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Abstract: Distributed optical fiber sensors (DOFSs) are a promising technology for their unique
advantage of long-distance distributed measurements in industrial applications. In recent years,
modern industrial monitoring has called for comprehensive multi-parameter measurements to
accurately identify fault events. The hybrid DOFS technology, which combines the Rayleigh, Brillouin,
and Raman scattering mechanisms and integrates multiple DOFS systems in a single configuration,
has attracted growing attention and has been developed rapidly. Compared to a single DOFS
system, the multi-parameter measurements based on hybrid DOFS offer multidimensional valuable
information to prevent misjudgments and false alarms. The highly integrated sensing structure
enables more efficient and cost-effective monitoring in engineering. This review highlights the latest
progress of the hybrid DOFS technology for multi-parameter measurements. The basic principles
of the light-scattering-based DOFSs are initially introduced, and then the methods and sensing
performances of various techniques are successively described. The challenges and prospects of
the hybrid DOFS technology are discussed in the end, aiming to pave the way for a vaster range
of applications.

Keywords: distributed optical fiber sensor; Rayleigh scattering; Brillouin scattering; Raman scattering;
optical time domain reflectometry; distributed acoustic sensing; distributed temperature sensing;
distributed vibration sensing; multi-parameter measurements

1. Introduction

In recent decades, optical fiber sensors (OFSs) have been developed rapidly with
the growth of fiber optic communication technology. OFS offers many strengths, such as
immunity to electromagnetic interference, high sensitivity, robustness, and flexibility [1–10].
The application of OFS begins with single-point sensing, which is hard to implement in
a long-distance monitoring scenario [11–13]. As a comparison, distributed optical fiber
sensors (DOFSs) take advantage of the sensing ability of optical fiber, that is, deriving all
the information along the fiber. In this case, the entire optical fiber can be regarded as the
cascaded independent single-point sensors, revealing the global behavior of a structure
rather than extrapolation from a few point measurements [14–16]. The unique advantage of
long-range distributed measurements has made DOFS a promising technique in industrial
monitoring applications.

In general, Rayleigh, Brillouin, and Raman scattering lights are generated in the op-
tical fiber [17]. DOFSs can be classified into various types according to different light
scattering mechanisms. When a lightwave with narrow linewidth is injected into the fiber,
both the intensity and phase of Rayleigh scattering light are sensitive to external vibra-
tion. As the vibration is located through the intensity information, distributed vibration
sensing (DVS) is realized [18–23]. Later developments showed that the demodulation
of the phase will help us to obtain the waveform of the vibration with high definition,
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which is the basis of distributed acoustic sensing (DAS) [24–31]. DAS has been rapidly
commercialized and widely considered in many industrial applications, including pipeline
monitoring [32–39], railway and highway transportation [23,40–46], structural inspec-
tion [47–50], perimeter security [51–55], geophysics [56–68], and biology and natural sci-
ences [69–71]. Brillouin scattering light is characterized by the linear relationship with
strain and temperature in the frequency domain [72–77]. The Brillouin scattering-based
DOFSs are particularly competent in the structural health monitoring of oil and gas facili-
ties [78–84], power grids [83,85–90], tunnels, bridges, and pavements [91–97]. Meanwhile,
geological disaster prewarning [98–102] and geophysical engineering [103–105] are also
application targets. Moreover, Raman scattering is sensitive to temperature, which leads
to the successful development of distributed temperature sensing (DTS) [106–111]. Over
the past few years, Raman-based DTS has made large progress in fire detection [112–116],
pipeline oil and gas industry uses [117–121], hydrological studies [122–127], power system
monitoring [128–130], and dam [131–134], and tunnel [135,136] structure monitoring. The
Raman super-resolved method [137–139] is also an attractive tool that is used to study the
physical spectral behavior of inspected materials.

However, the variety in the measured parameters (usually temperature, strain, or
vibration) is limited no matter which single DOFS is used. In industrial monitoring, there
is an urgent demand for collaborative multi-parameter measurement. Typically, pipeline
monitoring calls for simultaneous temperature and vibration measurements for the early
warning of leakage events [140,141]. The joint real-time monitoring of distributed tempera-
ture and cracks in a tunnel is also required to reduce the operating risks of transportation
facilities [142–144]. As for power transmission lines, the temperature, strain, and vibration
are all indispensable parameters for monitoring specific conditions, such as icing and
swing [145].

Traditional DOFS only exploits a single scattering mechanism, resulting in limited
measurable parameters. Moreover, a single parameter cannot provide enough information
about the measurands in many cases, leading to misjudgments and false alarms, which
have adverse effects on modern industrial applications. In contrast, multi-parameter
measurement brings more valuable information for identifying fault events effectively [146].
Even though it is possible to deploy multiple DOFS devices to get the multi-parameter
profiles in a field test, highly increased costs are inevitable. Meanwhile, more than one
fiber core will be occupied, and synchronized measurements cannot be guaranteed. Once
different sensing mechanisms are combined, and the multiple distributed sensing systems
are integrated, it forms a hybrid technique that can realize multi-parameter measurement
in an individual DOFS. As a result, the hybrid DOFS technology can not only provide
useful multidimensional sensing information, it is also highly efficient and cost-effective.

To combine two or more standalone DOFSs, the compatibilities of the light source,
amplifier, detector, methods of modulation, and demodulation should be all considered.
Furthermore, it is also necessary to multiplex the system components as much as possible to
reduce the overall cost and improve efficiency. In other words, the principles and features
of any single DOFS system should be studied, then well-designed methods for integration
and optimization could be proposed. In this review, various hybrid DOFSs demonstrated
in the past few years will be introduced, and the results of multi-parameter measurements
will be exhibited. Concretely, the principle of each DOFS is summarized in Section 2.
Then, the advances of hybrid DOFS systems are introduced in Section 3, including the
methods used to combine the various DOFS techniques, and the optimization as well. In
Section 4, the performance of multi-parameter measurement, which is related to the hybrid
DOFSs shown in Section 3, will be demonstrated and described in detail. The challenges
and prospects of the hybrid DOFS technology for multi-parameter measurement will be
discussed in Section 5.
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2. DOFSs Based on Light Scattering

As long as a light wave is propagating in the optical fiber, there will be an interac-
tion between the incident light and atoms or molecules of the medium, resulting in the
generation of Rayleigh, Brillouin, and Raman scattering lights. Once the surrounding
environment (temperature, strain, vibration, or acoustic wave) of the optical fiber changes,
the light field will be modulated via the fiber material. As a result, the parameters of the
scattering lights (such as intensity, wavelength, frequency, phase, and polarization) will
change accordingly. Then the environmental information can be obtained by measuring
the variation.

The DOFS schemes include optical time domain reflectometry (OTDR) [147,148],
optical frequency domain reflectometry (OFDR) [149–151], and optical correlation domain
reflectometry (OCDR) [152–154]. In general, the OTDR shows the advantage of long-range
measurement, and is more often studied in hybrid sensing systems. In this review, all the
following mentioned DOFSs are implemented in the time domain.

2.1. Rayleigh Scattering-Based DOFS

OTDR is the most well-known Rayleigh scattering-based DOFS. It was proposed by
Barnoski et al. in 1976 [155] and has a very simple structure. The basic OTDR configuration
is shown in Figure 1. A pulsed fiber laser (common operating wavelength: C-band)
generates the probe pulse light, followed by a circulator sending the pulse to the fiber
under test (FUT) and directing the backscattered Rayleigh light to the photodetector (PD).
The period of the pulse light is longer than its traveling time in the FUT. The location of the
Rayleigh scattering single can be determined through the time delay τd:

z =
cτd
2n

, (1)

where c is the velocity of light in a vacuum, and n is the refractive index of the fiber. The
principle of OTDR is universal in all time domain DOFSs.
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Figure 1. The basic configuration of OTDR. DAQ: data-acquisition card.

In 1982 [156], coherent optical time domain reflectometry (COTDR) was first developed
by Healey et al. This can improve the signal-to-noise ratio (SNR) and the dynamic range of
OTDR significantly. As depicted in Figure 2, a continuous-wave (CW) fiber laser source
(common operating wavelength: C-band) is adopted in COTDR. The coherent detection
is realized by mixing the local oscillator (LO) light and the Rayleigh backscattering (RBS)
light. An acousto-optic modulator (AOM) is commonly adopted to modulate the probe
pulse and provide heterodyne frequency f 0 (from dozens to hundreds of megahertz in
general cases). The balanced detection can significantly suppress the direct current (DC)
noise, and a polarization scrambler (PS) is necessary to suppress the polarization fading
noise. Unlike the broadband light source in OTDR, a narrow linewidth laser is required to
guarantee a long coherence length. The electrical fields of the LO light and the probe pulse
can be expressed as [25]:

ELO(t) =
√

PLO exp(j2πν0t), (2)

Ep(t) =
√

Ppw
(

t
τ

)
exp j(2πν0t + 2π f0t), (3)
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where PLO and Pp are the power of the LO light and the probe light, respectively, ν0 is the
laser frequency, τ is the probe pulse width, and w is the window function of the pulse. The
photoelectrical field received by the balanced detector (BPD) is the summation of the total
Rayleigh scattering signals along the fiber:

