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Abstract: Fire incidents occurring onboard ships cause significant consequences that result in sub-
stantial effects. Fires on ships can have extensive and severe wide-ranging impacts on matters such
as the safety of the crew, cargo, the environment, finances, reputation, etc. Therefore, timely detection
of fires is essential for quick responses and powerful mitigation. The study in this research paper
presents a fire detection technique based on YOLOvV7 (You Only Look Once version 7), incorporating
improved deep learning algorithms. The YOLOV? architecture, with an improved E-ELAN (extended
efficient layer aggregation network) as its backbone, serves as the basis of our fire detection system.
Its enhanced feature fusion technique makes it superior to all its predecessors. To train the model,
we collected 4622 images of various ship scenarios and performed data augmentation techniques
such as rotation, horizontal and vertical flips, and scaling. Our model, through rigorous evaluation,
showcases enhanced capabilities of fire recognition to improve maritime safety. The proposed strategy
successfully achieves an accuracy of 93% in detecting fires to minimize catastrophic incidents. Objects
having visual similarities to fire may lead to false prediction and detection by the model, but this
can be controlled by expanding the dataset. However, our model can be utilized as a real-time fire
detector in challenging environments and for small-object detection. Advancements in deep learning
models hold the potential to enhance safety measures, and our proposed model in this paper exhibits
this potential. Experimental results proved that the proposed method can be used successfully for the
protection of ships and in monitoring fires in ship port areas. Finally, we compared the performance
of our method with those of recently reported fire-detection approaches employing widely used
performance matrices to test the fire classification results achieved.
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1. Introduction

Around 71% of the Earth’s surface is covered by oceans, and the enormous water area
produces natural canals [1]. Ships are the oldest means of transportation and have helped
mankind in various matters of life by using water. Since the 15th century, the fast expansion
of shipping has made it possible for humans to move between continents with the main
purpose of transporting goods and travelers, and the massive exchange of personnel and
things has drastically affected the social and natural landscape. Ships have evolved with
the passage of time. Advancements in technology have brought a whole new potential to
the shipping experience and made it more reliable for humans to work through sea routes.

While shipping is the most effective use of transportation, it also brings major haz-
ardous threats to the lives on ships. Among all the dangers that come with the shipping
experience, the threat of fire is one common occurrence. Passengers and crew onboard
are more exposed to danger if the cargo includes highly inflammable material such as
oil, gas, coal, or wood. If any of these items catch fire, the results would be catastrophic.
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Additionally, a fire accident on a ship is highly likely to be fatal to human life because it
is difficult to receive fire suppression support from the outside due to the nature of the
closed and isolated space of the sea, and it is necessary to extinguish the fire with a limited
amount of personnel and equipment [2].

The key factor which results in escalating ship fires is a lack of awareness and prior
safety measures. Having no fire prevention and detection measures leads to some unpleas-
ant incidents. Hence, installing such an efficient and reliable system to detect a fire at its
early stage is crucial.

To prevent the expansion of a fire, two methods are commonly used:

(1) Traditional fire alarm system;
(2) Fire detection system based on computer vision.

A fire alarm system comprises physical sensors such as flame detectors, thermal
detectors, smoke detectors, etc. The main drawback of this type of system is that it involves
human intervention to check and approve the evaluation of a fire. In addition, it uses a
variety of tools to detect the fumes, smoke, and intensity of a fire. These sensors can detect
a fire when it evolves, and fumes and smoke lead to flames, but it is risky to let a fire
expand to such an extent that it can lead to serious damage. A 10 min delay in putting out
a fire in the engine room may cost USD 200,000, while a 20 min delay may cost up to USD
2,000,000 [3].

The alternative to fire alarm systems is Al-based fire detection. Lately, the use of deep
learning algorithms has found its way into detecting fires through images. Recent research
has proved the effectiveness of computer vision- and deep learning-based methods for fire
detection [4,5]. Deep learning target detection can automatically extract image details and
features, effectively overcoming the redundancy and interference caused by the manual
extraction of image features for fire detection [6]. Fire detection is a more challenging task
and needs proper, up-to-date technology to alert the crew. To overcome this issue, one of
the most popular OS projects in computer vision is used, named YOLO (You Only Look
Once). YOLO is an efficient real-time object detection algorithm that divides an image
into a grid system, and each grid detects objects within itself. It can be used for real-time
inference and requires very few computational resources [7]. YOLOv6 has improved object
detection accuracy, particularly for recognizing small objects. YOLOV®6 is an innovative
system for real-time object detection based on deep learning [4]. However, due to more
power consumption and being computationally expensive in nature, it comes with some
limitations, which were addressed in YOLOv7. YOLOV7’s basic premise is to enhance
detection accuracy and performance while simultaneously minimizing the number of
parameters and amount of processing required. However, when it comes to the detecting
layer, YOLOvV7 employs not one, but two heads: the lead head and the auxiliary head.
Because of their interaction, these two layers give a more detailed portrayal of the data’s
correlation and distribution [4]. Fire detection is the most challenging process because of
ambiguous nature of it; the following are some of the most important advantages of the
proposed strategy:

