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Abstract: Deep-learning-based image inpainting methods have made remarkable advancements,
particularly in object removal tasks. The removal of face masks has gained significant attention,
especially in the wake of the COVID-19 pandemic, and while numerous methods have successfully
addressed the removal of small objects, removing large and complex masks from faces remains
demanding. This paper presents a novel two-stage network for unmasking faces considering the
intricate facial features typically concealed by masks, such as noses, mouths, and chins. Additionally,
the scarcity of paired datasets comprising masked and unmasked face images poses an additional
challenge. In the first stage of our proposed model, we employ an autoencoder-based network for
binary segmentation of the face mask. Subsequently, in the second stage, we introduce a generative
adversarial network (GAN)-based network enhanced with attention and Masked–Unmasked Region
Fusion (MURF) mechanisms to focus on the masked region. Our network generates realistic and
accurate unmasked faces that resemble the original faces. We train our model on paired unmasked
and masked face images sourced from CelebA, a large public dataset, and evaluate its performance
on multi-scale masked faces. The experimental results illustrate that the proposed method surpasses
the current state-of-the-art techniques in both qualitative and quantitative metrics. It achieves a Peak
Signal-to-Noise Ratio (PSNR) improvement of 4.18 dB over the second-best method, with the PSNR
reaching 30.96. Additionally, it exhibits a 1% increase in the Structural Similarity Index Measure
(SSIM), achieving a value of 0.95.

Keywords: face mask removal; image inpainting; generative adversarial networks (GANs);
attention mechanism; face unmasking; autoencoder; COVID-19; CelebA dataset

1. Introduction

Image inpainting is a fascinating research area in computer vision that involves filling
in missing or damaged regions of images. It has many applications, including the removal
of unwanted objects, restoration of old images, style transfer between images, and gener-
ating new images. In the wake of the COVID-19 pandemic, the widespread adoption of
face masks has sparked a growing interest in face inpainting, particularly in the context
of face mask removal. The ultimate objective of image inpainting is to generate realistic
and coherent replacements for missing or damaged regions by leveraging the surrounding
information. Various traditional approaches such as interpolation [1,2], patch-based meth-
ods [3–7], and diffusion-based methods [8–10] have been used. However, recent advances
in deep learning algorithms, together with the availability of large-scale datasets, have
opened the way for deep-learning-based approaches [11–19] that produce high-quality
inpainted results. Deep-learning-based methods not only excel in the field of image in-
painting but also deliver remarkable outcomes across various domains, including object
detection [20,21], semantic image synthesis [22], Software Project Time Estimation [23],
and security applications [24].

Sensors 2023, 23, 7094. https://doi.org/10.3390/s23167094 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167094
https://doi.org/10.3390/s23167094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6764-8969
https://orcid.org/0000-0002-4333-2852
https://doi.org/10.3390/s23167094
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167094?type=check_update&version=2


Sensors 2023, 23, 7094 2 of 22

Existing techniques for image inpainting encompass methods like interpolation and
patch-based, diffusion-based, and deep-learning-based approaches. Interpolation methods
estimate missing or corrupted pixels by employing mathematical models based on neigh-
boring pixels, such as nearest neighbor interpolation, bilinear interpolation, and bicubic
interpolation. Patch-based methods search for similar patches in known regions or similar
images and utilize them to fill in the missing regions. By employing partial differential
equations, diffusion-based methods aim to minimize the discrepancy between the original
image and the inpainted image. While these traditional techniques prove effective in simple
cases, they often fall short when faced with challenging inpainting tasks, particularly those
involving complex and large objects. Consequently, deep-learning-based methods have
emerged, especially for tasks like face unmasking.

Face unmasking presents a formidable challenge in image inpainting, as it involves
the removal of face masks and the subsequent filling in of the occluded regions. Unlike
other object removal tasks, face masks cover a substantial portion of the face, concealing
intricate and detailed features such as the nose, mouth, and chin. Furthermore, the scarcity
of large-scale datasets containing paired masked and unmasked face images for training
deep-learning-based methods adds to the difficulty of generating realistic and coherent
inpainted results.

In this work, we propose a two-stage deep-learning-based approach for face unmask-
ing that addresses these limitations and outperforms existing methods. Figure 1 shows
an overview of our approach. In the first stage, we introduce an autoencoder network
modified from the U-net [25] architecture to accurately detect the mask region by generat-
ing a binary mask segmentation map. This binary mask segmentation map is a guidance
mechanism for the subsequent stage. We leverage a modified autoencoder model based
on the U-net architecture for binary mask segmentation. In the second stage, we employ
generative adversarial networks (GANs), comprising a generator and a discriminator.
Our generator incorporates a residual attention and a Masked–Unmasked Region Fusion
(MURF) mechanism, while the discriminator utilizes spectral normalization to enhance
training stability. Additionally, we integrated a CBAM (Convolutional Block Attention
Module) block [26] as an attention mechanism in our generator network to focus on es-
sential features and the MURF mechanism to focus only on the mask region. To train
our network, we generated a synthetic dataset from the large public CelebA dataset [27],
utilizing MaskTheFace [28] to address the challenge of the limited availability of paired
masked and unmasked face images. We achieve qualitative and quantitative improvements
compared to state-of-the-art methods through training on this dataset, even in scenarios
involving large and complex masks.

Figure 1. Overview of our two-stage approach for face unmasking. The first stage, Mask Segmen-
tation, takes the masked face as input and generates a binary mask map. The second stage, Face
Unmasking (GAN-Net), utilizes the masked face and the generated mask map from the first stage to
generate the unmasked face.