ER(t) =
N

∑
i=1

EiW
(

t− τi
τ

)
exp j[2πν0(t− τi) + 2π f0(t− τi)], (4)

where N is the number of the scattering points along the fiber, τi is the round-trip time of
the ith scattering point, and Ei is the corresponding photoelectrical field amplitude. After
balanced detection at the BPD, the signal photocurrent can be expressed as:

i(t) ∝ <
{

ER(t) · E∗LO(t)
}

=
N
∑

i=1
Aiw

(
t−τi

τ

)
cos[2π f0(t− τi)− 2πν0τi],

(5)

where <{E} represents the real part of complex E, * represents the conjugation operation,
and Ai is the photocurrent amplitude converted from the Rayleigh scattering signal of the
ith scattering point.
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For a laser source with narrow linewidth, coherent superposition between the scat-
tering signal is inevitable. This effect is the basis of the phase optical time domain reflec-
tometry (Φ-OTDR) [157]. The structure of the Φ-OTDR setup is similar to those of OTDR
and COTDR, which can be regarded as direct detection Φ-OTDR and coherent detection
Φ-OTDR (only remove the PS), respectively. Assuming the length of the FUT is L and the
pulse width is ∆L, we divide the FUT into N sections by the pulse width. The electric field
of the Rayleigh scattering light from the ith section can be expressed as [158]:

Ei = E0 exp(−2αLi)
M

∑
k=1

ri
k exp

(
jϕi

k

)
, (6)

where E0 is the electric field amplitude of the incident light, α is the attenuation coefficient
of the fiber, M is the number of the independent Rayleigh scattering points in the section,
Li is the distance between the beginning of the fiber to the ith section (Li = i∆L, i = 1, 2, . . .,
N), and rk

i and ϕk
i are the scattering amplitude and phase of the kth scattering point in the

ith section, respectively.
Equations (5) and (6) show that the intensity of Rayleigh scattering is related to both

the amplitude and phase of the individual scattering point, and since the scattering points
are distributed randomly within the fiber, there is a jagged profile of the Φ-OTDR trace.
Whenever an external perturbation is applied to the optical fiber, the Φ-OTDR trace at the
corresponding position will change due to the intensity and phase variation. The location
of the event can be identified by applying the differential method, in which consecutive
temporal Φ-OTDR traces are subtracted from an initial reference one [159]. Although
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the simplest implementation of Φ-OTDR utilizes the intensity to locate the perturbation,
the intensity of the Rayleigh scattering light is nonlinear with the strain induced by the
perturbation. On the other hand, the strain on a length of l is proportional to the phase
change, which can be indicated as [160]:

ϕ(t, l) = ζk
∫ l

0
ε(t, l)dl, (7)

where ε(t, l) is the fiber strain and ζ = 1− n2[(1− µp)p12 − µp p11]/2, µp represents Poisson’s
ratio, p11 and p12 are the components of the strain-optic tensor [161], and k = 2πn/λ is the
light propagation constant in the fiber. When a single-mode optical fiber is in use, ζ ≈ 0.79.

To quantify the strain of the fiber, there are two major methods, including the ex-
traction of phase and the demodulation of Rayleigh frequency. For phase demodulation,
coherent detection is the most often adopted technique, which can about bring higher SNR
at the same time [20,162]. Methods such as I/Q demodulation [163,164] and Hilbert trans-
form [165] can be adopted to process the Rayleigh coherent signal. Some direct-detection
setups can also derive the phase change. Self-interference methods such as symmetric
3 × 3 coupler [166], phase generated carrier (PGC) demodulation [167], or differentiate-
and-cross-multiply [168] methods are applicative. The dual probe pulses [169,170] with
different frequency components can also realize the interference, and this is also based on a
direct-detection configuration.

Rayleigh frequency demodulation is another method used to retrieve the strain, pos-
sessing the advantages of immunity to coherent fading [171] and large strain measure-
ment [25]. Generally, the Rayleigh trace is acquired for different laser frequencies within
a given frequency range. Then, the intensity of Rayleigh scattering at each position is
observed as a function of frequency. Once there is any strain or temperature change,
the intensity–frequency relationship will change due to the variation of fiber refractive
index and fiber length. However, one can still recover the relationship by shifting the
initial frequency by a certain value. This is a common feature for all kinds of Rayleigh
scattering-based sensors, which are capable of providing quasi-static measurements in
frequency-sweeping schemes [172]. Algorithms such as cross-correlation [173,174] or least
mean squares [175] can be applied to determine the frequency shift, which is proportional
to the variations of strain and temperature. The strain and temperature proportionality
originates from the thermo-optic and elasto-optic effect of silica, and is similar to the
coefficients of the fiber Bragg gratings (FBG) response, which can be denoted as [173]:

∆ν

ν0
≈ −0.78 · ∆ε, (8)

∆ν

ν0
≈ −

(
6.92× 10−6

)
· ∆T, (9)

where ∆ν is the frequency shift in the spectrum, and ∆ε and ∆T are strain and temperature
change, respectively. Since the frequency-sweeping and the cross-correlation processes are
time-consuming, an optimized solution is to employ chirped pulse [176,177]. The chirped
pulse method can retrieve the Rayleigh spectrum by transforming the spectral shift to the
time delay of the probe, making it possible to implement dynamic measurements.

2.2. Brillouin Scattering-Based DOFS

Brillouin scattering is the result of the interaction between incident light and thermally
generated acoustic phonons. The propagating phonons form a diffraction grating moving
at the velocity of sound, which leads to the frequency shift of the scattering light due to the
Doppler effect [15]. The up-shifted and down-shifted Brillouin scattering lights are known
as anti-Stokes light and Stokes light, respectively. Considering that the Brillouin scattering
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light is guided backward in the fiber, the Brillouin frequency shift (BFS) νB is determined
by the properties of fiber and incident light [17]:

νB =
2nVa

λP
, (10)

where Va is the velocity of the acoustic wave, and λP is the wavelength of the pump light in
a vacuum. Since the refractive index of fiber is affected by the thermo-optic and elasto-optic
effects, BFS has a linear relationship with the change of temperature and strain [178]:

νB(T, ε) = νB(T0, ε0) + CB
T(T − T0) + CB

ε (ε− ε0), (11)

where T0 and ε0 are the initial temperature and strain, respectively, while CT
B and Cε

B

are the temperature and strain coefficients of BFS, respectively. Apparently, it is an in-
trinsic challenge to discriminate temperature and strain from BFS, which is regarded as
the temperature/strain cross-sensitivity [179,180]. Considering that phonons suffer from
attenuation in the optical fiber, Brillouin scattering shows a broadened spectrum named
Brillouin gain spectrum (BGS), which resembles the Lorentzian curve [181]:

gB(ν) = g0
(∆νB/2)2

(ν− νB)
2 + (∆νB/2)2 , (12)

where g0 is the peak gain of the Brillouin scattering, and ∆νB is the linewidth of the BGS
(from dozens to hundreds of megahertz in general cases).

According to the power of the incident light, Brillouin scattering is further classified
into spontaneous Brillouin scattering (SpBS) and stimulated Brillouin scattering (SBS).
When the power of the incident light is relatively low, SpBS occurs, which has a linear rela-
tionship with the incident power. Once the incident power exceeds a threshold value, SBS
occurs, resulting in a significant energy transfer between the incident light and the Brillouin
Stokes light. In 1989, the strain and temperature measurements were first implemented
with the assistance of Brillouin scattering [77]. Later, the BOTDR and Brillouin optical time
domain analysis (BOTDA) sensing schemes were developed [182,183].

A typical BOTDR configuration is exhibited in Figure 3, similar to the COTDR con-
figuration described in Figure 2. The fiber laser is also operated at the C-band, and the
linewidth should be less than the spectrum width of BGS by as much as possible. The
difference is that the electro-optic modulator (EOM) is usually used to generate the pulse
light. In this setup, heterodyne frequency is induced by the BFS νB. Similarly to COTDR, a
PS is indispensable when suppressing the polarization fading noise. To further enhance
the SNR, multiple traces are needed with a certain average time. The beat signal is first
converted to a microwave signal (~11 GHz) by a high-speed photodetector. Then, the signal
is received by a microwave receiver, which can scan all the frequency components of the
microwave signal. Then, various methods such as Lorentz fitting [184,185], quadratic least-
square fitting [186,187], the cross-correlation algorithm [188,189], and the cross recurrence
plot analysis (CRPA) method [190] are able to acquire the value of BFS. BOTDR has the
advantage of single-end access to the FUT, making it easy to implement in engineering.

Since BOTDR utilizes low-power spontaneous light for sensing, the signal has a limited
SNR and would immensely restrict the sensing range. The BOTDA configuration, which
uses the SBS light, has a competitive advantage related to its higher SNR. As illustrated
in Figure 4, the laser source is split into two beams; one acts as the pump pulse light,
and the other is modulated into a frequency-shifted probe light. As long as the frequency
shift νs is near the BFS νB of the FUT, there will be an energy transfer between the pump
light and the probe light. It should be noted that the EOM in the upper branch outputs
a double-sideband probe light, so a narrow bandwidth band-pass filter, whose center
wavelength should match the BFS and the operating wavelength of the laser source, is
necessary to fetch the single-sideband response. By sweeping the shifted frequency νs, the
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whole range of BGS can be reconstructed. While BOTDA is an excellent choice to extend
the total sensing range, both ends of the FUT must be connected to the setup, which makes
it challenging to implement in long-range measurements.
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2.3. Raman Scattering-Based DOFS

During the process of light scattering, a small fraction of the scattering light is scattered
by material excitation, and the frequency of the scattered photons is different from that of
the incident photons. The two-state transition process can either produce or absorb photons,
generating the frequency upshifted anti-Stokes light or the downshifted Stokes light. As a
whole, the vibrations of the thermally driven molecules give rise to spontaneous Raman
scattering (SpRS) [181]. There is a strong dependence on the temperature of the intensity of
the anti-Stokes SpRS, whereas the Stokes SpRS is slightly temperature-sensitive. Such a
temperature-dependent characteristic is suitable for distributed temperature sensing.