i.  We will publish a dataset for fire detection that will be used to detect fires in both
daytime and nighttime scenarios. Fire and flame predictions will be précised, and
overfitting will be minimized as a deep CNN (convolutional neural network) learns
from a vast database of fire detection images.

ii. ~ We provide a YOLOv7-based active method of fire detection to strengthen the protec-
tion and to eschew long operations.

iii. While rotating fire datasets by 25 degrees, a mechanism was devised to mechanically
reorder flagged containers.

iv.  During the training phase of YOLOV7, class predictions were generated utilizing
independent logistic classifications and a binary cross-entropy loss. This is far faster
than other detecting networks [4].

V. In order to decrease the number of false positives in the fire recognition method,
we utilized photos that resembled fire and excluded low-resolution photographs.
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Additionally, even in tiny fire zones, the suggested approach considerably improves
accuracy and lowers the percentage of false detections.

YOLOV7 incorporates several new features, including a modified backbone network,
improved feature fusion techniques, and more efficient training and inference processes.
These modifications result in improved accuracy and faster inference times as compared to
YOLOV4. In particular, the YOLOv7 model has shown superior performance in detecting
small objects, making it well-suited for the detection of fires on ships, which are often
localized and relatively small.

2. Related Work

Most of the object-detecting and object-recognizing algorithms depend on a particular
type of deep neural network (DNN) and CNN. Learnable neural networks comprise various
layers to perform object detection. Each layer is responsible for performing different tasks
such as analyzing the areas, extracting features of the data obtained, identifying data, and
detecting any anomalous behavior. Traditional fire detection methods were lacking in speed
and accuracy and suffered from performance degradation. Deep learning fire detection
techniques have emerged in the past decade, among which YOLO algorithms have aided in
solving the major object detection problems. Development of YOLO’s framework is highly
based on improvements in the upcoming models. From the original YOLOV1 to the latest
YOLOVS algorithms, the model’s performance with key innovations and differences has
evolved to accomplish detection tasks.

Although YOLOv6 and YOLOv7 have their unique features and limitations, they share
some common traits. For instance, they use deep convolutional neural networks as the
backbone architecture, adopt a one-stage object detection paradigm, and employ modern
optimization techniques such as batch normalization and adaptive moment estimation.
However, they also differ in some respects; for example, YOLOv6 and YOLOv7 use anchor-
based prediction and anchor-free prediction, respectively. YOLOV?, on the other hand,
is a more lightweight version of YOLOvV6 that addresses the computational and memory
limitations of YOLOvV®6 [8]. YOLOV7 has shown promising results in fire detection, but
it needs to be trained more accurately for rare situations like a fire in the engines. Its
high accuracy, speed, and ability to detect small objects make it well-suited for the task at
hand. The following are the related state-of-the-art works in the field of fire detection and
object detection.

2.1. Traditional Fire Detection Techniques

A typical fire detection system onboard a ship involves sensors (fire/smoke/heat) and
an alarm panel [9]. Fire detectors are designed to provide a visible and audible alarm on the
vessel to indicate the location of a fire. The detectors throughout the ship are wired to a fire
control panel that provides visual and auditory alerts and possibly alarms in other parts of
the vessel as well. The authors in [10] proposed a ship fire monitoring and alarm system
using CAN bus technology. Some types of detectors may sense a rapid rise in temperature
in a brief period and then alert the ship, while others may detect fires on a visual basis
such as smoke or fire on a camera system to set off said alarm. Traditional fire detection
systems involve the need for physical sensors that require human intervention to confirm
the occurrence of a fire. Several other tools are incorporated with sensing devices to detect
fire, flames, and smoke. However, these detectors are inefficient, as they cannot distinguish
between smoke and fire, thus resulting in false alarm generation.

