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Abstract: Regular inspections during construction work ensure that the completed work aligns with
the plans and specifications and that it is within the planned time and budget. This requires frequent
physical site observations to independently measure and verify the completion percentage of the
construction progress performed over periods of time. The current computer vision techniques
for measuring as-built elements predominantly employ three-dimensional laser scanning or three-
dimensional photogrammetry modeling to ascertain the geometric properties of as-built elements
on construction sites. Both techniques require data acquisition from several positions and angles to
generate sufficient information about the element’s coordinates, making the deployment of these
techniques on dynamic construction project sites challenging. This paper proposes a pipeline for
automating the measurement of as-built components using artificial intelligence and computer vision
techniques. The pipeline requires a single image obtained with a stereo camera system to measure
the sizes of selected objects or as-built components. The results in this work were demonstrated by
measuring the sizes of concrete walls and columns. The novelty of this work is attributed to the use
of a single image and a single target for developing a fully automated computer vision-based method
for measuring any given object. The proposed solution is suitable for use in measuring the sizes of
as-built components in built assets. It has the potential to be further developed and integrated with
building information modelling applications for use on construction projects for progress monitoring.

Keywords: machine learning; computer vision; automated measurement

1. Introduction

The accurate and up-to-date measurement of as-built components is essential for the
design, construction, operation, and maintenance of as-built assets. Additionally, the mea-
surement of as-built components is an essential part of construction project management
functions, such as cost and schedule controls, financial reporting, claims, and productivity
measurement. It is, therefore, considered to be one of the most crucial, yet challenging
tasks facing site managers. Most current approaches are still predominately manual, time-
consuming, and error-prone. Site managers normally spend a significant amount of time
measuring, recording, and analysing as-built information [1–3]. The lack of accurate and
up-to-date as-built information due to laborious and manual data collection practices could
lead to increased costs, delays, and poor project performance, which in turn, could reduce
the ability to detect or manage the variability and uncertainty inherent in the project’s
activities [4–6].

In recent years, however, the construction industry has been exploring various emerg-
ing technologies to support the visual inspection and progress monitoring of construction
work [7]. The on-site application of these technologies has indeed demonstrated significant
potential for digitising and automating the capturing, measuring, and reporting updates of
the as-built components and project information [6,8].
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One notable example of these technological tools for automating the measurement of
as-built components is the use of computer vision (CV). CV is a digitisation process used
for determining project progress that combines computer science, architecture, construction
engineering, and management disciplines. It takes visual media, such as photos, videos,
or scans as inputs and produces decisions or other forms of representation as outputs [9].

The two most popular CV-based techniques for measuring the as-built components are
laser-based scanning, and imaging-based photogrammetry [4,8,10,11]. Three-dimensional
(3D) laser scanning is used to generate 3D point clouds that are processed to enable
the estimation of sizes and quantities of as-built components [12]. The imaging-based
approach, on the other hand, emulates human visualisation to extract three-dimensional
(3D) geometrical information of objects from two-dimensional (2D) inputs [13–15].

A fully automated CV-based method for measuring as-built components consists
of four main sub-processes; data acquisition, information retrieval and processing, mea-
surement estimation, and producing valuable output [16–19]. The sub-processes involve
different techniques to achieve the desired outputs with their own benefits and limita-
tions [8,20].

Despite some studies having made significant strides in automating CV-based methods
for as-built component measurements, at present, there are still no applications that are
fully automated. This is due to two main reasons. Firstly, the technologies involved are
still emerging and undergoing experimentation with only a few functional demonstrations
available [21]. Secondly, existing studies do not typically address the four stages together but
focus on the individual stages, such as 3D point cloud generation in data acquisition [22,23],
and feature recognition in information retrieval and processing [24–26].

This study aims to address this research gap by developing a pipeline for a fully auto-
mated as-built component measurement approach using CV-based methods. The proposed
pipeline can run in real-time and is intended to estimate the size of as-built components of
built assets. The pipeline employs stereo camera techniques for data acquisition, machine
learning, object detection, instance segmentation for information retrieval and the processing
of as-built elements, Green’s theorem [27] for the measurement estimation of the size of the
object(s) under consideration, and visualisation of the output as labelled images. To demon-
strate the work, s neural network model was trained on concrete walls and columns, but the
same principles can be extended to cover other types of as-built components.