The first Raman scattering-based DOFS was proposed and demonstrated in 1985 [108],
in which the OTDR technique was combined with the SpRS light. Figure 5 gives the typical
configuration of ROTDR. The fiber laser commonly works at the C-band. Since the power
of the SpRS light is very low (approximately 20–30 dB weaker than the power of Rayleigh
scattering light), a probe pulse with higher peak power is necessary. In the detection of
the Raman signals, the wavelength-division multiplexer (WDM) is employed to separate
the Raman Stokes and anti-Stokes lights. In this case, the WDM should contain channels
of 1450 nm, 1550 nm, and 1650 nm. To further increase the detectable level of the weak
SpRS light, the avalanche photodiode (APD) with a large gain is generally used. The power
of the detected Raman Stokes signal Ps(z) and anti-Stokes signal Pas(z) as a function of
position z can be expressed as [111]:

Ps(z) = Rs(z) exp
[
−
(
αp + αs

)
z
]
P0, (13)

Pas(z) = Ras(z) exp
[
−
(
αp + αas

)
z
]
P0, (14)

where Rs(z) and Ras(z) are the distribution-related coefficients of the Raman Stokes and anti-
Stokes lights at position z, respectively, while αp, αs, and αas are the attenuation coefficients
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of the pump, Raman Stokes and anti-Stokes lights, respectively, and P0 is the laser power.
According to Bose–Einstein statistics, Rs(z) and Ras(z) are approximate to [106]:

Rs(z) ∼=
1

λ4
s

1

1− exp
[
− hc∆νR

kBT(z)

] , (15)

Ras(z) ∼=
1

λ4
as

1

exp
[

hc∆νR
kBT(z)

]
− 1

, (16)

where λs and λas are the wavelengths of the Raman Stokes and anti-Stokes lights, respec-
tively, h is Planck’s constant, kB is Boltzmann’s constant, ∆νR is the Raman frequency
shift, and T(z) is the temperature at position z. Then, the ratio of the power of the Raman
anti-Stokes and Stokes lights can be calculated as:

R(z) =
Pas(z)
Ps(z)

=

(
λas

λs

)4
exp[−(αs + αas)z] exp

[
− hc∆νR

kBT(z)

]
. (17)
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The above formula indicates that the ratio depends on the statistical temperature
distribution T(z), which is the basis for the distributed temperature sensing of ROTDR. To
avoid the error introduced by the environmental change, a reference temperature T(z0) at
position z0 is utilized for calibration, hence the actual temperature profile could be obtained
by the following equation [155]:

1
T(z)

− 1
T(z0)

= − kB
hc∆νR

[
ln

Pas(z)
Ps(z)

− ln
Pas(z0)

Ps(z0)
+ (αas − αs)(z− z0)

]
. (18)

While the pump power should be increased to improve the SNR, nonlinear effects
would appear as the power exceeds the threshold, leading to the distortion of the Raman
trace. In this case, multi-mode fiber is a common choice in seeking to attain a higher
allowable power. However, the intermodal dispersion is detrimental to the sensing range,
and the pump pulse would undergo broadening while propagating in the fiber, worsening
the achievable spatial resolution [191]. In general, there is a tradeoff between the SNR-
related sensing distance and the spatial resolution in ROTDR. The common sensing distance
can reach up to few tens of kilometers when the spatial resolution and the measuring time
are both within a reasonable range.

In this section, standalone DOFS systems that form the hybrid DOFS technology are
mainly reviewed. Basic sensor structures, operating principles, as well as the demodulation
methods of the current DOFS are briefly introduced.

3. Advances of Hybrid DOFS

Since the DOFSs are classified by different scattering mechanisms, it is essential to
combine the Rayleigh, Brillouin, or Raman scattering lights to implement multi-parameter
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measurements. In recent years, breakthroughs have been achieved in demonstrating the
hybrid DOFSs. Not only have methods integrating discrete DOFSs been proposed, but the
performance and cost have also been considered.

3.1. Combination of Rayleigh and Brillouin Scattering Lights

Among the various hybrid sensing systems, the combination of Rayleigh and Brillouin
scattering lights has been the most widely studied in recent years. Both Φ-OTDR and
COTDR take advantage of the Rayleigh scattering, and BOTDR and BOTDA use SpBS
or SBS light for temperature and strain measurements. Apart from the multi-parameter
measurement (temperature, strain, vibration, and loss) based on the integration of discrete
sensing characteristics [145,192–196], there is also a focus on the handling of the tempera-
ture/strain cross-sensitivity among the Brillouin scattering-based sensors with the assis-
tance of Rayleigh scattering [172,197,198]. In addition, the combination of BOTDA/BOTDR
and frequency-sweeping Rayleigh scattering-based DOFS can provide comprehensive and
accurate strain or temperature measurements [199–201].

When constructing a hybrid Rayleigh and Brillouin sensing system, the main aim is
to detect the Rayleigh and the Brillouin scattering lights correctly, especially considering
their ultra-narrow frequency interval. In 2020, Wang et al. demonstrated a hybrid sensing
system combining Φ-OTDR and BOTDA by using the same set of frequency-scanning
optical pulses [199]. The Φ-OTDR part worked in a frequency detuning mode to generate
the correlation peak, which is linear with the temperature and strain variations. Since the
BOTDA part intrinsically requires a frequency scanning process, the pump pulses were
shared for both Φ-OTDR and BOTDA. As shown in Figure 6a, the probe wave for BOTDA
was injected from the other end of the sensing fiber. It traveled in the same direction as the
Rayleigh scattering light. In this work, fiber Bragg grating (FBG) was utilized to reflect the
Rayleigh scattering light and transmit the Brillouin probe light, as exhibited in Figure 6b. In
the implemented experimental setup shown in Figure 7, the hybrid system shared the same
pulse modulation path, which included an EOM1 to modulate the frequency-scanning
signal and an EOM2 to subsequently generate pulses with each frequency component in
one temporal frame. Benefitting from the frequency-agile technique [202], this system could
conduct dynamic strain measurements.
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Another hybrid Φ-OTDR/BOTDA system was proposed by Coscetta et al. in 2021 [192].
It adopted a similar method to separate the Rayleigh and Brillouin signals by the FBG.
Figure 8 gives the experimental setup of the integrated system. The lower branch served
as the pump pulse for both Φ-OTDR and BOTDA, while the upper branch was the probe
light only for BOTDA. The backscattering light was first sent to a narrowband (~5 GHz)
FBG to reflect the Brillouin Stokes light. Meanwhile, the Rayleigh scattering light and the
Brillouin anti-Stokes light passed through the FBG. Another FBG was tuned only to reflect
the Rayleigh scattering light to remove the anti-Stokes component. Finally, the Rayleigh
and Brillouin signals are separated and simultaneously detected by two PDs.
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In 2016, Zhang et al. presented a pulse modulation method to integrate Φ-OTDR
and BOTDR [193]. The experimental setup is illustrated in Figure 9a. An AOM, driven
by an arbitrary waveform generator (AWG), was used to generate the modulated pulses.
Simultaneously, the optical switch (OS) was triggered by the AWG. By switching the
on–off state of the OS, the sensing system acted as the coherent detection BOTDR or the
direct detection Φ-OTDR. Even if the Φ-OTDR and the BOTDR could not be implemented
synchronously, the well-designed modulated pulses improved the performance of the
standalone Φ-OTDR or BOTDR. Figure 9b shows that each modulated pulse comprised
several wide pulses I1 with high intensity and a narrow pulse I2 with low intensity. The
wide pulses were beneficial for the intensity-based Φ-OTDR signal because it needs more
energy to excite enough Rayleigh scattering signal and detect perturbations with high
frequency. The narrow pulse was for the BOTDR, which requires lower pump power to
avoid the nonlinear effects. In addition, the respective spatial resolution was adjustable in
the hybrid system.

To further simplify the structure of the hybrid system while maintaining the sensing
performance, a hybrid Φ-OTDR/BOTDR setup was demonstrated in 2022 [145]. Since the
quantitative demodulation of the Rayleigh scattering phase is crucial for comprehensive
vibration measurement, and heterodyne detection is the most effective method to collect
the SpBS signal, a double heterodyne detection configuration was proposed. As shown
in Figure 10, both the LO path and the scattering light were divided by couplers for
independent heterodyne interferences. In this case, the polarization fading noise in BOTDR
was suppressed with the help of PS, while the polarization state of the RBS signal remained



Sensors 2023, 23, 7116 11 of 40

unscrambled, ensuring the dynamic measurement ability of the Φ-OTDR sub-system. In
the meantime, the frequency crosstalk induced by different heterodyne frequencies in
Φ-OTDR (AOM frequency shift ranges from tens to hundreds MHz) and BOTDR (Brillouin
frequency shift of ~10.8 GHz) was avoided. Most components in this experimental setup
were shared, and the overall complexity has been significantly reduced.
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Apart from the direct separation of the Rayleigh and Brillouin components in the
scattering light, multiplexing is an alternative way to obtain different sensing signals simul-
taneously. In 2017, Dang et al. employed both the Φ-OTDR and BOTDA through space-
division multiplexing (SDM) based on the multi-core fiber (MCF) [200]. From Figure 11,
we can see that the continuous light was initially modulated into pulses in the upper
branch. A Mach–Zehnder modulator (MZM1) successively shifted the optical frequency
for the frequency-scanning Φ-OTDR configuration. Then the other MZM2 shifted the pulse
frequency by approximately BFS for the BOTDA function. These two sets of pulses were
sent into different cores of MCF through a fan-in coupler. Therefore, the Rayleigh and
the Brillouin scattering lights were generated in the corresponding cores and detected
independently.