2.2. Different Fire Detection Methods Using Deep Learning Algorithms

With the growth of Al, numerous research attempts have been made to detect the
presence of fire/smoke in images using machine learning and deep learning models. In
a range of computer-based vision applications, such as visual recognition and image
classification, the introduction of CNNs has resulted in significant performance gains [11].
The convolutional neural network (also known as CNN or ConvNet) is one of the most
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popular deep neural networks in deep learning, especially when it comes to computer
vision applications. It uses a special technique called convolution. In [12], detection of
fire and smoke through images and videos using deep learning algorithms is performed,
including a CNN-based architecture to train a model with many images for a dataset.
Dilated convolutional layers have been built to avoid depth of learning, which means to
learn larger data by ignoring the minute details. Classifying smoke and fire to reduce false
fire alarms is accomplished successfully in this research work. Differentiation between
smoke and fire in images and videos is accomplished by using a dilated CNN to learn the
robustness of features from the scene. The experimental results indicate that the proposed
method performs slightly better than well-known neural network architectures on their
custom dataset. However, the main limitation is that errors occur when pixel values come
closer to those of background and edges or are not detected by the CNN. Because it is a
custom-built dataset, it is computationally expensive. In [13] a deep learning-based fire
detection system called Detection and Temporal Accumulations (DTA) is used that imitates
the human detection process to improve the accuracy of fire detection while reducing
false detections and misinterpretations. The proposed method successfully interprets the
temporal SRoF behaviors and improves the fire detection accuracy. The faster R-CNN
model is used, which can detect multiple objects in a frame. It can detect fire, flames,
and smoke in a frame. Long short-term memory (LSTM) to accumulate the temporal
behaviors and to decide whether there is a fire or not in a short-term period is also used.
In [14], the authors designed a lightweight convolutional neural network for early fire and
smoke detection which successfully achieved competitive accuracy. It uses two satellite
imagery datasets and three smoke-related scene classes, namely, “Smoke”, “Clear”, and
“Other aerosol”. This model needs more improvements, as some of the smoke patches were
misinterpreted as “Clear” or “Other aerosol”, which is troubling for the early prediction of
fires [14].

2.3. Fire Detection Using YOLO (You Only Look Once) Algorithms

In [15], the YOLOV3 algorithm is used for a small-scale flame detection method.
This method was proposed to achieve the detection of different scales of flames using
an improved K-means clustering algorithm. The authors of [16] introduce a fire-YOLO
algorithm. It adds depth-separable convolution to YOLOv4 and helps to reduce the com-
putational costs of the model and improve the perceptual field of the feature layer by
using a cavity convolution method. The authors of [17] proposed a fire detection technique
for urban areas using ELASTIC-YOLOvV3 as an improvement on YOLOV2 to amplify the
performance without introducing more parameters. Traditional fire algorithms, especially
the ones for nocturnal fire detection, suffered from issues like high light intensity, lack of
color information, changes in shapes and sizes of flames, etc., for which more advanced
and improved real-time fire detection and recognition systems came with modified YOLO
algorithms (v4, v5), as proposed in [18,19].

3. Proposed Work
3.1. Fire Dataset Description

To train the model, we collected a diverse range of images of fires from various internet
sources, including some videos to increase the size of dataset. For this purpose, images
obtained from distinct angles, focal lengths, and brightening conditions were utilized in our
dataset to elevate the accuracy of the system. Even after exploring different resources, the
images were not enough for the dataset, so additionally, images from publicly accessible
dataset platforms such as Roboflow and Kaggle were included to broaden the dataset, as
shown in Table 1. The illustration features fire items, flames, and burning displays. The
dataset’s diversity strengthens the model’s ability to generalize unseen or unexpected data
and adapt to changing conditions. Containing both diurnal and nocturnal images, our
dataset reached a total of 4186 images of fires (Figures 1 and 2).
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Table 1. Allocation of fire images in the dataset.

Dataset Size Open-Source Images Video Frames Total

Fire Images 640 x 640 1586 2600 4186

Figure 2. Ships in fire dataset.

Another 436 images of non-fire scenarios were added to expand the diversity of the
dataset for more accurate results. Altogether, the dataset contains 4622 images from both
the fire and non-fire categories (Table 2). They are divided as follows: 70% for training, 10%
for testing, and 20% for validation. For the test dataset, we tried to accumulate as many
realistic images as possible because the fire detection unit must ultimately work in these
situations only. Because our training dataset is already diverse enough, we used these
realistic images for testing purposes only [20].