Our paper introduces a novel two-stage network for face unmasking that effectively
addresses the challenge of removing face masks and inpainting the occluded regions while
considering the detailed facial features concealed by the mask. The key contributions of
our research are as follows:
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1. Proposal of a two-stage network: we present a unique two-stage approach that
combines autoencoder-based binary segmentation in the first stage and a GAN-based
network with residual attention and spectral normalization in the second stage for
generating realistic and coherent unmasked faces.

2. Accurate binary segmentation: In the first stage, we introduce an autoencoder-based
approach to achieve precise binary segmentation of the face mask. This results in a
binary mask segmentation map that guides the subsequent stage.

3. GAN-based network with enhanced mechanisms: in the second stage, we leverage
a GAN-based network with a residual attention mechanism in the generator and
spectral normalization in the discriminator, enabling us to generate unmasked faces
that closely resemble the original ones.

4. Synthetic dataset generation: to address the scarcity of paired masked and unmasked
datasets, we generate a synthetic dataset using the large public CelebA dataset, en-
hancing the training process.

5. Superior performance: extensive experiments and evaluations demonstrate the supe-
riority of our proposed method over state-of-the-art techniques in both qualitative
and quantitative metrics, even in scenarios involving large and complex masks.

6. Real-world applications: our proposed method exhibits promising potential for real-
world applications, including automated face recognition and identity verification,
contributing to advancements in computer vision and image inpainting.

Our work presents a comprehensive and innovative solution for face unmasking,
with practical implications for various applications in computer vision and image
processing.

2. Related Work

In this section, we provide an overview of the existing techniques for image inpainting,
with a particular focus on face unmasking. We categorize the approaches into traditional
techniques, including interpolation and patch-based and diffusion-based methods, which
have been widely used in the past. Additionally, we discuss the advancements made in
deep learning techniques for image inpainting.

2.1. Traditional Techniques
2.1.1. Interpolation

These techniques estimate missing or corrupted pixels based on neighboring pixels,
using methods such as nearest neighbor interpolation, bilinear interpolation, and bicubic
interpolation. For instance, Jassim et al. [1] introduced a statistical algorithm based on
the Kriging interpolation technique, preserving spatial correlation while filling damaged
regions. Alsalamah et al. [2] proposed a radial basis function (RBF) interpolation technique
for image inpainting, achieving high accuracy in repairing damaged images.

2.1.2. Patch-Based Methods

These methods divide the image into small patches and use similar patches from
known regions to infer missing information. Criminisi et al. [3] combined texture synthesis
and inpainting techniques to benefit from their advantages. Their algorithm leverages
exemplar-based texture synthesis to replicate both texture and structure. They used the
exemplar-based synthesis to calculate the values of the actual color. Barnes et al. [4]
developed a randomized algorithm for finding approximate nearest neighbor matches
between image patches in a short time, enhancing performance for interactive image editing.
They provided some constraints on the synthesis process for user control. Lin Liang et al. [5]
proposed a patch-sampling-based texture synthesis algorithm with high-quality textures
from an input sample. Their algorithm uses the Markov Random Field (MRF) density
function as a nonparametric estimation of the local conditional to sample patches to avoid
mismatching features across patch boundaries. Their proposed algorithm is much faster
than existing algorithms, making real-time texture synthesis possible. Simakov et al. [6]
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introduced a bi-directional similarity measure for summarizing visual data. They re-scaled
images or videos into smaller sizes while saving as much applicable visual information
as possible and minimizing the introduction of new artifacts. It has been used in various
applications such as object removal, cropping, completion, and reshuffling. Soheil Darabi,
Eli Shechtman, et al. [7] presented an image melding approach for synthesizing a transition
region between source images without visible artifacts. They built their method on a
patch-based optimization approach with three enhancements: an enriched patch search
space, integration of image gradients, and a new energy function based on mixed L2/L0
norms. Their method can be used in object cloning, stitching panoramas, hole filling,
and image harmonization.

2.1.3. Diffusion-Based Methods

These methods use partial differential equations (PDEs) to model the diffusion process
and fill in missing regions iteratively. Bertalmio et al. [8] proposed an algorithm inspired
by professional restorators, allowing simultaneous filling-in of numerous regions with
different structures without any limitations on the region to be inpainted. Their method is
used to restore old photographs and damaged film and for the removal of text or objects
and special effects. Prasath et al. [9] introduced a fast split Bregman-based implementation
of total variation (TV) regularization for object removal. Biradar et al. [10] utilized the
median filter as a nonlinear filter for inpainting, diffusing the median pixel from the exterior
to the inner area.

2.2. Deep Learning Techniques

Deep learning techniques have revolutionized image inpainting in recent years by
learning directly from data to fill in missing regions. Deep learning approaches have
demonstrated superior performance, particularly in complex tasks like face unmasking.
However, relatively few methods have been proposed for face unmasking due to the task’s
complexity and the scarcity of paired masked and unmasked face datasets.

One of the earliest deep-learning-based methods for image inpainting was proposed
by Pathak et al. [11], who introduced a convolutional neural network (CNN)-based method
using context encoders to predict missing pixels. It achieved impressive results, but it was
limited by its ability to only fill in small missing regions. Iizuka et al. [12] proposed a
GAN-based network with global and local context discriminators for image completion,
including objects with specific structures like faces. Yu et al. [13] presented a generative
image inpainting system utilizing gated convolutions for completing images with free-form
masks and guidance. Their generator has two encoders, one using contextual attention and
the other using dilated gated convolution. A combination of these two encoders is used
for the single decoder. Additionally, they proposed a new GAN loss called SNPatchGAN
which works on patches. Their proposed model generates higher quality and more flexible
results than previous methods. Nazeri et al. [14] proposed a two-stage adversarial model
for image inpainting, generating edges in the first stage as a guide for completing missing
regions in the second stage. The model was evaluated on several publicly available datasets
and outperforms current state-of-the-art techniques quantitatively and qualitatively. Liu
et al. [15] addressed artifacts in deep-learning-based methods using partial convolutions
only considering valid pixels and updating masks during the forward pass.