In 2018, Fu et al. demonstrated another hybrid Φ-OTDR/BOTDA system, implement-
ing the wavelength-division multiplexing technology [194]. As depicted in Figure 12, the
Φ-OTDR and the BOTDA system conducted measurements from the same fiber segment
and shared the distributed amplification components. Signals corresponding to the Φ-
OTDR and BOTDA sub-systems were combined and divided by the dense WDM (DWDM).
The difference in the center wavelengths of the Φ-OTDR and BOTDA signals should be
large enough that the DWDM can filter out each waveband. Besides this, the combination
of distributed Raman amplification, distributed Brillouin amplification, and random fiber
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lasing amplification was employed to extend the sensing range to 150.62 km. The spatial
resolutions of Φ-OTDR and BOTDA were 9 m and 30 m, respectively.
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On the other hand, BOTDA intrinsically requires the connection of both ends of the
fiber, placing restrictions on its implementation in engineering applications. In 2013, Zhang
et al. proposed a single-end-access BOTDA integrated with COTDR [195]. The experimental
setup is exhibited in Figure 13. There was a short jumper with the FC/PC end-face spliced
at the end of the FUT to enhance the Fresnel reflection. Hence, the reflective probe light
interacted with the counter-propagating pump pulse to generate SBS. Subsequently, both
the reflective Brillouin probe light and the Rayleigh scattering light were mixed with the
LO light and detected by a single photodetector. The electric spectrum analyzer (ESA) was
used to extract the frequency components of BOTDA and COTDR sensing signals.

In addition to the multi-parameter sensing of the hybrid Rayleigh and Brillouin sen-
sors, the temperature–strain cross-sensitivity problem of BFS was also addressed with the
combination of Rayleigh and Brillouin scattering lights. In 2014, Kishida et al. demon-
strated a hybrid sensing system based on BOTDA and tunable-wavelength coherent optical
time domain reflectometry (TW-COTDR) [197]. Discrete laser sources and receivers were
adopted for the BOTDA and the COTDR, as illustrated in Figure 14. Since the Rayleigh
frequency shift from cross-correlation and the BFS both have linear relationships to the
temperature and the strain but with different coefficients, the temperature and strain could
be separated by combining these relationships (Equations (8), (9) and (11)). There comprise
the additional benefits derived when combining Brillouin and Rayleigh sensing signals.
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The Brillouin data were used for distance compensation and thus improved the correlation
analysis. On the other hand, the Rayleigh frequency shift could filter the measured BFS
and improve the accuracy of the separated strain and temperature.
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Figure 14. Experimental setup of the hybrid BOTDA/COTDR system (adapted from [197]).

Recently, Murray et al. introduced another hybrid Rayleigh and Brillouin-based sens-
ing system enabling temperature–strain discrimination [172]. The distinct dependencies
of Rayleigh and Brillouin frequency shift on the temperature and strain are devoted to
solving the cross-sensitivity problem, as indicated in Equations (8), (9) and (11). To further
improve the performance, a slope-assisted BOTDA architecture, which is commonly used
for dynamic sensing [203,204], is combined with a frequency-scanning OTDR scheme for
quasi-static measurements. Figure 15 depicts the experimental setup of the hybrid sys-
tem. The laser sources for Rayleigh and Brillouin sub-systems are operated at different
wavelengths, and they could be easily separated by a WDM. Specifically, probes of the
Brillouin sub-system are modulated by two EOMs with different modulation frequencies.
The BOTDA probes consist of four frequency components, including the Brillouin Stokes,
anti-Stokes probes, and Stokes and anti-Stokes LOs. The interference occurs at each side
in the frequency domain, leaving the Stokes and anti-Stokes interference signals isolated
by another WDM, and gathered respectively by two PDs. On the other hand, an AOM
pair generates pulses with continuously scanned frequency for the Rayleigh sub-system.
Since each AOM is driven at frequencies from 170 MHz to 225 MHz with a 1 MHz step, a
train of pulses over a range of 110 MHz with a 2 MHz step is available. In addition, both
of the pulses used in Rayleigh and Brillouin sub-systems are set at a width of 50 ns and a
repetition rate of 200 kHz, and they are simultaneously directed into the shared FUT.
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In 2021, Clément et al. presented an alternative method to solve the cross-sensitivity
effect based on a hybrid BOTDR and COTDR system [198]. Figure 16a shows the experimen-
tal setup, which uses only one laser source and a common acquisition system. With the help
of frequency modulation towards the optical path, multiple frequency components were
generated in the backscattering light. Provided the frequency shifts were well-designed,
only the Rayleigh and Brillouin anti-Stokes components were retained, leaving the rest
outside the 1 GHz bandwidth of the photodetector. Figure 16b indicates the spectral infor-
mation when the temperature changes. Both the intensity and the center frequency of the
Brillouin sensing signal will vary, and the Rayleigh component stays still. As long as the
Rayleigh and Brillouin sensing signals were simultaneously collected, the Landau–Plazek
ratio could be calculated by the following equation [205]:

RLP =
IR
IB

=
Tf

T

(
ρ0V2

AβT − 1
)

, (19)

where IR and IB are the intensities of Rayleigh and Brillouin signals, respectively; ρ0 is the
material density; VA is the velocity of the acoustic wave; βT is the isothermal compressibility
at the fictive temperature Tf, and T is the current temperature. As the Landau–Plazek ratio
was temperature-dependent and related to the intensity only, the strain-induced Brillouin
frequency shift was then concluded. Thus, the temperature and strain could eventually be
discriminated.
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3.2. Combination of Rayleigh and Raman Scattering Lights

The Raman-based DOFS, especially the ROTDR, has been widely used for distributed
temperature sensing over long distances with meter-scale spatial resolutions. In the mean-
time, Φ-OTDR is a promising technique for distributed acoustic sensing. Combining the
DTS and DAS provides a promising method to measure the temperature and vibration
simultaneously for monitoring the leakage events in the oil and gas industry.

Since the wavelength interval between Rayleigh and Raman scattering lights is large,
it is easy to separate them with an optical filter or a DWDM. In 2016, Muanenda et al. pro-
posed a distributed acoustic and temperature sensor based on a hybrid Φ-OTDR/ROTDR
system [205]. As shown in Figure 17, a commercial off-the-shelf distributed feedback (DFB)
laser and a direct detection configuration were adopted. The performance of the laser was
thoroughly analyzed and optimized so that the inter-pulse incoherence and intra-pulse
coherence occur when using cyclic Simplex pulse coding. The linewidth of the laser was
~4 MHz, and the maximum codeword length was 255, providing a coding gain of up to
9 dB. A high-extinction-ratio Raman filter was used to separate the Rayleigh, Raman Stokes,
and Raman anti-Stokes components, which were detected and processed to extract the
vibration and temperature information.
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To further enhance the SNR and determine the vibration quantitatively, Zhang et al.
proposed a hybrid heterodyne detection Φ-OTDR and ROTDR system for acoustic and
temperature sensing in 2018 [206]. Figure 18 gives the experimental setup of the hybrid
sensing system. The Rayleigh, Raman Stokes, and Raman anti-Stokes components were
separated by a WDM filter. Afterward, the Rayleigh scattering light was combined with
the local oscillator light to reconstruct the acoustic field. Simultaneously, the Raman Stokes
and anti-Stokes lights were detected by two APDs. A common data acquisition card was
employed to record the Rayleigh and Raman signals together.
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The hybrid Φ-OTDR/ROTDR can measure simultaneously in a single-mode fiber
(SMF). However, the SpRS power is usually ~30 dB lower than the Rayleigh scattering light.
To guarantee sufficient SpRS power, high pump power is needed, which may generate
nonlinear effects and distort the Φ-OTDR trace [207]. Since the required pump powers for
Φ-OTDR and ROTDR are incompatible in an SMF, a space-division multiplexed hybrid
Φ-OTDR/ROTDR system using MCF was proposed and demonstrated by Zhao et al. in
2018 [208]. As illustrated in Figure 19, the laser source and the pump pulse were shared
for Φ-OTDR and ROTDR, and the interrogations of Rayleigh and Raman scattering were
carried out in different cores of the MCF. As a result, the Rayleigh and Raman signals were
separated and detected independently. Moreover, it has been confirmed that the outer cores
of the MCF were more sensitive to bending, which could be exploited for Φ-OTDR to exert
an enhanced vibration.
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3.3. Combination of Brillouin and Raman Scattering Lights

Since the Raman scattering is sensitive to temperature but not to strain, the combina-
tion of Brillouin and Raman scattering lights could help to address the cross-sensitivity issue
in Brillouin scattering-based sensors. The intensity trace of the temperature-dependent
Raman anti-Stokes light is normalized by the temperature-insensitive Raman Stokes trace,
which has already been illustrated in Equation (17). As long as the Brillouin frequency shift
is obtained simultaneously, the strain experienced by the fiber can be resolved with the
assistance of the temperature trace T(z). The obtained strain trace can be expressed as:

ε(z) =
∆νB − CB

T T(z)
CB

ε
. (20)

