer, which controls another electronic part of the system (all running within the
robot operating system framework). The actual output (message) is more advanced and
not central to the operation of the proposed sensor system. An example of the provided
message is as follows:

<LevelType,HPos,BlobSizeH,BlobSizeW>

where LevelType is the line type described and visualized in Section 4, HPos is line position,
BlobSizeH is blob height, and BlobSizeW is blob width.

Figure 11. Images used in sub-steps of our proposed fluid level detection algorithm, RAW images
(a,b), processed images (c–e), and final blob detection result (red rectangle) with fluid fill level
depicted with the blue line (f).

4. Results and Discussion

First, during the laboratory-based measurements, static measurements were per-
formed. This meant that the liquid level in the glass container was kept constant at three
different height levels within the camera field of view (FoV) of the container: at the bottom,
center, and top of the FoV. This enabled us to establish each sensor’s baseline performance
for future comparison. From these measurements, error distribution (with respect to ref-
erent camera measurements) was obtained and is plotted in Figure 12. Note that each
subfigure has a variable number of bins in the figure, but each bin is of fixed width (1 mm)
across all cases (for easier comparison).

The following simple statistic values were obtained for static measurements
(173 measurement points for each sensor, i.e., 692 total measurement points). The PS and
the US had similar values of simple statistics, with the proposed approach having a slightly
tighter histogram better centered around zero error (mean: −0.1534 mm vs. 0.2006 mm,
median: 0 mm vs. 0.5 mm, and standard deviation: 0.3497 mm vs. 0.5766 mm). For compar-
ison, two optical sensors (IR and ToF) had somewhat higher statistic values in all categories
but were comparable to each other (IR vs. ToF; mean: −0.8570 mm vs. 0.4393 mm, median:
−0.2477 mm vs. 0 mm, and standard deviation: 2.3150 mm vs. 1.9598 mm). However,
under static conditions, ToF sensors seemed a better choice.
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Figure 12. Error histogram of the static liquid level measurements in three different heights within
the proposed sensor’s camera field of view with a fixed bin width (1 mm). For comparison, three
standard distance measurement sensors are added. Please note that both the x and y axes in all figures
are on the same scale and that y is normalized with the total number of bin occurrences.

We also performed additional nonparametric statistical testing (Kruskal–Wallis test),
which showed that there is a statistically significant effect between observed sensor errors
(p < 0.0001). Post hoc testing showed a significant difference between all group pairs but
two: PS and US (p = 0.12) and US and ToF (p = 0.87). We believe this confirms conclusions
that can be inferred from obtained error histograms: the PS system is the best one but
statistically comparable to the US. IR is the worst-performing one, while ToF is statistically
comparable to the US. Considering the simple statistical parameters presented above, this
is a small surprise but might be due to similar shaped and centered distributions.

Next, the glass container was filled several times with a steady liquid stream within
the targeted measurement height. The summarized results of these measurements can be
seen for each sensor type in a scatterplot in Figure 13. The straight red line in the figure
represents the ideal case, i.e., when the measurement liquid level value is equal to the
actual liquid level.

Figure 13. Scatterplot of actual and measured liquid level values (in comparison to the ideal case—red
line) obtained with different sensor modules under dynamic, no-noise conditions.
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The figure shows that the PS is very close to the ideal case and that the US has a
similar performance (although with a somewhat broader point spread). The ToF sen-
sor seems to have the worst characteristic and exhibits significant drift when used to
measure the fluid level without any modifications. This contrasts with static conditions
where the IR sensor performed the worst. Regarding the ToF sensor error, and as de-
scribed in producer application notes [63], a nonlinearity correction algorithm must be
used to improve the ranging accuracy and adjust to the fluid type and container character-
istics. This is performed by actual on-site measurement and creating a custom nonlinear
mapping for the current setup. Simple statistics are in line with these observations (PS:
mean = 0.029 mm, STD = 0.443 mm, median = 0 mm; US: mean = −0.162 mm, STD = 1.553
mm, median = 0 mm; IR: mean = 1.498 mm, STD = 7.496 mm, median = 0.562 mm; ToF:
mean = 7.261 mm, STD = 10.935 mm, median = 7.946 mm), as are Kruskal–Wallis tests.
A summary of these statistical tests (for this and all other cases considered) is given in a
simplified form in Figure 14.