Furthermore, we focus specifically on face inpainting, including object removal and
editing faces. Li et al. [16] developed a deep generative model for face completion, generat-
ing missing pixels for key components like eyes, noses, and mouths. Their model, trained
with a combination of reconstruction loss, adversarial losses, and semantic parsing loss,
produces realistic and visually consistent results for large missing regions. Khan et al. [17]
introduced a GAN specifically for object removal from facial images, such as removing mi-
crophones. Their two-stage approach involves an inpainter stage for coarse prediction and
a refiner stage for fine detail generation. The joint loss function includes perceptual loss, re-
construction loss, and adversarial loss to ensure realistic face reconstruction. Din et al. [18]
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proposed a two-stage network for removing masks in masked facial images. The first
stage automatically produces binary segmentation for the mask region, while the second
stage synthesizes the affected region with fine details while maintaining global coherency.
Their GAN-based network employs a two-discriminator setup. It first utilizes the global
discriminator during training to generate the overall facial structure. Subsequently, it com-
pletes the training process using the local discriminator, which focuses on generating the
masked area. Jam et al. [19] presented a novel facial image inpainting method combining
Wasserstein GAN and a Reverse Masking Network (R-MNet). Their approach leverages a
new loss function computed in the feature space to target only valid pixels, resulting in
more realistic outputs. The method demonstrates the ability to generalize to high-resolution
inpainting tasks.

Our proposed method for face mask removal surpasses traditional techniques and pre-
vious deep-learning-based approaches in terms of accuracy, handling large missing regions,
realistic texture and structure replication, robustness to complex masks, and generalization
to high-resolution inpainting tasks.

3. Approach

In this section, we present our innovative two-stage network architecture specifically
designed for face unmasking. The first stage of our network focuses on binary mask
segmentation using an autoencoder model. This autoencoder is crucial in generating
accurate binary segmentation maps for the masked regions of the masked faces. These
segmentation maps serve as a valuable guide for the second stage of our network. Moving
forward, we delve into the second stage, where we elaborate on the methodology employed
to complete the missing regions with fine details while ensuring the overall coherence of the
facial structure. Additionally, we discuss our combined loss function, which encompasses
multiple components, including reconstruction loss, adversarial loss, and perceptual loss.
This comprehensive formulation of the loss function aids in producing visually plausible
and realistic results. Moreover, we introduce the integration of a perceptual network, which
enhances the perceptual fidelity and visual quality of the inpainted faces, further elevating
the performance of our network.

3.1. Mask Segmentation (M-Seg) Module: Autoencoder-Based Binary Mask Segmentation

In our proposed approach, the first stage of our network is dedicated to performing
binary mask segmentation, which serves the purpose of detecting the mask region in the
masked face. This initial stage plays a pivotal role in guiding the subsequent stage of our
network to complete the missing regions effectively. To achieve this, we introduce the
M-Seg module, which utilizes a modified 5 × 5 autoencoder network as shown in M-Seg
Module in Figure 2, inspired by the U-Net [25] architecture.

The M-Seg module consists of two main paths: the encoder and decoder paths. The en-
coding path progressively reduces the spatial dimensions of the feature maps using max
pooling. In contrast, the decoding path employs up-convolutional blocks to restore the
feature maps to their original size. This architecture facilitates the capture of fine details
and spatial consistency by establishing skip connections between corresponding layers of
the encoding and decoding paths. These skip connections allow the fusion of low-level and
high-level feature representations.

Within the encoding path of the M-Seg module, each block follows a specific sequence
of operations as shown in segmentation encoder (Se)-Block Figure 3a. Firstly, a 3 × 3
convolution is applied to extract spatial features. Batch normalization is then utilized to
normalize the output and improve the network’s generalization capability. A rectified
linear unit (ReLU) activation function is applied to introduce non-linearity and enhance the
network’s ability to capture complex patterns. Additionally, a CBAM block [26] is incorpo-
rated to enhance the representation by incorporating channel attention and spatial attention
mechanisms. Finally, max-pooling is employed to reduce the spatial dimensions further.
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Figure 2. Comprehensive network architecture for face unmasking, comprising two key stages:
(1) mask segmentation (M-Seg) utilizing an autoencoder architecture, and (2) face unmasking em-
ploying a GAN network. The generator module incorporates a residual attention mechanism and the
MURF block, enhancing the efficacy of the unmasking process. The VGG19 network serves as the
perceptual network.

In the decoder path, there are five segmentation decoder (Sd) blocks. The first four
blocks consist of up-sampling, a 3 × 3 convolution, batch normalization, and ReLU acti-
vation. Up-sampling is used to restore the feature maps to their original size, while the
subsequent operations refine the feature representations. The last block in the decoder path
utilizes up-sampling, a 1 × 1 convolution, batch normalization, and sigmoid activation.
This block is responsible for generating the binary mask map, which indicates the regions
of the face covered by the mask. The sigmoid activation function ensures that the output
values are 1 for pixels within the mask region and 0 for pixels outside.

The network takes the masked face as input and produces a binary mask map repre-
senting the probability of each pixel belonging to the mask region. Leveraging the binary
mask segmentation obtained in this first stage, our network can effectively guide the
subsequent stage consisting of inpainting the missing regions within the facial images.
By accurately delineating the mask regions, our approach ensures reliable completion of
the masked regions and generates high-quality reconstructed images.

Figure 3. Detailed depiction of the main components: (a) Se-Block used for binary mask segmentation
in the first stage, and (b) Ge-Block representing the generator block.