The hybrid Brillouin and Raman sensor has been proven as an effective solution
to discriminate distributed temperature and strain. In 2005, Alahbabi et al. presented
a hybrid BOTDR/ROTDR sensing system for the first time [209]. The two measurands,
temperature and strain, were successfully discriminated by combining the Brillouin and
Raman scattering lights. Nevertheless, the Raman scattering light possesses rather low
power, which leads to inaccuracy in simultaneous temperature/strain sensing. In 2013,
Taki et al. presented a hybrid BOTDA/ROTDR sensing system based on cyclic pulse
coding [210]. The use of a 511-bit cyclic simplex codeword brought a ~10 dB gain of SNR,
allowing us to improve the accuracy of both Raman anti-Stokes and BFS measurements.
A highly integrated solution was proposed, as illustrated in Figure 20. The coded pulses
were shared for both BOTDA and ROTDR. A high extinction Raman filter was employed
to separate the Raman Stokes, Raman anti-Stokes, and Rayleigh/Brillouin components into
three different ports. Then, a narrowband FBG filtered out the unnecessary components,
reserving the Brillouin Stokes light. Notably, since the Simplex coding bit sequences were
quasi-periodic, the real-time decoding could be achieved in less than one fiber transit time,
allowing accurate long-distance sensing with a sub-second measurement time [211].
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However, an extremely high pump power (several Watts) is required to increase the
intensity of SpRS. The nonlinear tolerance of ROTDR is much higher since the Raman
Stokes and anti-Stokes signals have a broader spectral width. However, the Brillouin
scattering-based sensors will suffer from modulation instability (MI) and SBS effects. The
Brillouin scattering trace could undergo dramatic distortion resulitng from these nonlinear
effects [207].

To address the incompatibility of the pump power, Zhao et al. utilized the SDM in a
hybrid BOTDR/ROTDR sensing system based on multi-core fiber [212]. The interrogation
of the BOTDR and ROTDR sub-systems was operated at different cores of the multi-core
fiber. As exhibited in Figure 21, the central core was chosen for BOTDR to avoid the
bending-imposed BFS cross-sensitivity, while one of the outer cores implemented ROTDR
measurement. Therefore, the quantitative discrimination of temperature and strain was
guaranteed. Benefitting from the SDM, the power of pump pulses at BOTDR and ROTDR
branches could be separately controlled, which were set to 20 dBm and 33 dBm, respectively.
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3.4. Others

Apparently, the hybrid DOFSs mentioned above are all based on the independent
detection of different scattering lights. In addition to the direct combination methods,
an alternative approach is to gather multiple scattering information demodulated from a
single scattering light.

In 2013, Wang et al. proposed a distributed fiber strain and vibration sensor integrating
BOTDR and polarization optical time domain reflectometry (POTDR) [213]. Figure 22
depicts a schematic diagram of the hybrid BOTDR/POTDR system, which resembled a
conventional heterodyne BOTDR configuration, whereas the principle of POTDR was
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exploited by extracting the state of polarization (SOP) of Brillouin scattering light. A
polarization switch (PSW) instead of a PS was used to manipulate the polarization state of
the reference light. When the PSW was turned to a certain state, the instant polarization
information was demodulated from the Brillouin trace. A subsequent fast Fourier transform
(FFT) was performed to get the distributed frequency spectrum of the polarization signal,
revealing the location and frequency of the vibration. When the PSW had accomplished a
periodic switchover (both horizontal and vertical SOPs), the detected Brillouin scattering
light with two orthogonal SOPs could suppress the polarization fading noise, allowing for
the correct measurement of temperature and strain.
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Later in 2015, Wang et al. presented a Rayleigh scattering-based DOFS capable of
measuring strain and vibration simultaneously [214]. Figure 23 depicts the experimental
setup of this sensing system. The combination of an EOM and a microwave source provided
frequency-sweeping pulses for Φ-OTDR operating in the cross-correlation measuring mode.
To conduct a simultaneous multi-parameter measurement, the pump pulse was initially
fixed, and the real-time Rayleigh traces were obtained to measure dynamic vibration. Af-
terward, the frequency-sweeping pulses were generated, along with the multiple Rayleigh
traces carrying different Rayleigh frequency shifts. Whenever the scanning procedure was
accomplished, the cross-correlation peak could be acquired to determine the distributed
temperature/strain, as illustrated in Equations (8) and (9), and the measurement of dynamic
vibration was also guaranteed.
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Recently, Fan et al. proposed a simplified single-end hybrid Rayleigh and Brillouin
sensing system [215]. Unlike the conventional scheme, demodulation was only conducted
towards the Rayleigh scattering light, which contained the Brillouin scattering information
as well. As depicted in Figure 24, the DFB laser performed injection locking to compensate
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for the insertion loss of the intensity modulator (IM) and the optical bandpass filter (OBPF),
and to stabilize the power of the output light. Another difference from the conventional
BOTDA configuration is that the pulse pair was comprised of two segments, and the former
pulse initially generated the continuous RBS light, which also acted as the Brillouin probe.
Once the frequency difference between the former and latter pulses came near the BFS, the
latter pulse was regarded as the Brillouin pump pulse to amplify the probe due to the SBS
effect. The continuous RBS light, which carried the Rayleigh scattering information, was
also used to demodulate the BFS. As a consequence, only one type of signal was detected
to obtain the vibration measured by Φ-OTDR and the temperature/strain measured by
BOTDA. Benefitting from its well-designed structure, the BOTDA sub-system could be
implemented from the single end of the fiber, and the requirement of the receiver was
reduced.
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To sum up, hybrid DOFSs based on the combination of Rayleigh, Brillouin, and Raman
scattering lights have a number of sensing abilities:

(1) Measurements of multiple parameters, including temperature, strain, vibration, and
acoustic wave;

(2) Discriminating temperature and strain for simultaneous measurements;
(3) Improving the performance of single-parameter (e.g., temperature, strain) measure-

ment based on the simultaneous demodulation of Rayleigh and Brillouin signals.

In order to realize the integration of various DOFS systems, efforts have been made in
consideration of:

(1) The direct separation of different scattering lights with FBG or WDM. The Raman
frequency shift is large enough to take advantage of the WDM. However, the Bril-
louin frequency shift is much smaller, so it is rather necessary to use the FBG with
ultranarrow bandwidth to separate Brillouin and Rayleigh scattering lights;

(2) Well-designed multiplexing methods incorporating time–division multiplexing, wave-
length–division multiplexing, space–division multiplexing, frequency–division multi-
plexing, or polarization–division multiplexing.

This section reviews the recent advances of the hybrid DOFS technology. To integrate
various DOFS systems with different scattering mechanisms, major works focus on separat-
ing and detecting Rayleigh, Brillouin, and Raman scattering lights. Different combinations
of scattering lights require specific methods due to their distinct principles.

4. Multi-Parameter Measurements

While implementing in-field tests, the greater the amount of parameters that are
measured, the better the recognition of the fault events. Benefitted by the hybrid DOFSs
presented in Section 3, multiple parameters, including temperature, strain, vibration, and
loss, could be measured simultaneously, allowing for extended applications in engineering.
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4.1. Temperature/Strain and Vibration

Basically, simultaneous temperature/strain and vibration sensing can be realized by a
hybrid Rayleigh and Brillouin sensor.

As demonstrated by Coscetta et al. [192], both the BFS and the intensity information
of the Rayleigh signal were resolved. Figure 25a shows the BFS profiles acquired from
the BOTDA data. Results under different temperature conditions are marked in distinct
colors. The temperature-induced BFS variation was clearly observed at the fiber end,
indicating a 2 m spatial resolution. The corresponding temperature revolution is also
given in Figure 25b. Notably, the BOTDA setup was adjusted to a slope-assisted BOTDA
configuration, which could conduct dynamic strain measurements. For comparison, the
dynamic strain and the vibration tests were synchronously implemented through BOTDA
and Φ-OTDR, respectively. As shown in Figure 25c,d, the Φ-OTDR measurement was
much cleaner than the BOTDA measurement when imposing the same vibration (150 Hz
sine wave with the peak-to-peak value of 1.5 V). A possible explanation was that the
strain sensitivities of BOTDA and Φ-OTDR were ~0.25%/µε and 10%/nε, respectively.
Thus, BOTDA could be used to estimate the absolute amount of strain, while the vibration
spectrum was determined by Φ-OTDR with more fidelity. The combination of Φ-OTDR
and slope-assisted BOTDA could be a promising method to analyze and reconstruct the
vibration.
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Simultaneous temperature/strain and vibration measurements were also carried out
using the experimental setup in Figure 10 [145]. Figure 26a illustrates the arrangement
of the FUT with a total length of 59.9 km, involving a fiber section with a 10 m length
wrapped on a piezoelectric transducer (PZT) tube and another fiber loop with a 20 m length
immersed in a water bath kettle. Both events were located near the end of FUT. Figure 26b
shows the demodulated phase of the RBS signal when an 800 Hz triangular vibration signal
was exerted on the PZT; it is evident that the dynamic vibration information was restored
correctly. At the same time, the temperature of the water bath kettle rose from 5 ◦C to
50 ◦C, which could be observed from the corresponding measurement results in Figure 26c.
The measurement uncertainty of BFS was 0.381 MHz, and the achieved dynamic strain
resolution was 1.235 nε/

√
Hz when the spatial resolution of the hybrid sensing system was

20 m.
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Besides this, the hybrid Φ-OTDR/BOTDA sensing system reported by Fu et al. [194]
implemented multi-parameter measurements over a hundred-kilometer length scale. The
BFS profiles are illustrated in Figure 27a, which manifested a BFS variation near the fiber
end, corresponding to an 18.2 ◦C temperature difference in a 35 m fiber piece. The enlarged
view of the heated section in Figure 27b validated that the spatial resolution was 8.2 m for
temperature measurement. It should be noted that it can also measure the strain since both
were derived from the BFS. The vibration measurement was tested by applying an external
perturbation near the fiber end. Figure 27c gives the demodulated intensity distribution of
the Rayleigh signal, where the perturbation was well recognized. According to Figure 27d,
the spatial resolution for vibration measurement was 28.8 m, while a sensing range of
150.62 km was achieved with the assistance of multiple distributed amplification.
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4.2. Temperature and Vibration

As discussed in the previous section, simultaneous measurements of temperature
and vibration are required in numerous application scenarios, especially in the oil and gas
industry and geophysical engineering.