The rest of this paper is structured as follows: Section 2 provides a literature review
of related previous studies, highlighting the existing research and theories relevant to
the subject matter. Section 3 focuses on the instrumentation and materials used in this
study, outlining the experimental setup and tools employed for data collection. We delve
into the methodology of geometric estimation, explaining the mathematical models and
algorithms utilised to estimate the geometric properties of the as-built components of
interest. Section 4 presents the results obtained from the experiments, including a detailed
analysis and discussion. Finally, Section 5 summarises the key findings and conclusions
drawn from this study, highlighting the implications, significance, and limitations of
this research.

2. Literature Review

The measurement of as-built components is crucial in the design, construction, opera-
tion, and maintenance of built assets. It plays a vital role in continuously monitoring and
periodically updating the actual work conducted on a construction site, comparing it with
the as-planned or anticipated progress [28–30]. Identifying variations between the planned
and actual progress is essential for schedule updating [31]. The most common CV-based
method for undertaking spatial measurements of the actual work on construction sites
is 3D laser scanning. During the process, the construction site is scanned from different
angles and locations at different times to generate spatial data, which can then be used to
estimate the quantities of work performed within the time interval considered between
two successive scans. A 3D laser scanning yields data in the form of 3D points, known
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as “point clouds”, which are later displayed as images that can be viewed from different
perspectives using specialised software systems [32,33]. Many researchers have proposed
and demonstrated that the technology can be used to obtain 3D data on the actual progress
of a project efficiently [31,34–37].

However, this method has certain limitations as 3D data can be obtained only on the
as-built components that are located within the laser scanner’s range and field of view.
Secondly, even components that are physically within the range of the scanner may still
be blocked from view by various pieces of equipment and other obstacles located around
the construction site, resulting in an incomplete 3D data set obtained on a construction
site. To overcome this problem, researchers have proposed UAV-based 3D laser scanning
methods [38–46]. The authors argued that this approach can provide visual and detailed
progress information with good area coverage and views from human-inaccessible angles.
UAV-based data acquisition, however, requires careful operation handling as it can pose
potential safety hazards and cause distractions to workers on-site. UAVs also require
accurate path planning to avoid obstruction, which in the case of any sudden rotational
motion or sharp angular movements can result in motion blur. They can also be affected by
wind speeds and other environmental anomalies.

In addition to issues related to the acquisition approach, there are other limitations
associated with 3D laser scanning. This includes the time required to perform a single scan,
and the number of scan positions necessary to acquire accurate information. The technique
is also costly, technically intricate, and requires skilled experts to capture and model the
whole project. Moreover, the collected 3D point cloud also requires extensive time and
computational resources to process data and produce meaningful interpretations, which
may not be adequate for use in complex project sites to generate real-time updates [20].
The incomplete or partially occluded patches in a 3D point cloud will also incur technical
challenges during the registration of multiple point clouds [23,47–49].

On the other hand, the availability of high-quality and precise still image cameras
has advanced 3D modelling from photo images [50]. As a result, an image-based scan-
ning method called photogrammetry has been proposed as an alternative to 3D laser
scanning [51]. With photogrammetry, the geometrical properties of an object on site are
generated from its photo image. The technique, however, requires strategically placing
many targets on the object(s) being photographed to identify the object’s coordinates, and
several photos of the object are then taken from different positions and angles to generate
sufficient information on object coordinates [52]. The use of image-based scanning may
also incur other practical limitations, particularly when extracting geometrical properties
of surfaces with little texture or poor definition [53]. Additionally, a recent study has also
shown that the accuracy of the model generated from the image-based reconstruction is less
than the laser scanner and becomes even less accurate as the length of the element increases.
According to the study, the process of reconstructing a 3D model from an image dataset
remains reliant on human intervention at various steps to improve the output quality [54].

Compared to existing photogrammetry techniques that require the placement of many
targets on the object and several photos taken from different positions and angles to
generate sufficient geometrical information, the proposed method requires a single image
obtained from a stereo camera system and a single target to extract the information about
the object’s coordinates. Additionally, unlike 3D laser-based scanning, which also requires
the construction site to be scanned from different locations and generates computationally
extensive 3D point clouds, the proposed pipeline is capable of generating real-time updates
of as-built components on construction sites.