Table 2. Distribution of fire images in the dataset.

Dataset Training Images  Testing Images  Validation Images Total
Fire 2931 418 837 4186
Non-Fire 306 43 87 436

Due to several circumstances, including a known common component, there is a high
likelihood of overfitting, including a lack of data to adequately capture all potential input
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conditions. Applying data augmentation techniques to expand the training dataset is an
efficient way to combat overfitting. Augmentation includes applying different geometric
transformations and distortions to the images such as scaling, rotation, random crops,
vertical flipping, horizontal flipping, and contrast enhancement to increase the variety of
images for model training and improve the determined accuracy. The size and resolution of
the images directly impact the efficiency of the trained model. In addition, one of the biggest
problems in object detection is different weather conditions or low model performance in
some situations (sun reflection, lack of light, etc.) [21]. Therefore, it is significant to apply
data augmentation techniques to expand the dataset for model training [22-25]. By applying
data augmentation techniques to the images, we perform rotation and scaling on each image,
which doubled the number of obtained images. The aim is to train the model to detect
fires, which requires the use of a large number of fire images to enhance the performance.
Augmenting the data makes it possible for the object detection system to detect and
recognize objects from different perspectives to achieve the maximum performance and
accuracy of the model.

Setting up the original dataset during data collection is followed by data annotations.
It is an important step resulting in efficient performance of the trained model. If the
bounding boxes around the classes of interest were too loosely defined, this could force the
models to generalize on a false assumption. Conversely, very stringent bounding boxes
could result in missing a section of the relevant class, again leading to the risk of false
generalization during training [3]. To surmount these two risks, we used data annotations
based on closed proximity.

3.2. Methodology

YOLO models not only perform object detection and recognition but are also used for
instance segmentation, semantic segmentation, and pose tracking by dividing images into
a grid and creating bounding boxes around predicted probabilities of classes in each cell
of the grid. The evolution of YOLO models is typically based on the accuracy and speed
of the algorithm. The YOLOv7 method has much better performance and has achieved
great success in the 5 FPS-to-160 FPS range, exceeding the speed and accuracy of currently
known target detectors [26].

YOLOV1, the original and earliest YOLO model, was introduced to detect real-time
objects but was lacking in speed and detection of small objects. YOLOv2 helped in achieving
faster inference times with more advanced extraction of features, but anchor boxes were of
the same size for every object. YOLOv3 brought advancement by allowing scaled anchor
boxes for the respective sizes of objects, along with improved speed and accuracy, but
suffered in detecting small objects and had higher memory requirements. With advanced
data augmentation techniques, YOLOv4 brought improvements to maintain real-time
performance. While it is common to compromise on accuracy to improve the speed of a
model, YOLOvV5 came with the aim of maintaining accuracy with an increase in speed by
using advanced techniques of training such as focal loss, label smoothing, and multi-scale
training. YOLOV6 successfully achieved stronger performance against the MS COCO
dataset. It is more efficient than all previous versions of YOLO in terms of accuracy. It has
introduced a new technique to generate boxes called “Dense anchor boxes”.

YOLOV?7, on the other hand, outperforms its predecessors with an efficient backbone
network (E-ELAN) and an improved feature fusion technique (Figure 3). For the detec-
tion and recognition of small objects, YOLOV? is preferrable to YOLOv6 in compound
environments. YOLOV?7 proposed a couple of architecture changes and a series of bag-
of-freebies methods, which increased the accuracy without affecting the inference speed,
only the training time [27]. It combines an attention mechanism and a re-parameterization
convolutional structure [28]. YOLOV? is also inspired by re-parameterized convolutions
(RepConv), just like YOLOV®6. It amalgamates different convolutional modules into a single
inference degree. This technique is split into two categories: the model-level ensemble,
which trains multiple models of the same nature with different training data, and the
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module-level ensemble technique, which has gained more popularity due to its perfor-
mance as a weighted average on the weights of models at various iterations. However,
some of the re-parameterization techniques are architecture-specific, meaning they only
work with specific architectures. YOLOV? is a solution to overcome the previous method’s
drawbacks. It utilizes gradient flow propagation paths for determining the segments
(modules) within the overall model that requires re-parameterization [29].
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Figure 3. E-ELAN final aggregation layer and an extended version of the ELAN computational block.

YOLOvV7 uses an E-ELAN architecture as the backbone of the algorithm. E-ELAN
uses expand, shuffle, and merge cardinality methods to achieve the ability to continu-
ously enhance the learning ability of the network without destroying the original gradient
path [8].