The hybrid Φ-OTDR/ROTDR sensing system in Figure 19, which took advantage of
the multi-core fiber, has accomplished simultaneous distributed intrusion detection and
temperature monitoring [208]. To emulate the intrusion events, a manual tapping was
imposed on two segments of the fiber. The experimental results are shown in Figure 28.
Figure 28a depicts the superposed 885 consecutive signals based on the differential opera-
tion between raw intensity traces and a reference trace, revealing the disturbance locations
corresponding to the two intensity peaks. In the meantime, the temperature measurement
was carried out by ROTDR in the central core of the multi-core fiber. Different temperatures
(50 ◦C, 60 ◦C, 75 ◦C) were applied on the 60 m-long fiber at the fiber end, and Figure 28b
depicts the results with the assistance of the wavelet transform denoising (WTD) method.
The temperature distribution was precisely resolved, especially when the WTD was used.
Notably, the overall performance of the multi-parameter measurements was more impres-
sive with the assistance of space-division multiplexing, and the use of a single MCF avoids
the access of multiple SMFs, leading to a reduction in the cost associated with embedding
or attaching the sensors. It also results in simpler and more robust sensor design and thus
an increased range of structural applications.
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Figure 28. (a) Total of 885 superposed consecutive differential Φ-OTDR traces with intrusion ap-
plied to two fiber segments; (b) resolved temperature distribution with denoising method (adapted
from [208], detailed curves are available in the reference paper).

It is noteworthy that the multi-core fiber is not always suitable for and compatible with
engineering, especially when the fiber type has already been determined. The simultaneous
temperature and vibration measurements have also been conducted in SMF by Zhang
et al. through a hybrid Φ-OTDR/ROTDR sensing system [206]. The method and the
experimental setup have already been described in Section 3.2. The detected Raman Stokes
and anti-Stokes signals are shown in Figure 29a. As the fiber end was heated from 35 ◦C to
55 ◦C with the step of 5 ◦C, using the temperature control chamber, temperature distribution
could be obtained by combining the Raman Stokes and anti-Stokes signals. Figure 29b
gives an enlarged view of the heated section, where the spatial resolution of 10 m was
confirmed. The vibration test was first carried out by knocking the chamber periodically,
resulting in a periodic intensity change as illustrated in Figure 30a. Simultaneously, a
sinusoidal vibration was applied on a cylindrical PZT wrapped with a 10 m long fiber piece.
Since the Φ-OTDR was operating at the heterodyne detection configuration, vibration
with different amplitudes could be restored based on the phase demodulation, as shown
in Figure 30b, indicating competence in measuring vibration-induced dynamic strain.
Moreover, vibration with different frequencies was also analyzed in Figure 30c, fully
proving the ability of dynamic strain sensing.
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4.3. Simultaneous Temperature and Strain

Even though the Brillouin scattering-based DOFSs are able to resolve temperature
and strain by BFS, they cannot be regarded as multi-parameter measurements since the
BFS is fundamentally linear to both temperature and strain. Therefore, cross-sensitivity is
a real drawback during monitoring. In order to discriminate the temperature and strain,
plenty of methods have been proposed over the last few decades [180,216–221]. It has been
proven that the Brillouin scattering light assisted by Rayleigh or Raman scattering light can
be an effective solution to achieve the discrimination; meanwhile, the specialty fibers are
not required.

As mentioned in Section 3.1, the hybrid BOTDR/COTDR, called BOTDR distributed
strain and temperature sensing (DSTS) by Clément et al., utilized the Landau–Plazek
ratio to handle the problem of cross-sensitivity [198]. Two cylinders made from different
materials were designed to apply temperature and strain simultaneously. Figure 31a shows
the fiber deployment. Both cylinders (wrapped in a 125 m long fiber) and the 200 m
unstrained optical fiber were placed in a climatic chamber to vary the temperature. The
cylinders made of aluminum and steel showed different thermal expansion coefficients,
leading to a distinct strain on the fiber. It could be observed from Figure 31b that the first
cylinder expanded more than the second under the same temperature (red curve versus
purple curve between two areas), and the temperature measurement (blue curve versus
yellow curve) was clearly distinguished. As long as the simultaneous measurement of
temperature and strain was realized, further in-field tests were implemented. An in-well
measurement was conducted to validate the performance, which is illustrated in Figure 32a.
The interrogators (BOTDR DSTS) were connected to one end of a cable, which was coiled
and inserted vertically into the well (2 km depth). The cable would undergo several forces
in a static regime, such as the weight of the tool or the self-weight of the cable, the frictional
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force due to the possible rough walls of the well, Archimedean thrust (well generally filled
with different fluids), and thermal expansion or hydrostatic pressure force, which is difficult
to predict and quantify [222]. For comparison, temperature measurement was also carried
out by a standard ROTDR and a standalone BOTDR. From Figure 32b, we can see that
the temperature distributions measured from ROTDR (red curve) and the proposed DSTS
(blue curve) were almost identical, manifesting the good discrimination of temperature
from strain. However, the temperature measurement from the standalone BOTDR (yellow
curve) brought about obvious errors due to the strain accumulation. On the other hand,
the actual strain distribution (purple curve) revealed a significant strain variation located
at the bottom of the well (~4.8 km).
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Since the Rayleigh and Brillouin frequency shifts have distinct dependencies on tem-
perature and strain, the hybrid Rayleigh and Brillouin system is endowed with another
method to discriminate these two measurands. Murray et al. conducted a series of mea-
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surements based on the experimental setup introduced in Figure 15 [172]. The test fiber
was 460 m long, and a single section of fiber (8 m length) was wrapped around a PZT. A si-
nusoidal signal with 50 Hz frequency and ~600 peak-to-peak nε drove the PZT. Meanwhile,
the PZT was placed on a temperature stage to impart a simultaneous temperature variation.
Benefitting from the discrimination method, vibration-induced strain and temperature
located at the same fiber section could be observed. Figure 33a,b exhibited the recovered
dynamic temperature and strain, respectively. The fitted line in Figure 33a indicates a
gradual temperature increase, while the demodulated strain curve in Figure 33b shows
the elimination of a bias introduced by temperature. In other words, the cross-sensitivity
problem has been successfully solved. The amplitude spectral density (ASD) curves based
on the recovered temperature and strain were also obtained, as shown in Figure 33c,d. It is
evident that the levels of noise floor could be ued to calculate the temperature and strain
measurement sensitivities, which were 0.54 m◦C/

√
Hz and 4.5 nε/

√
Hz, respectively.
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Another measurement was carried out by Taki et al. [210] based on the hybrid Bril-
louin/Raman sensing system in Figure 20. The FUT was arranged with 15 m of fiber
segment heated to 60 ◦C at the fiber end (~10 km total length), and the rest of the fiber was
at room temperature (32 ◦C during the test). To discriminate the temperature profile, the
ROTDR sub-system performed the independent temperature measurement. Figure 34a
depicts the distribution curve; a ~28 ◦C temperature step can be observed at the corre-
sponding heating area. The worst calculated temperature resolution was ~3.4 ◦C with
3 million average times. Then, the strain could be subsequently measured by the BOTDA
sub-system using Equation (11), leading to a temperature-independent estimation of strain.
As depicted in Figure 34b, the worst strain resolution was ~80 µε. Notably, a meter-scale
spatial resolution was achieved over kilometers of sensing range since cyclic pulse coding
was employed to enhance the SNR. In addition, Taki et al. conducted an improved experi-
ment in 2014 [223], in which a linear translation stage with an external thermoelectric jacket
was arranged to apply temperature and strain variations to the same spool of fiber. The
capacity to discriminate BFS changes on the same fiber section was validated. It is clear
that the combination of temperature and strain would offer more valuable information for
structure monitoring.
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Figure 34. (a) Temperature distribution measured by Raman scattering; (b) strain resolution along
the sensing fiber (reprinted from [210] with permission, © 2013 Optical Society of America).

4.4. Comprehensive Temperature Measurement

It should be noted that although Brillouin sensors as well as the frequency-scanning
Rayleigh sensors can measure temperature, the resolution and sensing range are quite
different. For instance, the typical measurement accuracy of BFS in Brillouin sensors is
within the megahertz scale, corresponding to a temperature resolution of approximately
1 ◦C [200]. Meanwhile, the measurement range is considerable. On the other hand, the
frequency-scanning Rayleigh sensors have been proven at a resolution of about 0.01 ◦C or
even higher [173], yet the measurement range is restricted within the magnitude of 1 ◦C.
Therefore, the combination of these two kinds of sensors has the potential to realize a large
dynamic range as well as an ultrahigh measurement resolution.