3. Instrumentation

In this section, we discuss the pipeline for the full CV-based method, which was devel-
oped for measuring as-built components. To demonstrate the results, images containing
concrete walls and columns captured from buildings at Oxford Brookes University, Head-
ington campus, was used to apply the pipeline to estimate the sizes and areas of concrete
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elements. The pipeline, which is depicted in Figure 1, can run in real-time, and it comprises
seven steps: camera calibration, scene capturing, calculating the distance to a point in
the scene, instance segmentation, depth map generation, estimating world coordinates,
and finally calculating the area of the object of interest. This section will be divided into four
subsections: data acquisition; information retrieval and processing; as-built component
measurements; and finally visualisation of the output.

Figure 1. The proposed pipeline showing all sub-stages: stereo camera calibration, scene capturing,
object segmentation, generation of the absolute depth map, extraction of the boundary of the object,
and finally area estimation.
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3.1. Initialisation

Camera calibration: a stereo camera system was used to capture the scene containing
the object of interest. It is important for the camera system to be accurately calibrated.
The calibration is a one-time process used for determining the intrinsic (principle point,
distortion parameters, and focal length) and the extrinsic parameters (rotation and trans-
lation) of each camera and the relative poses between them. These parameter sets are
essential for attaining 3D information given a set of 2D coordinates of corresponding image
points [55]. The process of recovering the third missing dimension is an ill-posed problem
and is known in image geometry applications as depth estimation [56,57].

There are many different techniques used for approximating the intrinsic and extrinsic
parameters for a specific camera model. The most common one is Zhang’s method [58],
(the one adopted in this work) and the direct linear transformation (DLT) [59].

Zhang’s method uses multiple views of a 3D pattern of a known structure but an
unknown position and orientation in space. It is a flexible technique for camera calibration
and well-suited for use without specialised knowledge of 3D geometry or computer vision.
The technique only requires the camera to observe a planar pattern shown at a few (at least
two) different orientations. During the calibration process, both the camera and the planar
pattern can be freely moved, but motion does not need to be known [58,60].

DLT, on the other hand, is a mathematical approach that aims to solve the problem of
determining the pinhole camera parameters from at least six correspondences between 2D
image points and 3D world points. A camera model maps each point of the 3D world to a
point of the 2D image through a projection operation. The pinhole camera model makes
the assumption that the aperture size of the camera is small so that it can be considered a
point. Thus, the ray of light has to pass across a single point and the camera centre; there
are no lenses, no distortion, and there is an infinite depth of field [59,61].

In their simplest form, the intrinsic parameters can be represented by a 3× 3 matrix
called the camera matrix, denoted by the letter K, as presented below:

K =

 fx 0 cx
0 fy cy
0 0 1

 (1)

where fx, fy are the lengths of the focal point (in pixels), which is the distance from the
centre of the lens to the principal points of the lens. cx, cy are the principal points which are
the points on the image where a ray of light travelling perpendicular to the image plane
passes through the focal point of the lens and intersects with the camera’s sensor.

3.2. Data Acquisition

Scene capturing: A stereo vision system, also known as binocular stereo vision, is
a machine vision technique that uses exactly two cameras to capture a scene from two
viewpoints. The two cameras are separated by a short distance known as the baseline b and
are mounted almost parallel to one another. The principle of stereo vision is similar to that
of the 3D perception of the human eyes. It can provide a 3D perception with real-time depth
measurements based on the triangulation of rays from the two viewpoints (see Figure 2).

b is the baseline, f is the focal length of the camera, and uL and uR are the projections
of the real-world point P in an image acquired by the left and right cameras. XA and ZA
are the X-axis and the optical axis of the left camera, respectively, whereas XB and ZB are
the X-axis and the optical axis of the right camera, respectively. P is a real-world point
defined by the coordinates X, Y, and Z [62].
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Figure 2. Typical stereo vision system: b represents the distance between the principal points,
(UL, VL), (UR, VR) are the 2D projections of the real-world point P(X, Y, Z).

Calculating the distance to the target (Z): In order to calculate the depth of informa-
tion Z, which is the distance to the real-world point P, we first calculate the disparity D,
which is the horizontal shift in position between two corresponding points projected on the
image plane in the stereo vision system. In this approach, a red circular target was used to
calculate the horizontal disparity between the centres of the circles appearing in the left
and right frames. It is important that both the target and the object of interest are visible
in the two frames, and that both the left and the right frames have at least a 30% overlap.
The calculations of the depth and disparity values are shown in (2) and (3).

D = uL − uR (2)

Z = f ∗ b/D (3)

where b is the baseline, f is the focal length of the camera obtained from (1), uL and uR
are the projections of the real-world point P in an image acquired by the left and right
cameras [63].