3.2. Face Unmasking Network (FU-Net): GAN-Based Network for Face Unmasking

In this subsection, we present the second stage of our approach, which aims to generate
realistic and visually appealing unmasked faces from the input masked faces. Building
upon the results of the first stage, where mask regions were detected, this stage focuses on
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leveraging a generative adversarial network (GAN) to restore the concealed regions while
preserving facial details.

3.2.1. GAN Architecture

To accomplish the unmasking task, we propose a GAN-based face unmasking network
shown in Figure 2, specifically designed to handle the challenges associated with face mask
removal. The generator network adopts an autoencoder architecture inspired by the M-Seg
module, tailored to suit the requirements of face unmasking.

The generator network consists of three main components:

(a) Encoder: The encoder incorporates multiple residual attention blocks, denoted as
generator encoder (Ge) blocks, which integrate attention mechanisms to enhance the
representation of masked faces. These Ge blocks, as depicted in Figure 3b, play a
crucial role in capturing important facial features. The encoder is composed of five GE
Blocks, with the exception of the last block, where the max-pooling layer is omitted.

(b) Bottleneck: The bottleneck component is a bottleneck layer within the generator
network, employing four dilated blocks with dilation rates of 2, 4, 8, and 16, respec-
tively. Each dilated block includes batch normalization (BN), dilated convolutions,
and Leaky ReLU activation. This configuration enables effective feature extraction
while considering the global context of the masked faces.

(c) Decoder: The decoder follows the architecture of the segmentation network’s de-
coder path but with Leaky ReLU activation functions instead. It consists of five
blocks, with the first lacking an up-sampling layer. This arrangement ensures the
reconstruction of unmasked faces with preserved spatial details.

This architecture facilitates the capture of fine details and spatial consistency by estab-
lishing skip connections between corresponding layers of the encoding and decoding paths.
These skip connections allow the fusion of low-level and high-level feature representations.

In our study, we propose a novel mechanism known as Masked–Unmasked Region
Fusion (MURF) to enhance the quality of the generated unmasked faces. The integration of
MURF involves combining the original unmasked region with the corresponding region
in the generated face through element-wise operations. By performing element-wise
multiplications between the masked map and the generated face, as well as between
the masked face and the reversed masked map, we obtain intermediate results. These
results are then summed together using element-wise summation, leading to improved
unmasked faces that effectively utilize information from both the generated and original
unmasked regions.

This innovative approach, illustrated in Figure 2, presents a valuable contribution
to the field. To ensure the success of MURF, it is crucial to accurately detect the mask
region in the first stage, as it significantly influences the overall quality of the final output.
By prioritizing precise mask region detection, we can optimize the integration process and
achieve superior results in generating realistic unmasked faces.

The discriminator network, on the other hand, comprises a series of convolutional
layers followed by leaky ReLU activations. To enhance stability during training, spectral
normalization [29] is applied to the discriminator’s convolutional layers. Spectral normal-
ization normalizes the weights of the convolutional filters, ensuring controlled Lipschitz
constants and improving the overall network performance.

3.2.2. Perceptual Network

To further enhance the quality and realism of the generated unmasked faces, we incor-
porate a pre-trained VGG19 network [30] as a perceptual loss [31] component. The VGG
network extracts feature representations from the generated and ground truth unmasked
faces at multiple layers. By calculating the discrepancy between these feature represen-
tations, the perceptual loss guides the training of the generator network, encouraging
the generation of visually appealing and realistic unmasked faces that align with the
ground truth.
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By employing this GAN-based generator, along with the discriminator and the percep-
tual network, our approach effectively removes face masks while preserving facial details,
resulting in high-quality unmasked faces.

3.3. Loss Function
3.3.1. M-Seg Loss

In the first stage of our network, we employ a modified autoencoder for binary mask
segmentation. To train this stage effectively, we introduce the M-Seg Loss function (Ls) to
measure the discrepancy between the generated binary mask map and the ground truth and
quantify their similarity by comparing their overlapping regions. The M-Seg Loss function,
as shown in Equation (1), is defined as the combination of two loss functions: binary
cross-entropy (BCE), represented by Equation (2), and dice loss, which can be defined as
stated in Equation (3).

Ls = BCE + Diceloss, (1)

BCE = −(Rm log(Fm) + (1− Rm) log(1− Fm)), (2)

Diceloss = 1− 2× (|Rm ∩ Fm|)
|Rm|+ |Fm|

, (3)

where Rm and Fm represent the real and fake masks, respectively.
Binary cross-entropy loss (BCE) is a commonly used loss function in image segmen-

tation tasks. It computes the cross-entropy between the probability distributions of the
generated binary mask map and the ground truth, encouraging accurate pixel-wise predic-
tions. We guide the network toward accurately detecting the mask regions by minimizing
the binary cross-entropy loss.

Additionally, we incorporate dice loss to further evaluate the similarity between two
sets by comparing their overlapping regions. The dice loss is a complementary component
to the binary cross-entropy loss in our M-Seg network. By optimizing the joint loss, which
combines binary cross-entropy loss and dice loss, our network can improve the pixel-wise
predictions and spatial coherence. The joint loss formulation in the first stage plays a critical
role in driving the training process and significantly contributes to the overall success of
the M-Seg network.

3.3.2. Generator Loss

The generator loss (Ljoint) function in our network is composed of three integral com-
ponents, adversarial loss for generators (Ladvg ), reconstruction loss (Lrec), and perceptual
loss (Lper), which work in harmony to guide the training process, as shown in Equation (4).

Ljoint = αLadvg + βLrec + γLper (4)

where α, β, and γ represent weighted values.

Adversarial Loss
Following the principles of least squares generative adversarial networks (LSGANs) [32],

our generator aims to produce indistinguishable images from real ones according to the
discriminator’s classification. The adversarial loss is computed based on the discriminator’s
predictions for the generated images, as presented in Equation (5). By adopting the LSGAN
loss, we address the challenges associated with the vanishing gradient problem, which
is commonly observed with sigmoid cross-entropy loss. This choice ensures more stable
training and facilitates the generation of high-quality and authentic images.