As previously presented, the hybrid Φ-OTDR/BOTDA sensing system demonstrated
by Dang et al. [200] achieved a comprehensive temperature measurement. Experiments
were conducted on a 1.565 km multi-core fiber whose attenuation coefficient was
~0.25 dB/km. Two short segments (section A and section B, length of 37 m) at the far end
were separately immersed in two water baths to apply different temperatures. Figure 35a,b
give the experimental results measured by BOTDA and Φ-OTDR, respectively. BOTDR
cannot distinguish the natural cooling-down process in section A, whereas the large tem-
perature variation (30 ◦C increment with a step of 10 ◦C) at section B was well-recognized.
On the other hand, the slight temperature difference of 0.1 ◦C was identified by Φ-OTDR.
However, an error occurred when large temperature variation was applied at section B,
since the frequency scanning range of Φ-OTDR was too narrow to compensate for the
temperature-induced refractive index change. The temperature accuracy of BOTDA/Φ-
OTDR was also estimated by calculating the standard deviation (STD) of BFS distribution
or cross-correlation peak frequency shift, as illustrated in Figure 35c,d. Compared with the
~0.25 ◦C uncertainty of BOTDA, Φ-OTDR achieved an ultrahigh temperature resolution
of about 0.001 ◦C. The above experiments have demonstrated the capability of the hybrid
sensing system to measure temperature with a large dynamic range and high resolution
simultaneously. It should be pointed out that other parameters can also be measured
besides temperature. Considering the significance of comprehensive temperature sensing,
we regard it as an application of multi-parameter measurement.

4.5. Comprehensive Strain Measurement

Apart from temperature, strain is another measurand of Brillouin sensors and frequen-
cy-scanning Rayleigh sensors. Their relations to the resolution and sensing range are similar
to the conditions when measuring temperature. Wang et al. [199] demonstrated a hybrid
BOTDA/Φ-OTDR sensing system by combining the Rayleigh and Brillouin scattering
lights (presented in Figure 7), allowing for simultaneous measurements of absolute strain
and relative strain. The vibration was applied to the FUT by changing the motorized
positioning system between two positions periodically. The relative displacement was
1 µm, corresponding to a 500 nε strain. In addition, a fixed large strain, which represented
the absolute strain, was initially applied. Then, two groups of experiments were conducted
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with the same vibration under different absolute strains. The measurement of the absolute
strain by BOTDA is depicted in Figure 36a, where different strains in two groups are
observed. However, the BOTDA cannot sense the sub-micro strain due to the relatively low
strain resolution. Meanwhile, the relative strain change could be demodulated through
the frequency-scanning Φ-OTDR. As exhibited in Figure 36b,c, a 9.9 Hz vibration with a
peak-to-peak value of 500 nε was obtained. Thus, the relative strain and absolute strain
could be combined to demonstrate the exact strain evolution, which is displayed by the
right y-coordinates of Figure 36b,c. The measurement accuracies of the relative strain and
the absolute strain were estimated to be 6.8 nε and 5.4 µε, respectively. As a result, the
BOTDA and Φ-OTDR are complementary schemes rather than substitutes for each other,
such that further cooperation can extend the functions and reach into new application
areas [199].
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Figure 36. (a) Absolute strain change measured by BOTDA; (b) relative strain change of group
1 measured by Φ-OTDR; (c) relative strain change of group 2 measured by Φ-OTDR (reprinted
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This section introduces the multi-parameter measurement performance, which is
based on the hybrid DOFS technology described in Section 3. By combining different
hybrid DOFS systems, the measurable parameters and their features are also made distinct.
Typical results are summarized in Table 1 with a list of relevant references.

Table 1. Typical multi-parameter measurement performance based on the hybrid DOFS systems.

Classification Subsystems
Combination Methods 1 Sensing

Range
Spatial

Resolution

Measurement
Accuracy/

Sensitivity 2
Ref.

Temperature/
strain and
vibration

POTDR/BOTDR Orthogonal polarization
multiplexing 4 km 10 m 0.2 MHz [213]

Φ-OTDR/BOTDR Pulse modulation 10 km
80 cm for temper-

ature/strain
3 m for vibration

<±1 MHz [193]

Φ-OTDR/BOTDA
Wavelength division

multiplexing and distributed
amplification

150.62 km
9 m for tempera-

ture/strain
30 m for vibration

±0.82 MHz [194]

Φ-OTDR/BOTDR Frequency division
multiplexing 49.9 km 20 m

0.381 MHz
1.235 nε/

√
Hz

@100 Hz
[145]

Simultaneous
temperature
and strain

BOTDA/ROTDR
Wavelength division

multiplexing and cyclic
Simplex coding

10 km 1 m 2.6 ◦C/62 µε [223]

COTDR/BOTDR
Frequency division

multiplexing and coherent
fading reduction

1 km/10 km
optional 2 m 0.6 ◦C/20 µε @1 km

3 ◦C/75 µε @10 km [198]

FS-
OTDR/BOTDA

Wavelength division
multiplexing and enhanced

slope-assisted method
500 m 5 m 16 m◦C/140 nε

4.5 nε/
√

Hz @50 Hz [172]

Temperature
and vibration

Φ-OTDR/ROTDR
Space division multiplexing

and wavelet transform
denoising

5.76 km 8 m 0.5 ◦C [208]

Φ-OTDR/ROTDR
Wavelength division

multiplexing and cyclic
Simplex coding

5 km 5 m <0.5 ◦C [205]

Φ-OTDR/ROTDR
Wavelength division

multiplexing and heterodyne
detection

12 km 10 m 0.95 ◦C [206]

Comprehensive
temperature

measurement

FS-Φ-
OTDR/BOTDA Space division multiplexing 1.565 km 2.5 m 0.001 ◦C @Φ-OTDR

0.25 ◦C @BOTDA [200]

Comprehensive
strain

measurement

FS-Φ-
OTDR/BOTDA Frequency-agile pulses 78 m 2 m

6.8 nε relative strain
5.4 µε absolute

strain
[199]

FS-Φ-
OTDR/BOTDA Adaptive signal corrector 65 m 2 m 5.5 nε [201]

1 Both the integration and the performance enhancement methods are included in the table. 2 Since the criterion
of the provided results is not consistent among the reviewed works, here, the unit “MHz” represents the BFS
measurement accuracy, the unit “◦C” represents the temperature measurement accuracy or resolution, and the
units with “ε” or “nε/

√
Hz” represent the strain measurement accuracy or sensitivity.

5. Discussions
5.1. Challenges

(a) Difficulty in separating backscattering lights

As mentioned in Section 3, separating different backscattering lights is a key process
to realize the hybrid DOFS system. Since the Raman scattering light has a frequency shift of
several nanometers, the DWDM can easily extract the Raman scattering light. However, the
frequency difference between the Rayleigh and Brillouin scattering lights is much narrower
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in the wavelength domain. The FBG filter and the Mach–Zehnder interferometer [224–226]
are generally used to separate the two frequency components. In addition, it is also
practicable to process the scattering signal in the frequency domain. A photodetector with
chosen bandwidth can act as the electrical filter [198]. Nevertheless, the performance of
the optical signal processing is limited by the state-of-the-art manufacturing technique.
The bandwidth of the FBG filter must be narrower than the BFS, and the reflectivity and
the rejection level should be high enough to prevent the crosstalk between Brillouin and
Rayleigh scattering lights. As to the interferometer, it is too sensitive to external fluctuation,
which is an obstacle in industrial applications. A possible solution is to integrate the silicon-
based waveguide with the interferometer structure to maintain stability, but the insertion
loss is still non-ignorable. With the rapid growth of optoelectronic device fabrication, more
effective solutions could be developed to separate the different sensing signals.

(b) Incompatibility in pump power requirements

Another notable problem is the distinct requirement of pump power among different
sensing systems. As previously mentioned, the Raman scattering-based DOFS normally
needs a rather high pump power to generate considerable SpRS light. In the meantime,
it would induce nonlinear effects in the Rayleigh and Brillouin scattering-based DOFSs,
leading to significant errors. The multi-core fiber is an appropriate method to integrate
different sensing systems with discrete pump power paths. However, there is no industrial
standard for multi-core fiber manufacturing so far. As a result, multi-core fiber is not
a common choice in various application scenarios, especially when laying new fiber is
unacceptable. The most promising method may be the direct modulation of the pump
pulses combining time–division multiplexing (TDM) or frequency–division multiplexing
(FDM) techniques to evade the nonlinear effects.

5.2. Prospects

(a) Integration with frequency domain DOFS

Since the hybrid sensing systems mainly consist of DOFSs based on the OTDR tech-
nique, the spatial resolution is restricted by the width of the pump pulse. On the other
hand, the OFDR technique can realize higher spatial resolution and SNR, but the sensing
distance is limited. In recent years, a time-gated mode of digital optical frequency domain
reflectometry (TGD-OFDR) [25,227,228] has been developed. It possesses the advantages
of both OTDR and OFDR. The configuration of TGD-OFDR is similar to that of COTDR,
except that the pulse is linearly frequency modulated. As a result, the frequency sweeping
range determines the spatial resolution, which is as high as that in a conventional OFDR
setup. At the same time, it achieves an improved sensing distance (up to 100 km) with the
modulated pulse [227]. Considering TGD-OFDR has a similar configuration to COTDR,
it represents a potential method to be adopted in a hybrid DOFS system and can largely
improve the performance.