Figure 14. Simplified overview of statistical testing via Kruskal–Wallis for all measurement conditions
and sensor types (note that the Kruskal–Wallis null hypothesis at the p = 0.05 level tests which
whether data come from the same distribution). ST—static condition, DNN—dynamic condition
without the noise, DWN—dynamic condition with noise.

Kruskal–Walis testing demonstrated, on the other hand, that there is only a significant
difference between ToF and all other sensors, while there was no significant difference
between PS, US, and IR sensors. However, when making this type of comparison, it should
be kept in mind that US and IR sensors cannot easily (if anyhow) be integrated into the
filler setup since the top of the bottle is not open, and there are no other openings on the
beer bottle.

Since some bubbling on the surface of the liquid is expected during the actual filling
process, we used an air pump to artificially generate such bubbles. The scatter plots of
measurement results using this condition are depicted in Figure 15.

As expected, these results constitute degradation compared to those in Figure 13 for
all sensors, including the PS. However, this degradation is the least pronounced for PS, as
seen from Figure 16. Kruskal–Wallis testing and simple statistics further confirm this. The
simple statistic means value increased by 1.579 mm (to 1.608 mm) for PS compared to the
increase of 2.194 mm for the US, 16.452 mm for the IR, and a decrease for ToF of 6.101 mm
(to −1.160 mm). However, when comparing the medians, PS performs better compared to
ToF (1.154 mm vs. −4.638 mm).

These observations are further validated by statistical testing showing that PS (with
the best simple statistic parameters) is significantly different (better) than all other tested
sensors. This suggests that, while sensor performance is statistically similar for the no-
noise scenario, our sensor is the best-performing one under real-life, noisy conditions,
demonstrating good robustness in a more realistic case. The only scenario where no
statistical difference was observed was the US-ToF comparison.
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Figure 15. Scatterplot of actual and measured liquid level values (in comparison with the ideal
case—red line) obtained with different sensor modules in dynamic, noise-based conditions.

Figure 16. Error box plots for all measurement conditions and sensors tested during the experi-
ments. ST—static condition, DNN—dynamic condition without the noise, DWN—dynamic condition
with noise.

The final set of testing was performed to examine whether there was any significant
difference between individual sensor performances across different pairs of testing condi-
tions (lower part of Figure 14). There was a statistically significant difference (at different
p levels) for all pairs under testing except for the PS static and dynamic cases with no
noise. These demonstrate that our sensor maintains good (and similar) performance under
most conditions (which is not the case for other sensors). It is also important to point out
the fact that the mean error (in absolute terms) during these measurements resulted in
volume error (for the particular container) between 0.164 mL to 11.47 mL (depending on
the measurement condition). Considering the targeted measurement volume of 855.97 mL
(i.e., 3 cm height), the relative error is between 0.077% and 5.36%.