When capturing a scene from two distinct viewpoints using a stereo camera system,
the left and right frames are not lined up perfectly, and when the cameras rotate or move
forward or backward, the pixels will also move accordingly. This makes matching the
corresponding pixels in each frame a very challenging task. To simplify the subsequent
stereo correspondence problem, a process called rectification is applied first (see Figure 3).
Stereo rectification is the determination of two image transformations (or homographies) that
map corresponding points on the two images and projections of the same point in the 3D
space onto the same horizontal line in the transformed images [64,65].
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Figure 3. Illustration of image rectification. Epipolar lines e1, e2 are projected on a common line
(dashed red–green). The distance between principle points (Ul , Vl) and (UR, VR) along the common
line is the baseline b [65].

The target can be placed anywhere in the scene and only needs to be visible by both
cameras. Placing the target closer or on the object of interest would, however, improve
accuracy. A target is any artefact object that can be distinguished from the surroundings,
either by shape or colour. A red circular object was used as a target to facilitate image
processing techniques to detect the (red) colour and determine the circumference of the
target in both left and right frames. The circular shape allows us to easily obtain the centre
of the disk in both frames. Therefore, the horizontal displacement (the disparity D) between
the two centres in the left and right frame is the difference between the x components of
the target’s centre point (xL − xR). To calculate the depth (i.e., the distance to the target
(Z)) the triangulation method was applied to estimate the absolute distance to the target
using (2) and (3).

Depth map generation: The depth estimation to all corresponding points projected
on the image plane in the stereo vision system using the triangulation method will, in-
evitably, generate depth maps that are, in most cases, rough and sparse wherever match-
ing between corresponding pixels fails [66]. Meanwhile, with the rapid development of
deep/convolutional neural networks (CNNs), monocular depth estimation based on deep
learning has been widely studied recently, showing promising accuracy. These CNN-based
methods are able to generate dense depth maps from single images where the depth at ev-
ery pixel in the image is estimated by the neural network in an end-to-end manner [67–69]
(see Figure 4). With CNN-based methods, the estimation of the absolute depth (i.e., depth
from the object to the camera) directly from a single image can be ambiguous in scale; for
example, an object may appear to be the same as another identically shaped but smaller
object at a nearer distance [70]. The relative depth, on the other hand, which is the ratio
between the depths of two points in an image, is scale-invariant. This principle also applies
to humans since it is easier to choose the nearer between two points than to estimate the
absolute depth of each point; therefore, relative depths are easier to estimate than ordinary
(absolute) depths [70]. The adopted monocular depth estimation in this work [71] generates
a relatively dense depth map of each pixel in a single image with values between 0 and 1.0,
where pixels with higher values are closer to the camera, and pixels with small values are
further from the camera. By inverting this dense map, it is possible to assign small relative
distances to closer pixels to the camera and higher relative distances to the furthest pixels
from the camera.
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Figure 4. Depth maps: original image (left), deteriorated sparse depth map (middle), CNN-based
dense depth map (right).

Next, the (absolute) distance of the target obtained from (2) and (3) is used to compute
a scalar S, such that:

Scm/px =
Zxt,yt(cm)

Rxt,yt(px)
(4)

where Zxt,yt is the (absolute) distance to the centre of the target in cm, and Rxt,yt is the
(relative) distance to the centre of the target in pixels (see Figure 5).

In this scenario, the scale S = 242.839/0.782 = 342.857. By multiplying the scalar S
with every entry in the relatively dense depth map, it is possible to generate the absolute
depth map. To illustrate this, suppose a point pi is a pixel anywhere in the image, with
relative distance equal to the one at the centre of the target Rxi,yj = 0.782, i.e., both the
point pi and the centre of the target are the same distance from the camera, thus, the
absolute distance at pi = 0.782 × 342.857 = 242.389 cm, which is the same absolute
distance of the target from the camera. Similarly, if pj is a pixel with relative distance
Rxi,yj = 0.384, which is closer to the camera than the target, then the real distance of that
point is pj = 0.384× 342.857 = 130 cm.

Figure 5. S is the ratio of the absolute distance Z in the left image to the relative distance R from the
depth map in the right image.

3.3. Information Retrieval and Processing

Instance segmentation: Now, the attention is turned to information retrieval and
processing using object detection. Since the current implementation is devoted to measuring
concrete structures (concrete columns and walls) only, a neural network model [72] was
trained to extract (segment) those objects from a given image. A sample of the dataset used
for training the model is presented in Figure 6).
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Figure 6. Sample of images with concrete structures used to train the neural network model.