Ladvg = EMF [(D(G(MF))− c)2], (5)

where Ladvg is the generator adversarial loss, MF represents the masked face, and G refers
to the generator and D to the discriminator.
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Reconstruction Loss
To ensure faithful reconstruction of the input, we incorporate a reconstruction loss

composed of two sub-losses, as shown in Equation (6); smoothL1 loss is presented in
Equation (7) and SSIM loss (LSSIM) is shown in Equation (8). The smoothL1 loss, intro-
duced in Fast R-CNN [33], combines the desirable properties of L1 and L2 losses, balancing
robustness and smoothness. By employing this loss, our generator can generate images
that exhibit sharp edges and fine details while avoiding excessive noise. Additionally, we
integrate the SSIM loss [34], which comprehensively evaluates the structural similarity
between the generated and ground truth images, accounting for local and global image
characteristics. The reconstruction loss fosters the generation of images that closely re-
semble the original input, both in terms of pixel-level accuracy and structural coherence.

Lrec =
1
2
(smoothL1(Ff , R f ) + LSSIM) (6)

LSSIM = 1− SSIM(Ff , R f )) (7)

smoothL1(Ff , R f ) =

{
0.5(R f − Ff )

2, if |R f − Ff | < 1
|R f − Ff | − 0.5, otherwise

(8)

where R f and Ff represent real unmasked face and fake unmasked face, respectively.

Perceptual Loss
Capturing higher level perceptual characteristics is crucial for generating visually

appealing outputs. To achieve this, we incorporate a perceptual loss component. Us-
ing a pre-trained VGG19 network [30] as the perceptual network, we extract high-level
features from the generated and ground truth images. The perceptual loss (Lper) is com-
puted by measuring the discrepancy between these feature representations as presented in
Equation (9), employing the smoothL1 loss function. This integration allows the generator
to learn not only pixel-level similarity but also the intricate perceptual details, resulting in
visually appealing images that align with the perceptual qualities of the ground truth.

Lper =
n

∑
i=1

smoothL1(Ff , R f ) (9)

The generator loss is determined by aggregating these three components using appro-
priate weighting factors. This joint loss formulation guides the training process, enabling
the generator to produce high-quality, realistic, and contextually coherent images, effec-
tively addressing the task of face unmasking.

3.3.3. Discriminator Loss

To compute the discriminator loss function (Ladvd
) and accurately classify real and

fake samples, we follow the methodology of least squares generative adversarial networks
(LSGANs). The goal is to train the discriminator to output values close to zero for fake
samples and values close to one for real samples. We do this by applying the L2 loss
function, which compares the predictions of our discriminator with the corresponding
target values. It is calculated using Equation (10):

Ladvd
=

1
2
(ER f [(D(R f )− b)2] + EMF [(D(G(MF))− a)2]) (10)

In Equation (10), we compute the L2 loss between predictions for fake samples and
the target value ‘a’, as well as between the predictions for real samples and the target value
‘b’. To ensure a balanced contribution from fake and real samples, we take the average of
these two losses and multiply the sum by 0.5. This formulation provides a stable training
signal for adversarial learning, encouraging the discriminator to align its predictions with
the desired targets.



Sensors 2023, 23, 7094 10 of 22

In our implementation, we utilize the a-b coding scheme for the discriminator, where
‘a’ and ‘b’ represent the labels assigned to fake and real data, respectively. This coding
scheme facilitates effective discrimination between real and generated samples, enhancing
the discriminator’s ability to distinguish between them during adversarial training.

4. Experiment and Results

In this section, we present our approach’s experimental setup and results. We begin
by describing the dataset employed for training and evaluation purposes. Subsequently,
we outline the training procedure, including the specific details and configurations utilized.
To assess the performance of our network, we define and utilize appropriate evaluation
metrics. Then, we present and discuss our approach’s quantitative and qualitative results,
comparing them with state-of-the-art image inpainting methods. Lastly, we conduct a
comprehensive analysis of the strengths and limitations exhibited by our approach.

4.1. Dataset

To overcome the scarcity of available datasets containing pairs of masked and un-
masked faces, we devised a strategy for generating a synthetic dataset utilizing the publicly
accessible CelebA dataset [27]. The CelebA dataset is widely utilized in the computer vision
domain, particularly for tasks related to face analysis. It comprises a vast collection of
over 200K celebrity images, each annotated with attributes such as gender, age, and facial
landmarks. Our approach involved two primary steps in generating the dataset. We ini-
tially utilized the facial landmarks provided in the CelebA dataset and the original images.
By employing the HD CelebA Cropper [35], we generated two dataset variations containing
faces of 256 and 512 pixels. This step ensured the availability of diverse face sizes within
our dataset. Subsequently, we employed MaskTheFace [28] to create pairs of masked and
unmasked images. MaskTheFace introduced various types of masks with different shapes,
colors, and structures into our synthetic dataset. These masks were applied to the 256
and 512 pixel face images, resulting in a dataset containing a diverse range of masked
and unmasked faces. Our synthetic dataset consisted of 25K image pairs, each comprising
a masked face and its corresponding unmasked version. Additionally, we generated an
additional 5K pairs for the purpose of fair comparisons with other state-of-the-art models.
We saved the corresponding binary maps for each utilized mask to facilitate further analysis
and evaluation, allowing for precise assessment of the generated binary mask maps. For
a visual representation of the masks utilized in our dataset, refer to Figure 4. Further-
more, Figure 5 showcases samples from our simulated dataset, providing insights into
the diversity and quality of the generated masked and unmasked face pairs. Please note
that utilizing the CelebA dataset and the subsequent generation of the synthetic dataset
enabled us to address the scarcity of available paired masked and unmasked face datasets,
providing a valuable resource for training and evaluating our approach.