The results presented in Figure 17 were obtained for the PS only during testing with
the beer bottle filled with beer as a liquid. This type of measurement included a mask
from Figure 7 and was limited to the bottleneck area of the container (as would be in a
real-world measurement). From the presented scatterplot, it can be concluded that PS
performed comparably with previous results obtained for a different type of container and
liquid in it. Please note that these measurements were repeated multiple times since the
measurement area (height) was small and the inflow rate was higher, thus resulting in
a smaller number of measurement points (even with the increase in the number of LED
pulses per second to 5, which was made possible by the fact that there were no other
sensors present). A total of 50 measurement points across six measurement runs are thus
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presented in Figure 17. The error histogram of these measurements is depicted in the lower
part of the same figure. The average error was −0.144 mm with a standard deviation
of 1.610 mm (and a median of 0 mm). Additionally, we statistically compared this error
distribution with error distributions from dynamic conditions (with and without the noise)
obtained in previous measurements (presented in Figures 13 and 15) using the Kruskal–
Wallis nonparametric statistical test. The test showed no statistically significant difference
between the beer and the previous “dynamic no noise” measurements (p = 0.7452). At the
same time, there was a statistically significant difference between the beer and “no noise”
measurement (p < 0.005) and the “dynamic noise” measurement (p < 0.005). We believe
that these results can be interpreted in a two-fold manner: (1.) Since there was some slight
foaming occurring during beer-based measurements (i.e., there was some realistic noise
present), this might indicate that we injected too much noise during the “dynamic noise”
measurement. This is not necessarily bad and illustrates the PS’s robustness even under
difficult measurement conditions; (2.) The PS performs consistently for the same and similar
measurement conditions regardless of the container shape, measurement range (with the
camera’s field of view), and liquid type under consideration. Please note that care was given
(since pressurized filler was not used) not to over foam during the measurements. Also, if
the mean error is considered, with the mean inner beer bottleneck radius (since the glass
wall is not vertical), it translates into an error of about 0.078 mL. If these results (and the
results from the glass container and water experiment presented earlier in the section) are
compared to some of the results from the literature (absolute error of 0.113 mL from [53],
standard error of the mean up to 4.26 mL from [51], underfill/overfill error of 3 mm
from [41], and a measurement error of less than 1% from [56]), it can be concluded that they
are comparable to them. However, the measurement setups differed in different literature
references, which might affect the comparison power.

Figure 17. Scatterplot (upper) and error histogram (lower) for a laboratory measurement of filling
beer bottle with beer.
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During system testing, it became clear that the form of reflection the camera can record
could be classified into three categories, as shown in Figure 18. Type 1 represents a still
liquid level without (or with very little) foam, while type 2 represents a level that has not
yet settled since it has a significant proportion of foam. Type 3 characteristic stems from the
filling process (air bubbles beneath the liquid surface). This is a novel contribution of our
approach, and based on it, machine vision/learning system algorithms could be adapted
to detect any of the potential shapes. This is important since, although detecting the level
at which the reflection is located (i.e., the liquid level) is precise, it is difficult to accurately
measure the beer level in the presence of foam without acknowledging this fact and taking
it into account. In our current implementation of the proposed sensor, the foam was dealt
with in a way that, when a particular case of it was detected (due to the presence of two
separate detection lines), the lower detection line (at the foam bottom) was taken as a level
measurement.

Figure 18. Different types of light patterns were observed during the measurements with a beer bottle.

It should be noted that different container shapes, container bottom shapes (flat and
jagged), and container sizes and materials (glass and plastic) were used for testing to show
that the needed optical effect occurs. Testing was performed with different liquids (different
colored beers, soft drinks, water, and oil) of different colors and opaque levels. In all but one
case (very dark beer), the effect was obtained demonstrating the versatility and applicability
of the proposed sensor (but also its limitations). Of special note is the fact that optical
effects (i.e., bright lines after image differencing) were obtained even in the case of two
different liquids (water and sunflower oil) in the same container, enabling the measurement
of individual liquid height. Figure 19 depicts the above-mentioned interesting cases.

Finally, the field testing results are shown in Figure 20. The figure shows that the actual
level in the bottle was always higher than the targeted one, further affirming the existence
of other component delays in the system loop. The amount of “overflow” varies, which can
be attributed to several factors, some of which are outside of the proposed sensor domain
(e.g., changing CO2 pressure in the container), and some are within it, most dominantly
the amount of bubbling and foaming that occurs in the sensor field of view which then
requires additional image processing steps to estimate the liquid level which was not part
of this research. Regarding repeatability, the standard deviation of all measurements was
0.135 cm (and mean 11.35 cm), and the standard deviation of the mean was 0.043 cm. If it
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is considered that this variation happens in the lower radius bottleneck, this results in a
minor relative volume error, making it acceptable as a filler sensor.

Figure 19. The light pattern required for the successful operation of the PS, observed during the
measurement with different bottle shapes and liquids (obtained using OptoSupply OSW4XAHAE1E,
a 10 W cool white 850 lm LED source).