Object detection and segmentation is the process of identifying the presence of an
object in the image. It associates every pixel of that object with a single class label, e.g., a
person, box, car, and so on [73]. For every class, the neural network applies a unique
colour mask over all the pixels of that object. There are two types of object segmentation:
(1) semantic, where the neural network treats multiple objects of the same class as a single
entity, and (2) instance segmentation, which, in contrast to semantic, treats multiple objects
of the same class as distinct individual instances [73].

Figure 7 demonstrates the process of using object segmentation in an image to ex-
tract the corresponding pixels with absolute depth values of that object from the dense
depth map.

First, a single image (left frame) is passed through the neural network for instance
segmentation (Figure 7, top left). The model generates a colour mask over the object of
interest and assigns all pixels related to the object with a single label (Figure 7, top middle).
The corresponding masks of each object, which are saved separately, are used to extract the
boundary of that object (Figure 7, top right).
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Figure 7. Extraction of the object boundary using the left frame: object detection, mask generation,
separation of boundary points from the depth map.

The extracted boundary of the object (Figure 7, bottom left) is projected on the dense
depth map containing the computed absolute depths (Figure 7, bottom middle) to separate
only those pixels of the object of interest (Figure 7, bottom right). The mathematical
formulation of this process is presented in the next section.

3.4. As-Built Component Measurement

Estimate world coordinates. The next step of the proposed pipeline is to compute the
real-world coordinates of the object and estimate the area of the object. The conversion
to a real-world coordinate system (in cm) from the image-coordinate system (in pixels) is
governed by the following equations:

Xw = (x− cx) ∗ Zxi,yj/ fx (5)

Yw = (y− cy) ∗ Zxi,yj/ fy (6)

Xw, Yw are the computed two-dimensional real-world coordinates of each pixel in the
object. x, y are the coordinates of each pixel in the object, cx, cy are the principal coordinates
of the camera, which are estimated during the calibration, fx, fy are the lengths of the focal
point (in pixels) also found from the camera matrix (K), and Zxi,yj is the absolute distance
at that pixel. The code in Algorithm 1 illustrates the procedure of obtaining the real-world
coordinates of the object of interest.

Calculating the area of the object of interest: Lastly, Green’s theorem [27] was ap-
plied to calculate the area of the two-dimensional irregular region, i.e., the closure D̄, which
is enclosed by the boundary ∂D and denoted in Algorithm 1 as BV.

3.5. Visualisation of the Output

The proposed pipeline, which was entirely developed in Python, can produce an
output of any text or graphical format. This makes the integration of such an output with
any BIM model an easy task. Full demonstrations of the output samples are presented in
Figures 10, 11 and 13.
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Algorithm 1: Real-world coordinates.
input : Camera Matrix (K)

K =

 fx 0 cx
0 fy cy
0 0 1


Focal Length Alpha = {fx, fy},
Boundary ∂D := {p ∈ X|p} D,
Principal Point O = {cx, cy},
Image M, Mask D, S ∈ M : {M := (X, d)},
Boundary ∂D := {p ∈ X|p} D,

output : Set of boundary points
BV{Xw, Yw}= {(Xw1, Yw1), . . . , (Xwn, Ywn)}

1 //Initialisation
2 OBJ ← Do

3 C ← ∂D
4 BV ← {φ} . Boundary vertices
5 for each xi ∈ OBJ do
6 for each yj ∈ OBJ do
7 // Calculate world coordinates,
8 Xw ← (x− cx) ∗OBJ{xi, yj}/ fx

9 Yw ← (y− cy) ∗OBJ{xi, yj}/ fy

10 if {x, y} ∈ ∂D then
11 BV{} ← BV{} ∪ {Xw, Yw} . add point to the boundary
12 else
13 i← i + 1
14 j← j + 1
15 end
16 end
17 end
18 return (BV{Xw, Yw})

4. Results and Discussion

A discussion of the results through two examples follows: one for measuring a concrete
column and the other for measuring a concrete wall at an Oxford Brookes University
building. The building is a new addition to Oxford Brookes University and is mainly built
from concrete components.