4.2. Training Procedure Details

We divided the training process into two separate stages during the training phase. We
focused on mask map segmentation in the first stage using the M-seg network. The input
to the M-seg network was the masked face (MF), and the objective was to generate a binary
mask map (MM). This binary mask map served as the second stage’s fourth channel in the
input. To evaluate the performance of the first stage, we compared the generated mask map
with the corresponding saved binary mask map (ground truth) and updated the network’s
weights based on the M-Seg loss.

Moving to the second stage, we trained the FU-Net using the masked face (MF) and
the binary mask map (MM) as a four-channel input. The objective of this stage was to
generate an unmasked face. We trained the second stage for 100 epochs, while the first stage
was trained for 25 epochs. Training was performed on a synthetic dataset comprising 25K
image pairs. To ensure proper evaluation, we split the dataset into 80% for training and 20%
for validation. Additionally, we utilized an additional 5K testing samples to evaluate the
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performance of the whole two-stage network. During the training phase, we utilized the
saved binary maps for masks that were generated during the dataset generation process.

Figure 4. Examples of the diverse masks used in the synthetic dataset. The masks exhibit different
shapes, sizes, and colors, comprehensively representing various masking scenarios.

Figure 5. Samples from the synthetic dataset illustrating different sizes (256 × 256 and 512 × 512).
The first column displays the original unmasked face images, the second column shows the corre-
sponding masked face images, and the third column represents the binary mask map.

For the implementation, we utilized PyTorch [36] as the framework for our model.
The training was conducted with a batch size of 32 for an image resolution of 256 and
a batch size of 8 for an image resolution of 512. We employed a variable learning rate
strategy, starting at 0.001 and decreasing it by a factor of 0.1 at specific steps (30,000, 40,000,
and 45,000). The training was conducted on an NVIDIA GeForce RTX 4090 GPU with
CUDA v12.1, and the operating system used was Windows 11. Both image resolutions, 256
and 512, were trained using this setup.

By following this training procedure and utilizing the specified hardware and software
setup, we ensured the effective and efficient training of our model for face unmasking.

4.3. Evaluation Metrics

In the evaluation metrics subsection, we will introduce the evaluation metrics used to
assess the performance of our model. We will begin by discussing two different metrics
employed to evaluate the first stage of the binary mask segmentation task: pixel accuracy
and dice score. Subsequently, we will explain the evaluation metrics utilized to assess the
performance of our unmasking model and the quality of the generated unmasked faces.
These metrics are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
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(SSIM) [34], Frechet Inception Distance (FID) [37], Naturalness Image Quality Evaluator
(NIQE) [38], and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [39],
which are widely used in inpainting tasks.

4.3.1. Pixel Accuracy

Pixel accuracy is a commonly used metric for binary segmentation tasks. It measures
the percentage of correctly classified pixels in the segmentation mask. By comparing the
predicted mask to the ground truth mask, each pixel is classified as correctly classified
or misclassified. Pixel accuracy is calculated by the ratio of correctly classified pixels to
the total number of pixels in the image, as in Equation (11). While providing an overall
measure of the segmentation performance, pixel accuracy does not consider partial overlap
or class imbalance.

Pixel Accuracy = correct pixels/Total number o f pixels (11)

4.3.2. Dice Score

Dice score, also known as the F1 score, is another widely used metric for binary
segmentation tasks. It quantifies the similarity between the predicted and ground truth
masks by calculating the overlap between them. The dice score ranges from 0 to 1, with 1
indicating a perfect match between the predicted and ground truth masks. It is computed
as the ratio of twice the intersection of the predicted and ground truth masks to the sum
of their pixel counts, as shown in Equation (12). The dice score is particularly useful for
imbalanced datasets or considering the partial overlap between masks.

DiceScore =
2× (|Rm ∩ Fm|)
|Rm|+ |Fm|

(12)

These evaluation metrics provide quantitative measures to assess the accuracy and
similarity of predicted segmentation masks in the M-seg module. By incorporating both
pixel accuracy and dice score, we gain insights into the overall performance of the model,
its ability to capture fine details, and its handling of class imbalance.

Moving on to evaluating the quality of the unmasked faces, we utilize PSNR and
SSIM metrics.

4.3.3. PSNR

The PSNR is a widely used metric to evaluate the quality of image reconstruction
or restoration tasks, including unmasking. It calculates the level of noise or distortion in
the generated unmasked face compared to the original unmasked face. It is expressed in
decibels (dB) and represents the ratio between the maximum possible pixel value and the
mean squared error (MSE) between the original and reconstructed images. A high PSNR
indicates low noise or distortion and better image quality. However, the PSNR primarily
focuses on pixel-level differences and may not capture perceptual quality or structural
information. Equation (13) shows the formula of the PSNR.

PSNR = 10 log10(
R2

MSE
), (13)

R represents the maximum possible pixel value.
MSE represents the mean squared error between the original and generated faces.

4.3.4. SSIM

The SSIM is a perceptual metric that assesses the similarity between the original
and generated images. It considers not only pixel-level differences but also structural
information such as texture, edges, and contrast. Three terms are calculated in the SSIM, as
shown in Equation (14): luminance similarity, contrast similarity, and structural similarity.



Sensors 2023, 23, 7094 13 of 22

Combining these terms provides an overall index ranging from −1 to 1, where 1 indicates
a perfect match between the images. The SSIM is preferred over the PSNR for evaluating
image quality as it considers perceptual aspects, making it more suitable for assessing
unmasking models.