Different models of YOLOv? include YOLOv7, YOLOvV7-W6, YOLOv7-tiny, YOLOv7-
X, YOLOv7-E6, and YOLOv7-D6. YOLOV? is a basic model for ordinary GPU computing.
YOLOV7-W6 is optimized for cloud GPU computing. YOLOv7-tiny is used for edge
GPUs, while YOLOv7(X, E6, D6) are obtained from a compound scaling method. A major
advantage of YOLOV7 over its antecedents is its speed and accuracy, which empower it to
perform object detection more precisely and accurately, as shown in Figure 4. Unlike other
state-of-the-art algorithms, YOLOvV7 processes images at a speed of 155 frames/second,
which is much faster than the earlier versions. It achieves 37.2% as its IoU on the MS COCO
dataset. A comparison between the average precision (AP°’) values of different variants of
YOLOV? using the MS COCO dataset is given in Table 3.
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Figure 4. YOLOV? evaluates in the upper left—faster and more accurate than its peer networks [30].
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Table 3. Different Variants of Yolov7 [31].

Model Test Size AP Test AP50 Test AP75 Test Batch 1 fps Batch 32 Average Time
YOLOv7 640 51.40% 69.70% 55.90% 161 fps 2.8 ms
YOLOvV7-X 640 53.10% 71.20% 57.80% 114 fps 4.3 ms
YOLOvV7-W6 1280 54.90% 72.60% 60.10% 84 fps 7.6 ms
YOLOv7-E6 1280 56.00% 73.50% 61.20% 56 fps 12.3 ms
YOLOv7-D6 1280 56.60% 74.00% 61.80% 44 fps 15.0 ms
YOLOvV7-E6E 1280 56.80% 74.40% 62.10% 36 fps 18.7 ms

3.3. Fire Detection Using YOLOv7

Among various metrics for evaluation such as average precision (AP), F1 scores, recall,
and mADPD, intersection over union (IoU) was used specially to demonstrate YOLOV7’s object
detection capacity. IoU is the measure of the amount of overlap between the detected object
and the ground truth object [32]. The general equation for IoU is given as:

Area of intersection
IoU = -
Area of Union

M

It is standard to use IoU to gain insights about a model’s overall performance in terms
of localization. The YOLOv7 model performs object detection in a single stage. First, it
separates the input image into N grids, all of same size. Every region of the image is
analyzed to detect the classified object. In each grid, objects are predicted with bounding
boxes along with their label and probability score to read the potential object’s presence.
Predicted objects in each grid are overlapped from the increasing predictions of the grid;
thus, redundancy occurs. The YOLO architecture uses a mechanism to predict only objects
of interest, called non-maximal suppression. For this, all those bounding boxes predicted
with low probability scores are suppressed by comparing the decision with those of the
largest probability score. Bounding boxes with largest intersection over union (IoU) with
the highest-probability box are removed. This iteration continues until the desired box of
highest probability is found, as shown in Figure 5.

Detection
Frame
Confidence

Non-Maximum\
Suppression \/

Figure 5. Detection by YOLOV7 using NMS.

Object detection models require knowledge about the depth of the network, width
of the network, and resolution of the trained network. YOLO, along with other object
detection models, uses single-dimensional scale methods with high human adaptation,
which could not scale up a desired dimension without changing the input and output
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channel of a transition layer. However, YOLOv?7, unlike its peers, scales the depth and
width of the network simultaneously while connecting layers together. This mechanism of
YOLOV7 preserves the optimization of the model while scaling for various sizes.

4. Experimental Results and Discussion
4.1. Model Evaluation

We implemented and tested our model using Visual Studio 2022 C++ on our laptop
with a CPU speed of 3.20 Hz, 32 GB RAM, and 3 GPUs. To test our ship fire detection model,
we implemented it in different environments. The dataset was collected using various
resources on internet and annotated in YOLO form. Both the YOLOv6 and YOLOvV7 models
were trained by setting suitable values of different parameters. Pytorch, a deep learning
framework, was used to train the model with Google Colab Pro, an Nvidia A100 GPU,
and 48 GB of memory, and various tests were conducted to validate the performance and
effectiveness of the trained models. There are some metrics, such as accuracy, recall, F1
score, AP, and mADP, that are crucial to determine the validity of models. These are evalu-
ation parameters in object detection processes. Accuracy is the closeness of a quantity’s
measurement value to its actual value. The ratio of true positives (TP) to all predicted
positives is precision. Recall is the ratio of true positives (TP) to all ground truths. F1 score
is calculated as the harmonic mean of the precision and recall values [33], which indicates
better target detection accuracy [34]. The F1 score ranges between 0 and 1, with a higher
value indicating better model performance, as detailed in these papers [35-40].