(b) Extended parameters sensing

Limited by the intrinsic sensitivity to external parameters of conventional silica optical
fibers, current DOFS systems are mainly employed to measure loss, temperature, strain,
and vibration. Applications in the oil and gas industry and environmental monitoring
call for distributed chemical, gas, and humidity sensing. In recent years, the discrete
BOTDA [229] and chirped-pulse Φ-OTDR [230] have demonstrated their competence in
detecting hydrogen with standard telecom-grade optical fiber. Moreover, specialty sensing
fibers have hugely extended the potential measurands due to their unique properties, for
instance, the multicore fibers and ring-core fibers for distributed curvature and bending
sensing [231,232], the photonic crystal fibers for distributed hydrostatic pressure sens-
ing [233–235], and the polymer optical fibers for distributed humidity sensing [236,237]
and distributed radiation sensing [238,239]. The hybrid DOFS technology, which combines
various standalone sensors to measure more abundant parameters, is a promising tool to
explore further applications that will meet the requirements in many different scenarios.
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In addition, since the Rayleigh DOFS and the Brillouin DOFS share common measurable
parameters (e.g., humidity [236,237]), it is possible to merge the data from both sides in a hy-
brid DOFS system incorporating specialty fibers, thus enabling an improved measurement
performance.

In recent years, the over-spraying of pesticides onto crops has escalated the pesticide
contamination of food products and water bodies, as well as disturbing ecological and
environmental systems [240]. The optical-sensing strategy offers high sensitivity and
selectivity, allowing for the rapid detection of pesticides and heavy metal ions [241,242].
It is possible to develop specialty sensing fibers or to manufacture optical fibers with
microstructures and carbon-coating, which is employed in a hybrid DOFS measurement
scenario. As a result, not only can a variety of chemicals be simultaneously sensed along
the entire arranged fiber, but the hybrid DOFS approach is also much more cost-effective.

(c) Potential to multiply overall performance with optimized methods

There has been an ongoing focus on the performance improvements of DOFS systems,
in terms of spatial resolution, sensing distance, SNR-related measurement accuracy, measur-
ing speed, sensitivity, and so on. Various methods, involving the modulation of the pump
pulse, demodulation, and data-processing algorithms, have been proposed and utilized to
enhance the performance of an individual sensing system. However, since different DOFSs
are operated based on different sensing principles, their configurations and components
have disparities. The incompatibility problem may occur when using a certain method to
improve one of the sub-systems. Thus, a well-designed method for the enhancements of
two or more sensing systems is crucial, and it multiplies the performance and efficiency
as well.

(d) Merging valuable information for further applications

There is no doubt that the multi-parameter measurement has multiplied the dimension
of the acquired data sets. As a result, merging the multidimensional data could be a
promising method to improve the performance when sensing the same measurand. Lately,
Ba et al. exploited the potential of the hybrid Φ-OTDR/BOTDA sensing system [201].
The strain traces ∆εR and ∆εB, which were demodulated from Φ-OTDR and BOTDA,
respectively, served as input parameters of an adaptive signal corrector (ASC). The ASC
output y was generated after the filtering process. To reach the optimized result, the
parameters of the filter were iterated and adjusted adaptively according to the difference
between ∆εB and y. As the measurement time increased, an accumulated measurement
error, which was suggested as a common appearance in frequency-scanning Φ-OTDR [243],
could be observed from the Rayleigh trace. Such a problem was well addressed with
the assistance of ASC, since the experimental results have shown successful fast pressure
tracking from 20 MPa to 0.29 MPa without a measurement error. Meanwhile, the calculated
STD of pressure distribution indicated a pressure measurement resolution of 0.14 kPa.

Once the multi-parameter data sets are obtained, it is much more advantageous to
evaluate the condition of the monitored objects when combined with machine learning
algorithms and classifiers [19,140,244–248]. During the monitoring, different types of
events emerge simultaneously, in which there also exist irrelevant interference events. The
pattern classification algorithm can be used to distinguish various events and recognize
the targeted events. Normally, there are two methods to reach recognition, including
feature value extraction [140] and image recognition [246]. However, they are mainly
based on the data from single parameter measurements, indicating the lack of feature
values or the inaccuracy of recognition. Wang et al. [141] proposed to monitor the leakage
of oil pipelines by using both temperature and vibration information, and studied the
effect in a simulated experiment. They classified the states of pipelines into three types,
including the normal state, the leakage state, and the interference state. Then, 11 kinds
of feature values were chosen to recognize the pipeline states. Benefitting from the multi-
parameter measurement, the comprehensive recognition rate reached 98.57%, which is
a great improvement compared with the recognition under individual parameters. The
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combination of multi-parameter measurements and machine learning algorithms can
exploit further applications in modern industrial practice.

In this section, the challenges and prospects of the hybrid DOFS technology are elabo-
rately discussed. It is challenging to directly separate different scattering lights, as well as
to address the existing incompatibility issue of different DOFS systems. Nevertheless, novel
techniques, such as the multiplexing method, advanced manufacturing technology, and the
use of specialty sensing fiber, could greatly extend the range of applications. The hybrid
DOFS technology can not only continually improve the multi-parameter measurements
performance, but the merging of information related to any measurable parameter will also
come to show greater potential.

6. Conclusions

In this review, we summarize and discuss recent advances in the study of hybrid dis-
tributed optical fiber sensors for multi-parameter measurements. This work is concentrated
on the principle, integrating and optimizing methods, as well as multi-parameter measure-
ment performance regarding the hybrid DOFS. The hybrid DOFS technology is mainly
based on the combination of the Rayleigh, Brillouin, and Raman scattering mechanisms,
presenting competence in measuring multiple parameters, including temperature, strain,
and vibration. With the progress of employing multiple novel methods, the performance
of the hybrid DOFS is further enhanced. It is believed that distributed multi-parameter
sensing could multiply the valuable information derived from the measurands, contribut-
ing to a much more efficient and accurate recognition of the potential events. Compared
to the single DOFS system, the utilization of multiple parameters based on the hybrid
DOFS is highly beneficial to the monitoring of large facilities, reducing the emergence
of misinformation and false alarms. The hybrid DOFS technology has manifested great
competence in the various aspects of industrial areas, which are expected to be exploited in
further applications.
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241. Koczorowski, T.; Cerbin-Koczorowska, M.; Rębiś, T. Azaporphyrins embedded on carbon-based nanomaterials for potential use
in electrochemical sensing—A review. Nanomaterials 2021, 11, 2861. [CrossRef] [PubMed]

242. Sradha S, A.; George, L.; P, K.; Varghese, A. Recent advances in electrochemical and optical sensing of the organophosphate
chlorpyrifos: A review. Crit. Rev. Toxicol. 2022, 52, 431–448. [PubMed]

243. Bhatta, H.D.; Costa, L.; Garcia-Ruiz, A.; Fernandez-Ruiz, M.R.; Martins, H.F.; Tur, M.; Gonzalez-Herraez, M. Dynamic measure-
ments of 1000 microstrains using chirped-pulse phase-sensitive optical time-domain reflectometry. J. Lightwave Technol. 2019, 37,
4888–4895. [CrossRef]

244. Li, J.; Wang, Y.; Wang, P.; Bai, Q.; Gao, Y.; Zhang, H.; Jin, B. Pattern recognition for distributed optical fiber vibration sensing: A
review. IEEE Sens. J. 2021, 21, 11983–11998. [CrossRef]

245. Marie, T.F.B.; Han, D.; An, B. Pattern recognition algorithm and software design of an optical fiber vibration signal based on
8-optical time-domain reflectometry. Appl. Opt. 2019, 58, 8423–8432. [CrossRef]

246. Wang, Z.; Zheng, H.; Li, L.; Liang, J.; Wang, X.; Lu, B.; Ye, Q.; Qu, R.; Cai, H. Practical multi-class event classification approach for
distributed vibration sensing using deep dual path network. Opt. Express 2019, 27, 23682–23692.

247. Kandamali, D.F.; Cao, X.; Tian, M.; Jin, Z.; Dong, H.; Yu, K. Machine learning methods for identification and classification of
events in φ-OTDR systems: A review. Appl. Opt. 2022, 61, 2975–2997. [CrossRef]

248. Yang, Y.; Zhang, H.; Li, Y. Long-distance pipeline safety early warning: A distributed optical fiber sensing semi-supervised
learning method. IEEE Sens. J. 2021, 21, 19453–19461. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1063/1.4953388
https://doi.org/10.1364/OE.26.022307
https://doi.org/10.3390/s17091959
https://doi.org/10.1364/PRJ.435143
https://doi.org/10.1016/j.tifs.2021.11.018
https://doi.org/10.3390/nano11112861
https://www.ncbi.nlm.nih.gov/pubmed/34835626
https://www.ncbi.nlm.nih.gov/pubmed/36178423
https://doi.org/10.1109/JLT.2019.2928621
https://doi.org/10.1109/JSEN.2021.3066037
https://doi.org/10.1364/AO.58.008423
https://doi.org/10.1364/AO.444811
https://doi.org/10.1109/JSEN.2021.3087537

	Introduction 
	DOFSs Based on Light Scattering 
	Rayleigh Scattering-Based DOFS 
	Brillouin Scattering-Based DOFS 
	Raman Scattering-Based DOFS 

	Advances of Hybrid DOFS 
	Combination of Rayleigh and Brillouin Scattering Lights 
	Combination of Rayleigh and Raman Scattering Lights 
	Combination of Brillouin and Raman Scattering Lights 
	Others 

	Multi-Parameter Measurements 
	Temperature/Strain and Vibration 
	Temperature and Vibration 
	Simultaneous Temperature and Strain 
	Comprehensive Temperature Measurement 
	Comprehensive Strain Measurement 

	Discussions 
	Challenges 
	Prospects 

	Conclusions 
	References