SSIM(R f , Ff ) =
(2µR f µFf + C1) + (2σR f Ff + C2)

(µ2
R f

+ µ2
Ff
+ C1)(σ

2
R f

+ σ2
Ff
+ C2)

(14)

µR f represents the average of the original face.
µFf represents the average of the generated face.
σR f represents the variance of the original face.
σFf represents the variance of the generated face.
σR f Ff represents the variance of the original and generated face.
C1, C2 are two variables to stabilize the division operation. We use C1 = (0.01)2 and
C2 = (0.03)2.

4.3.5. FID

The FID measures the similarity between the distribution of generated images and
the distribution of real images in a high-dimensional feature space extracted from a pre-
trained InceptionV3 network. A lower FID score indicates a higher similarity between the
distributions and, therefore, better image quality. Equation (15) shows the FID formula.

FID(R f , Ff ) = ||µR f − µFf ||
2 + Tr(CR f + CFf − 2(CR f − CFf )

1
2 ) (15)

µR f represents the mean of the features extracted from the original face.
µFf represents the mean of the features extracted from the generated face.
CR f represents the covariance matrix of the original feature vector.
CFf represents the covariance matrix of the generated feature vector.
Tr() denotes the trace of a matrix, which is the sum of the diagonal elements.

4.3.6. NIQE

NIQE is a no-reference metric that assesses the naturalness and perceptual quality
of images. It quantifies the level of distortion or artifacts present in the generated images
without requiring a reference image. A lower NIQE score suggests the generated images
have higher naturalness and visual quality.

4.3.7. BRISQUE

BRISQUE is a no-reference metric that evaluates the spatial quality of images. It mea-
sures the amount of artifacts and distortions present in the images, considering structural
and textural information. A lower BRISQUE score indicates better image quality in terms
of spatial information.

We can evaluate different aspects of our unmasking model’s performance by utilizing
PSNR, SSIM, FID, NIQE, and BRISQUE metrics. The PSNR focuses on pixel-level differ-
ences, while the SSIM captures perceptual similarity and structural information, the FID
evaluates the distribution similarity between generated and real images, NIQE assesses
naturalness, and BRISQUE measures spatial quality. These metrics provide quantitative
measures to assess the quality and similarity of the unmasked images compared to the
original ones, enabling us to evaluate the effectiveness of our model in preserving image
details and reducing distortion.

4.4. Results

In this subsection, we evaluate the performance of our GANMasker model for realistic
face mask removal and compare it with state-of-the-art methods. We provide a compre-
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hensive analysis that combines qualitative and quantitative assessments, showcasing the
effectiveness and advantages of our approach.

4.4.1. First Stage

We conducted an evaluation to assess the effectiveness of the first stage of our ap-
proach, which focuses on mask map segmentation. The first stage achieved exceptional
results, with pixel accuracy reaching 99.99% and the dice metric achieving 99.97%. These
impressive scores highlight the accuracy and precision of the first stage, which significantly
influence the overall performance of our approach.

4.4.2. Second Stage

Qualitative Comparison
We visually compared the performance of our GANMasker model with three promi-

nent state-of-the-art methods for face mask removal: GLCIC [12], GUMF [18], and Gated
Conv [13]. Figure 6 showcases the generated unmasked faces using our model and the
other approaches. The comparison clearly illustrates that our model produces the best
results among all the methods, with outputs that are more realistic, natural, and closer to
the ground truth. By presenting side-by-side comparisons, we highlight the visual quality,
detail preservation, and realism achieved by our model. Moreover, Figures 7 and 8 demon-
strate the efficacy and versatility of the proposed model’s performance. Figure 7 showcases
the results on frontal faces, while Figure 8 presents the results on side faces. These two
figures, in addition to Figure 6, collectively illustrate the diversity in mask types, colors,
and sizes, as well as the wide range of facial attributes, including gender, age, and skin color,
that our model adeptly handles. Figure 9 presents our model’s results on 512 × 512 images,
further demonstrating the effectiveness of our approach on high-resolution images. These
qualitative comparisons emphasize the superior performance of our approach, showcasing
visually convincing and artifact-free unmasked faces.

Quantitative Comparison
To ensure an objective evaluation, we quantitatively compared our GANMasker

model with three state-of-the-art methods: GLCIC [12], GUMF [18], and Gated Conv [13].
For a comprehensive assessment, we employed five evaluation metrics: Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM), Frechet Inception Distance (FID),
Naturalness Image Quality Evaluator (NIQE), and Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE). The PSNR, SSIM, and FID are widely used as referenced
metrics, while NIQE and BRISQUE are non-referenced metrics that offer valuable insights
into image quality. Despite the challenges in quantitative evaluation metrics for image
inpainting, we leverage these well-established metrics to evaluate the quality, naturalness,
fidelity, and perceptual similarity of the unmasked images generated by models compared
to the ground truth. The evaluation results, including the PSNR, the SSIM, the FID,
NIQE, and BRISQUE, on the validation images of the CelebA dataset are presented in
Table 1. Our GANMasker model achieves higher scores in the PSNR, the eSSIM, the FID,
and NIQE than the existing methods, indicating superior image fidelity and similarity
to the ground truth. Including these diverse metrics strengthens our confidence in the
effectiveness of GANMasker and its outperformance against state-of-the-art methods.
The IQA-PyTorch toolbox [40] was employed to compute the FID, NIQE, and BRISQUE
scores for all the models.
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Figure 6. Qualitative comparison with state-of-the-art methods. The first column shows the input
masked images, followed by four output columns obtained by GLCIC, Gated-Conv, GUMF, and our
model, respectively, while the last column displays the corresponding ground truth images.
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Table 1. Quantitative comparison of our method with different approaches in terms of Structural
Similarity (SSIM), Peak Signal-to-Noise Ratio (PSNR), Frechet Inception Distance (FID), Natural-
ness Image Quality Evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE). The bold results represent the best performance in each column.