Aceur B TP + TN 2)
I = TP T IN + FP + EN
.. P
Precision = TP+ FP 3)
TP
Recall = TP+ EN (4)
M — 2 X precision X recall 5)

precision + recall

TP, TN, FP, and FN are terminologies used to represent the outcomes of a classification
model’s predictions compared to the ground truth labels. A true positive (TP) is the number
of pixels belonging to a fire detected as positive by the model which the ground truth also
labels as positive. A true negative (TN) is the number of pixels belonging to a non-fire
detected as negative by the model which the ground truth also labels as negative. A false
positive (FP) is the number of pixels classified as a fire detected as positive by the model
but which the ground truth labels as negative. A false negative (FN) is the number of pixels
classified as a non-fire detected as negative by the model but which the ground truth labels
as positive (Table 4).

Table 4. Showing predicted vs. original labels.

Terminology Ground Truth Predicted
P Positive Positive
FN Positive Negative
FpP Negative Positive
P Negative Negative

The mAP is the mean AP used to measure the general detection accuracy of the
target detection algorithm. In summary, for the YOLO algorithm, the AP and mAP are
the best metrics to measure the detection accuracy of the model [41] as shown in Table 5.
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Figure 6 shows model evaluation matrices curves. Mean average precision can be described
as follows:

1
mAPi = / Pi Ri dRi ©)
0

Table 5. The result of the model validation matrices.

Acc (%) p (%) R (%) FM (%) mAP50 (%)
0.93 0.94 0.93 0.93 0.81
train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
0.9
18 —e— results
2.5 1.6 0.9
1.6 0.8
2.0
14 14 0.8
15 0.7
1.2
12 0.7
1.0
1.0 0.6
0.6
0.8 0.5 1.0
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
1.8 18 18 09 06
1.7 1.6
15 05 05
1.6 14
0.7
15 12 14 0.4
1.0 08
14 : 13
08 : 05 0.3
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure 6. Model evaluation matrices curves.

4.2. Analysis by Experiment

The experimental objective was to estimate the performance and concreteness of the
system in effectively detecting fires on a ship by consolidating safety and early response
abilities. To elevate the system’s robustness and reliability, experiments were conducted in
various defined conditions. We used a dataset of distinctive images of fires and flames from
different sources, including publicly available datasets. The dataset was then annotated
with bounding boxes, and labels were added. A high-performance platform along with
an appropriate GPU was used for training. The evaluation of the model depends upon
several performance metrics to measure the predicted probabilities correctly. These include
precision, recall, F1 score, and accuracy to evaluate the overall detection performance.

Our fire detection system has achieved a precision of 94%. This implies that 94% of
fire instances were indeed actual fires, minimizing the rate of false positives lowering the
chances of false alerts and alarms. The recall factor of the system was found to be 90%,
implying that the system is sensitive enough to recognize and detect fires. The F1 score
of the system is estimated to be 86%, which shows a balanced trade-off between the recall
and precision, resulting in the overall efficiency of the system in detecting true fires. The
proposed fire detection system accomplished an accuracy of 93%, which indicates that fire
instances are detected correctly by the system in the test dataset. The experimental results
indicate that the fire detection system for ships utilizing the YOLOv7 model performed
effectively in detecting fires on ships. The high accuracy, precision, and recall values sum
up the system’s robustness and reliability in identifying fire and flames. The obtained F1
score further clarifies the model’s accurate detection of fires. The precision—confidence
curve is shown below in Figure 7.
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Figure 7. Precision—confidence curve of our model.

The precision-confidence curve indicates the confidence score at each precision value.
The above plot visually represents variations in precision of the detected fires with respect
to confidence threshold set for fire detection. When the confidence threshold is set to as low
as 0.1, the precision obtained for our model is 0.94, which illustrates that the detection of
true positives is relatively high, and the system is efficient enough in detecting actual fires.

4.3. Performance of Model in Varying Ambient Lighting

The system is tested in real-world scenarios with varying light conditions. The model
is not only trained for daylight fire detection, but is also trained for situations where
the lighting is comparatively darker. Hence, through experiments, the system responds
well, performing in both day and night lighting conditions, which makes it more reliable.
Figures 8 and 9 illustrate fire detection in different lighting conditions.