In the first experiment, a stereo camera system with a baseline (b = 25 cm) was used
to capture the left and right frames of the scene. The stereo camera system was placed at
a distance of 5.2 m away from the column. The distance and the angle of the acquisition
were chosen randomly, allowing the whole object (a concrete column) to appear completely
in both frames. A target (red circular disk) was placed on the object at the same level of the
stereo system, where it was also visible in both cameras (Figure 8a,b).

Once the scene was captured, a (red) colour filter was applied to allocate the target
in both frames and calculate the coordinates of the centre of the circle in the left frame (xl ,
yl) (Figure 8d-top row) and in the right frame (Figure 8d-bottom row) (xr, yr), respectively.
Next, using the principles of triangulation demonstrated in Figure 9, the depth Zxt,yt (e.g.,
distance to the centre of the target) was calculated using the following formula:

Zxt,yt =
f · B

Xr − Xl
(7)
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where f is the horizontal focal length (in pixels), B is the baseline, and xr − xl is the
horizontal disparity. In this experiment, the calculated depth Zxt,yt to the centre of the
target was 5.17 m and the result is displayed in the left frame (Figure 8e-top row) and the
right frame (Figure 8e-bottom row), respectively.

Figure 8. Experiment 1: estimating the area of a concrete column: in the first row scene capture (a,b),
in the second are third row depth estimation to target in the left and right frames respectively (c–e),
in the fourth row, the depth map (g), and corresponding inverse (h), using the left frame (f). In the
last row, object segmentation (i), masking (j), and object extraction (k).
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Figure 9. Depth from disparity: P(x,y) is the real-world coordinates of the target centre, Z is the
calculated distance (Depth) to the centre of the target. Pl and Pr represent the coordinates of the
centre of the target in the left and right images, respectively. Cl and Cr represent the principal points
of the left and right cameras estimated during the calibration stage.

The left frame (Figure 8f) was then passed through the CNN-based monocular depth
estimation model to generate the inverse dense depth map containing the relative depths of
the scene (Figure 8g). The dense depth map was then inverted again so that a small relative
depth indicates the closer points and the larger values refer to further points (Figure 8h).

To calculate the scalar S for this experiment, both Zxt,yt = 517 cm and Rxt,yt = 0.976
were used, referring to the relative depth values obtained from the inverted depth map
(Figure 8h) at points xt, yt, i.e., the target centres.

The scalar S is case-dependant, i.e., it varies depending on the position of the target in
that scene. For this case, the scalar S is calculated as follows:

S =
Dcm

Rpx
=

512
0.976

= 529.713 cm/px. (8)

Now, the inverted depth map shown in Figure 8h was multiplied by the scalar S to
generate a dense map with absolute depths.

To extract the object (the concrete column) from the scene, the left frame was passed
through the trained module for object detection and instance segmentation as shown in
Figure 8i. The output mask is shown in Figure 8j; corresponding to the detected object,
i.e., the concrete column, it is projected on the dense map with the absolute depth values,
which were generated in the previous step to extract only those segmented pixels related
to the concrete column. Finally, the code in Algorithm 1 was applied to split the vertices
belonging to the boundary (BV) and then Green’s theorem was used to estimate the area of
the concrete column.

The actual surface areas of the column are shown in Figure 10(left), as follows:
270 cm (h) × 50 cm (w) = 1.35 m2 × 2 faces = 2.70 m2. The pixel coordinates shown
in Figure 10(middle) are those of the mask generated during the instance segmentation
process, and are used to calculate the real-world reconstruction of column Figure 10(right).
The calculated surface area of the column is A = 2.5104 m2. The area of the front face
(Figure 11(middle)) is A = 1.1898 m2, and the area of the side face is A = 1.32055 m2

(Figure 11(right)).
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Figure 10. Real-world reconstruction of the concrete column: (left) the actual column, (middle) the
pixel coordinates, and (right) real-world reconstruction.

Figure 11. Reconstructed concrete column: the left is the total surface area, the middle is the front
face area, and the right is the side face area.

The percentage error in this case, i.e., the ABS ((2.5104 − 2.7)/2.7) × 100, is 7.022%.
In the second experiment, the same stereo camera system was used with the baseline

(b = 25 cm) to capture the left and right frames of the scene containing a section of concrete
wall as depicted in Figure 12a,b. The stereo camera system was placed at a distance of 5.6 m



Sensors 2023, 23, 7110 15 of 20

away from the wall section, with the target placed at the same level as the stereo system,
where it is visible by both cameras (Figure 12a,b).