Method SSIM PSNR FID NIQE BRISQUE

GLCIC [12] 0.94 26.78 16.52 5.99 18.48
GatedConv [13] 0.89 20.57 90.81 5.75 17.63

GUMF [18] 0.90 21.69 58.71 6.45 32.93
Ours 0.95 30.96 16.34 5.42 19.27

This comprehensive evaluation establishes the effectiveness and superiority of our
proposed GANMasker approach for realistic face mask removal. The remarkable first stage
results in mask map segmentation lay the foundation for the overall success of our approach.
The qualitative comparison with GLCIC [12], GUMF [18], and Gated Conv [13] visually
confirms the superior performance of our model. The quantitative comparison utilizing the
PSNR, the SSIM, the FID, NIQE, and BRISQUE provides objective measures supporting
our claims of higher quality and fidelity. These results, along with Figures 6–9, highlight
the significant advancements offered by GANMasker in the field of face mask removal.

Figure 7. Some samples of the proposed model’s results on front-facing images. Each sample
includes the input masked face, the generated binary mask map, the proposed model’s output,
and the ground truth.
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Figure 8. Some samples of the proposed model’s results on side-facing images. Each sample includes
the input masked face, the generated binary mask map, the proposed model’s output, and the
ground truth.

Figure 9. Sample results of our model on images of size 512 × 512, demonstrating its effectiveness
on various mask types, sizes, angles, and colors. The first column depicts the masked input face,
followed by the binary mask map generated in the first stage. The third column showcases our
model’s output, while the fourth column presents the corresponding ground truth for comparison.
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4.4.3. Exploring Limitations: Analysis of Challenging Cases and Failed Results

While our approach demonstrates strong performance in unmasking images, examin-
ing its limitations and understanding its challenges in certain scenarios is crucial. In this
subsection, we comprehensively analyze challenging cases where our model encountered
difficulties in accurately recovering the underlying content from heavily occluded or com-
plex masked images. Additionally, we address situations where the first stage fails to
detect the mask map correctly, particularly for large or differently colored masks that
were not adequately represented during the training phase. By carefully examining these
failure results, we aim to gain valuable insights into the specific limitations and areas for
improvement of our approach. Figure 10 showcases these failure results, shedding light on
our challenges and providing valuable insights for future research and enhancements.

Figure 10. Failure results—challenging cases and mask map detection errors.

4.5. Ablation Study: Evaluating the Impact of the First Stage

In this subsection, we delve into an ablation study to assess the significance of the
first stage, specifically the mask segmentation module, on the overall performance of our
model. We aim to evaluate how incorporating the mask segmentation module thoroughly
enhances the results of face unmasking.

To ensure a fair comparison, we meticulously compared two variants of our model:
a two-stage model including both stages and a one-stage model excluding the first stage.
By conducting this study, we can gain valuable insights into the specific contributions and
benefits of the mask segmentation module.

Our experimental setup remained consistent throughout the study, employing the
same dataset, hyperparameters, and evaluation metrics for both models. This allows us to
isolate and accurately measure the impact of the first stage on the overall performance of
our approach.
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The results of our ablation study are compelling. The two-stage model consistently
outperforms the one-stage model in terms of both quantitative and qualitative assessments.
We present the quantitative metrics, including the SSIM and the PSNR, in Table 2, high-
lighting the superior performance of the two-stage model. These metrics indicate higher
image fidelity and a closer similarity to the ground truth, validating the effectiveness of the
mask segmentation module.

Table 2. Quantitative comparison of our method with different approaches in terms of Structural
Similarity (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). The bold results represent the best
performance in each column.

Method SSIM PSNR

Our (one-stage) 0.94 28.18
Our (two-stage) 0.95 30.96

Furthermore, we showcase visual examples of the final results of the one-stage and
two-stage models in Figure 11. Through these qualitative comparisons, we demonstrate the
significant improvements achieved by the two-stage model. The unmasked faces generated
by this model exhibit enhanced realism, naturalness, and visual appeal.

Figure 11. Comparison of face unmasking results between the two- and one-stage models. The left
column shows input masked faces, followed by the outputs from the one-stage model. The third
column displays outputs from the two-stage model, while the last column presents ground truth
unmasked faces.

The findings of our ablation study strongly confirm the mask segmentation module’s
substantial contribution to enhancing our approach’s overall performance. The superiority
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of the two-stage model over the one-stage model provides evidence for the effectiveness of
the first stage in achieving superior face unmasking results.

5. Conclusions and Future Work

In this study, we introduced GANMasker, a powerful two-stage GAN-based approach
for realistic face mask removal. Our evaluations and comparisons with state-of-the-art
methods clearly demonstrated the effectiveness and superiority of our approach. GAN-
Masker effectively recovers fine details and accurately reconstructs underlying information
of masked images by leveraging advanced deep learning techniques and incorporating at-
tention mechanisms, contextual information, and feature extraction modules. We achieved
visually convincing and artifact-free unmasked faces thanks to the remarkable results
obtained in the first stage, which focused on mask map segmentation.

Moving forward, there are exciting directions for future research and improvements
in face mask removal, such as enhancing the performance of our model in challenging
scenarios, including severe occlusion or complex mask patterns. Additionally, we see
great potential in integrating our technique with facial recognition research. By remov-
ing masks as a preprocessing step, we can improve the accuracy and reliability of facial
recognition systems.

To summarize, GANMasker represents a significant breakthrough in realistic face
mask removal. Our approach has demonstrated superior performance, highlighted promis-
ing research directions, and opened up possibilities for enhancing the accuracy of facial
recognition systems. We are excited about the impact of GANMasker and look forward to
further advancements in this field.
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