Original: Yolové Yolov7 |

Figure 8. Results of fire detection system for day images.
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Figure 9. Results of fire detection system for night images.

4.4. Discussion

The success of the novel system is due to the YOLOv7 model’s ability to localize
fires and differentiate between fire and non-fire objects. The contribution of deep learning
techniques united with the diverse dataset of 4622 images of 640 x 640 size has an imme-
diate impact on the system’s strong implementation. It is worth noting that a system’s
efficiency and performance may vary in various conditions such as lighting variations,
smoke, variable sensitive environmental factors, and obstruction. Compared to other YOLO
models, YOLOvV7 has given higher-class results in detecting fires in bright and dark lighting,
recognizing small fires and flames, and distinguishing fire and non-fire scenarios. The early
detection of fires in ships is now improved with the proposed YOLOvV? system in real time.

Depending on weather, reflection, darkness, and sunlight, actual ship fire images can
be dark and blurred. Table 6 compares the recently published fire detection methods with
the proposed method.

Table 6. Quantitative results of fire detection.

Algorithm p (%) R (%) FM (%) Average (%)
Dilated CNNs [12] 98.9 97.4 98.2 98.1
Detectron3 [20] 99.3 99.4 99.5 98.9
LCNN [42] 98.7 94.5 97.2 98.5
AlexNet [43] 733 61.3 75.1 69.9
Faster R-CNN [44] 81.7 94.5 87.2 87.8
Proposed Method 94.3 93.4 94.5 94.1

5. Limitations

This research study proposed a fire detection system for ships utilizing the YOLOv7
algorithm which exhibits high performance and accuracy in the detection of ship fires.
However, there are some limitations of the proposed strategy which bound its performance.
It was observed during experimentation that some of the images containing fire-like objects
were recognized as fire. If an image contains bright sunlight, intense yellowish red lights,
or fire-like bulbs, then it will be detected as a fire, as shown in Figure 10. Moreover, the
model detects red light with high illuminance as fire. These issues could be resolved by
expanding the size of the dataset. We aim to retrain our model with a more diverse dataset
to overcome these issues [45-47].
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Figure 10. Detection of fire-like bulb as fire.

6. Conclusions

In conclusion, this study proposed an improved and faster version of a fire detection
system for ships using the YOLOV? architecture. The thorough experiments and evaluation
of the system demonstrate that the proposed system is highly efficient in detecting real-
time fires in challenging environments. Our system’s methodology comprises collecting
a dataset with vast number of images of various fire scenarios and preprocessing of the
collected dataset, which includes data augmentation techniques and model training. The
evaluation of the model is compared with existing fire detection systems, and the results
indicate that YOLOV? exhibited high accuracy and ability to detect fires.

The obtained mAP indicates that the achieved performance of our trained model, using
the YOLOV?7 architecture, is highly effective and can be utilized for detecting real-time
fires in maritime environments. Implementation of this model provides timely responses,
allowing the mitigation of fires before they escalate. There is a significant contribution of
YOLOV7 in leveraging the power of deep learning techniques to timely classify fire instances
and prevent fire expansion. YOLOV7 outperforms its peers in small-target detections and
escalated our model’s capability of detecting minor fires.

Despite being able to minimize the risks of potential hazards and detecting fires at
early stages, there are still areas of improvement. Our proposed system suffers in detecting
fire smoke and lacks in detection of fire when there is a comparatively low level of ambient
light. Future work on our model could emphasize broadening the dataset and including
more images of fire scenarios and other fire-related factors to enhance the adaptivity of the
model in various environments. Moreover, smoke detection by the system can be added to
expand the implementation areas of the model.

Author Contributions: Conceptualization, K.A. and A.B.A.; formal analysis, M.K.J. and A.B.A;
algorithms: M.K.J. and B.M.; funding acquisition, Y.-1.C.; investigation, M.K.J. and B.M.; methodology,
M.KJ. and K.A.; project administration, B.M.; software, M.K.].; supervision, Y.-1.C.; validation, M.K.J.;
writing—original draft, M.K.J. and A.B.A.; writing—review and editing, M.K.J., AB.A. and Y.-1.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by Korea Agency for Technology and Standards in 2022, project
numbers are K_G012002234001, Korea Institute of Marine Science & Technology Promotion (KIMST)
funded by the Ministry of Oceans and Fisheries (G22202202102201) and by the Gachon University
research fund of 2021 (GCU-202106340001).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their sincere gratitude and appreciation to
their supervisor, Young-Im Cho (Gachon University), for her support, comments, remarks, and
engagement over the period in which this manuscript was written. Moreover, the authors would
like to thank the editor and anonymous referees for their constructive comments on improving the
content and presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 7078 14 of 15