Figure 12. Experiment 2: estimation of the area of a concrete wall: in the first row scene capture (a,b),
in the second are third row depth estimation to target in the left and right frames respectively (c–e),
in the fourth row, the depth map (g), and corresponding inverse (h), using the left frame (f). In the
last row, object segmentation (i), masking (j), and object extraction (k).
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In this experiment, the calculated depth Zxt,yt to the centre of the target was 5.59 m,
corresponding to Rxt,yt = 0.779. Therefore, the scalar S in this case is:

S =
559

0.779
= 717.586 cm/px. (9)

Similarly, the inverted depth map shown in Figure 12h was multiplied by the scalar
S to generate a dense map with absolute depths; it then passed the left frame through
the trained module for object detection and instance segmentation to extract the concrete
wall section, as shown in Figure 12i. The output mask, which is shown in Figure 12j,
corresponding to the detected object, i.e., the concrete wall, is projected on the dense map
with the absolute depth values, which were generated in the respective step of the first
experiment to extract only those segmented pixels related to the concrete wall. Finally,
the code in Algorithm 1 was applied to split the vertices belonging to the boundary (BV);
we used Green’s theorem to estimate the area of the concrete wall.

The actual surface area of the wall section is slightly more complex, it is the sum of the
bottom half, the upper half, and the side face, as shown in Figure 13(left): (130 cm×80 cm)+
(170 cm×100 cm) + (30 cm×300 cm) = 36400 cm2 or 3.64 m2. The pixel coordinates shown
in Figure 13(middle) refer to the mask generated during the instance segmentation process
and are used to calculate the real-world reconstruction of the column Figure 13(right).
The calculated surface area of the column is A = 3.3143 m2. The percentage error in this
case, i.e., the ABS ((3.3143 − 3.640)/3.640), × 100 is 8.947%.

Figure 13. Real-world reconstruction of the concrete wall: the left is the total surface area, the middle
is the front face area, and the right is the side face area.

The side face in this reconstruction is undetected; therefore, it is hard to estimate its
contribution to the total estimated area.

Limitations

Inferring the depth from a two-dimensional image is an extremely ill-posed problem.
Errors may arise from many sources, but most importantly, the key contribution is attributed
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to the small scale at which the calculations are performed; i.e., the pixel scale, which will
eventually be transformed to the real-world scale; i.e., meters, cm, feet, or inches.

The first error source comes from the camera calibration, which is the process of esti-
mating intrinsic and/or extrinsic parameters of the camera. During this process, the focal
length of the camera in pixels was estimated, which is the distance between the lens and
the image sensor when the subject is in focus, and the principal point of the camera, which
is the point on the image plane onto which the perspective centre is projected. There are
other intrinsic parameters that contribute to errors, such as the skewness and the distortion
of the lens, but in most cases, these factors are negligible.

The second error source comes from calculating the disparity from the horizontal
displacement between the left and right frames. Regardless of the approach used to
estimate the disparity, the main concept is to find the same pixel in both the left and right
frames and calculate the difference between the x-components of that pixel.

There is another potential error that arises during the identification of the object of
interest in a scene. With instance segmentation, a mask was used to select every pixel
that is related to the (whole) object. Therefore, if the mask is poorly generated, this may
lead to incorrect calculations. Finally, there is the well-established problem of estimating
the absolute depths of each and every pixel in the scene. Whilst CNN-based methods are
well-known to be able to generate relatively dense depth maps, they are very hard to train
on a specific task. Sparse depth maps, on the other hand, are rough and are not suitable for
geometric estimations that require a level of precision.

5. Conclusions

The proposed pipeline offers a fully automated computer vision-based method for
measuring as-built elements of built assets.

The novelty of this work is attributed to the use of a single image and a single target to
develop a fully automated computer vision-based method for measuring any given object.

Stereo camera techniques were used for data acquisition and deducing depth informa-
tion. Machine learning, object detection, and instance segmentation techniques were also
utilised to isolate the as-built element of interest and to process the geometric information
of these elements. Finally, the principles of Green’s theorem were applied to estimate the
size of the object(s). To demonstrate the results, a neural network was trained to detect and
segment concrete walls and columns. A red disk target was placed in the field of view and
we used a calibrated stereo camera system to capture the scene. A depth map was generated
for this scene and the distance to the target was also calculated using triangulation methods.
This information was then used to calculate the real-world dimensions of the object, which
was then used to estimate the surface area. Limitations to the approach can arise during the
camera calibration process and from calculating the disparity displacement between the
left and right frames. Errors may also arise due to incorrect identification and segmentation
of the object of interest, which may result in a poorly generated mask, which could lead
to incorrect area calculations. The proposed pipeline was applied and tested on as-built
elements within a university campus. However, we intend to further extend this work and
examine the feasibility, scale-up, and practicality of the proposed fully automated CV-based
method on real-life construction sites.
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Abbreviations
The following abbreviations are used in this manuscript:

3D three-dimensional
AI artificial intelligence
BIM building information modelling
CV computer vision
CNN convolutional neural network
DLT direct linear transformation
UAV unmanned aerial vehicle

References
1. Davidson, I.N.; Skibniewski, M.J. Simulation of automated data collection in buildings. J. Comput. Civ. Eng. 1995, 9, 9–20.

[CrossRef]
2. Navon, R. Research in automated measurement of project performance indicators. Autom. Constr. 2007, 16, 176–188. [CrossRef]
3. Tsai, M.-K.; Yang, J.-B.; Lin, C.-Y. Synchronization-based model for improving on-site data collection performance. Autom. Constr.

2007, 16, 323–335. [CrossRef]
4. Saidi, K.S.; Lytle, A.M.; Stone, W.C. Report of the NIST workshop on data exchange standards at the construction job site.

In Proceedings of the 20th International Symposium on Automation and Robotics in Construction (ISARC), Eindhoven,
The Netherlands, 21–24 September 2003; pp. 617–622.

5. De Marco, A.; Briccarello, D.; Rafele, C. Cost and Schedule Monitoring of Industrial Building Projects: Case Study. J. Constr. Eng.
Manag. 2009, 135, 853–862. [CrossRef]

6. Navon, R.; Sacks, R. Assessing research issues in automated project performance control (APPC). Autom. Constr. 2007, 16, 474–484.
[CrossRef]

7. Manfren, M.; Tagliabue, L.C.; Re Cecconi, F.; Ricci, M. Long-term techno-economic performance monitoring to promote built
environment decarbonisation and digital transformation—A case study. Sustainability 2022, 14, 644. [CrossRef]

8. Omar, T.; Nehdi, L. Data acquisition technologies for construction progress tracking. Autom. Constr. 2016, 70, 143–155. [CrossRef]
9. Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA,

USA, 2008.
10. Bohn, J.S.; Teizer, J. Benefits and Barriers of Construction Project Monitoring Using High-Resolution Automated Cameras.

J. Constr. Eng. Manag. 2010, 136, 632–640. [CrossRef]
11. Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. Integrated Sequential As-Built and As-Planned Representation with D4AR Tools

in Support of Decision-Making Tasks in the AEC/FM Industry. J. Constr. Eng. Manag. 2011, 137, 1099–1116. [CrossRef]
12. Bosché, F.; Guillemet, A.; Turkan, Y.; Haas, C.T.; Haas, R. Tracking the built status of MEP works: Assessing the value of a

Scan-vs-BIM system. J. Comput. Civ. Eng. 2014, 28, 4. [CrossRef]
13. Zhang, X.; Bakis, N.; Lukins, T.C.; Ibrahim, Y.M.; Wu, S.; Kagioglou, M.; Aouad, G.; Kaka, A.P.; Trucco, E. Automating progress

measurement of construction projects. Autom. Constr. 2009, 18, 294–301. [CrossRef]
14. Fisher, R.B.; Breckon, T.P.; Dawson-Howe, K.; Fitzgibbon, A.; Robertson, C.; Trucco, E.; Williams, C.K.I. Dictionary of Computer

Vision and Image Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013.
15. Guinchard, M.; Angeletti, M.; Boyer, F.; Catinaccio, A.; Gargiulo, C.; Lacny, L.; Laudi, E.; Scislo, L. Experimental modal analysis of

lightweight structures used in particle detectors: Optical non-contact method. In Proceedings of the 9th International Particle
Accelerator Conference, IPAC18, Vancouver, BC, Canada, 29 April–4 May 2018; pp. 2565–2567.

16. Elazouni, A.; Salem, O.A. Progress monitoring of construction projects using pattern recognition techniques. Constr. Manag. Econ.
2011, 29, 355–370. [CrossRef]

17. Lukins, T.C.; Trucco, E. Towards automated visual assessment of progress in construction projects. In Proceedings of the British
Machine Vision Conference, Warwick, UK, 10–13 September 2007.
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