Also, we outline the price of a single sensor (i.e., PS) with the used hardware, but
note that this might change since we propose a working principle while using different
hardware components (camera, LED, etc.), which might result in different price tags (both
higher and lower). In the proposed hardware configuration, the most expensive component
is the OpenMV H7 camera (around USD 85 at the time of writing this manuscript), followed
by LED at USD 15. With other components (3D printed case, MOSFET transistor, additional
resistors, and custom PCB, the PS price tag came at around USD 120. In comparison,
commercial/industrial solutions use cameras that have a price of up to USD 2000 (in the
case where NVidia Xavier NX is embedded). Similar research prototypes often employ
embedded computers like Raspberry Pi with a price tag of about USD 130 (not considering
the camera). All of this highlights the low-cost nature of the proposed sensor system.
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Figure 20. Liquid level measurements in the field. Please note that the red line represents the targeted
liquid level.

5. Conclusions

The manuscript proposes a novel sensor for measuring the level of a liquid in a
transparent glass container, aiming at the bottling process of small-scale home and craft
beer which introduces several additional design requirements that the proposed sensor
successfully addresses (like sanitary requirements and the fact that pressurized filler is
used, blocking the opening of the bottle/container, etc.). While the working principle
is straightforward, to the best of our knowledge, a similar design does not exist in the
commercial setting or scientific literature. The standard production lines usually employ
opposing LED sources (to the camera) for the verification of the fill level but not level
measurements during the actual filling/bottling process. This is because the occurrence of
multiple optical effects might interfere with the computer vision algorithm performance if
the bottle is not positioned precisely and if in the presence of a beer-filling stream. However,
please note that in the case of the opaque liquid (i.e., very dark beer), our approach (with
the current LED source configuration) will fail, while opposing-side methods will yield a
result. Thus, a combination of the two systems might be an interesting approach.

The proposed sensor was extensively tested in laboratory and production settings, with
different container shapes, colors, and various liquids (water and beer). Tests also compared
the proposed sensor to other sensor types that might be considered in the proposed setting
(low-cost, home brewery) and demonstrated a consistently better performance under
different conditions (which was, in most cases, statistically significant). The proposed
approach demonstrated several advantages, compared to other similar sensors that might
be used, but also some drawbacks (which we believe to be fewer in number). The benefits of
the proposed sensors include high accuracy, good repeatability, robustness to noise, simple
working principle, low price, ease of installation to existing production lines, and ease of
maintenance. Additionally, the output results can be used for more detailed and in-depth
analysis (like the level of foaming and similar). Drawbacks include the need to precisely
position the bottle during the measurement procedure to eliminate residual reflections, the
price of the current prototype that could still be slightly high for home brewers, and the
requirement for additional power supply and components for installation in the existing
filler system. Due to the sensor system design, which measures the liquid level from the
front side, and the fact that only the edge of the liquid level is illuminated and visible on
camera, the measurement process is not disturbed by the liquid that is poured into the
container. Also, the approach could be used for measuring the height of several different
liquids (with different densities) in the same container since the thickest liquid goes to the
bottom of the container (where the LED light source is), which enables the usage of the
special refraction phenomena that the proposed algorithm is based on.

Several possible improvements and future research directions have been identified
during the current system version’s development. First, using the same operating principle,
a higher frame rate could be achieved to accommodate a higher filler rate for industrial-
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orientated scale production, which would require more advanced hardware. The inclusion
of machine-learning algorithms within the proposed system, and with available input
parameters from other plant subsystems, could upgrade the approach to recognize working
conditions (i.e., consider the delay of other equipment in the filler process) and predict the
stopping of the filling process on time for the targeted liquid level.
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DNN Dynamic Condition Without the Noise
DWN Dynamic Condition With Noise
FoV Field of View
FPS Frames per Second
GPIO General Purpose Input–Output Pin
HD High Definition
HSV Hue, Saturation, and Value
IGAVD Image Grayscale Illumination Value Difference
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