References

1. Safarov, E; Kutlimuratov, A.; Abdusalomov, A.B.; Nasimov, R.; Cho, Y.-I. Deep Learning Recommendations of E-Education Based
on Clustering and Sequence. Electronics 2023, 12, 809. [CrossRef]

2. Kim, D.; Ruy, W. CNN-based fire detection method on autonomous ships using composite channels composed of RGB and IR
data. Int. ]. Nav. Archit. Ocean. Eng. 2022, 14, 100489. [CrossRef]

3. Truong, C.T.; Nguyen, TH.; Vu, V.Q.; Do, VH.; Nguyen, D.T. Enhancing Fire Detection Technology: A UV-Based System Utilizing
Fourier Spectrum Analysis for Reliable and Accurate Fire Detection. Appl. Sci. 2023, 13, 7845. [CrossRef]

4. Norkobil Saydirasulovich, S.; Abdusalomov, A.; Jamil, M.K.; Nasimov, R.; Kozhamzharova, D.; Cho, Y.-I. A YOLOv6-Based
Improved Fire Detection Approach for Smart City Environments. Sensors 2023, 23, 3161. [CrossRef]

5. Sadewa, R.P; Irawan, B.; Setianingsih, C. Fire Detection Using Image Processing Techniques with Convolutional Neural
Networks. In Proceedings of the 2019 International Seminar on Research of Information Technology and Intelligent Systems
(ISRITI), Yogyakarta, Indonesia, 5-6 December 2019; pp. 290-295. [CrossRef]

6. Muhammad, K.; Ahmad, J.; Mehmood, I.; Rho, S.; Baik, S.W. Convolutional neural networks-based fire detection in surveillance
videos. IEEE Access 2018, 6, 18174-18183. [CrossRef]

7. Abdusalomov, A.; Baratov, N.; Kutlimuratov, A.; Whangbo, TK. An improvement of the fire detection and classification method
using YOLOV3 for surveillance systems. Sensors 2021, 21, 6519. [CrossRef]

8.  Wang, C.-Y,; Bochkovskiy, A.; Liao, H.-Y.M. YOLOvV7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696.

9.  Barmpoutis, P; Stathaki, T.; Dimitropoulos, K.; Grammalidis, N. Early Fire Detection Based on Aerial 360-Degree Sensors, Deep
Convolution Neural Networks and Exploitation of Fire Dynamic Textures. Remote Sens. 2020, 12, 3177. [CrossRef]

10. Sun, S.; Gu, Y.; Ren, M. Fine-Grained Ship Recognition from the Horizontal View Based on Domain Adaptation. Sensors 2022,
22,3243. [CrossRef]

11.  Sathishkumar, V.E.; Cho, J.; Subramanian, M.; Naren, O.S. Forest fire and smoke detection using deep learning-based learning
without forgetting. Fire Ecol. 2023, 19, 9. [CrossRef]

12.  Valikhujaev, Y.; Abdusalomov, A.; Cho, Y.I. Automatic fire and smoke detection method for surveillance systems based on dilated
CNNs. Atmosphere 2020, 11, 1241. [CrossRef]

13. Kim, B; Lee, J. A video-based fire detection using deep learning models. Appl. Sci. 2019, 9, 2862. [CrossRef]

14. Zhao, L.; Liu, J.; Peters, S.; Li, J.; Oliver, S.; Mueller, N. Investigating the Impact of Using IR Bands on Early Fire Smoke Detection
from Landsat Imagery with a Lightweight CNN Model. Remote Sens. 2022, 14, 3047. [CrossRef]

15.  Zhao, Y.Y,; Zhu, J.; Xie, YK; Li, W.L.; Guo, Y.K. Improved Yolo-v3 Video Image Flame Real-Time Detection Algorithm. |. Wuhan
Univ. Inf. Sci. Ed. 2021, 46, 326-334.

16. Avazov, K.; Mukhiddinov, M.; Makhmudov, F.; Cho, Y.I. Fire Detection Method in Smart City Environments Using a Deep-
Learning-Based Approach. Electronics 2022, 11, 73. [CrossRef]

17.  Park, M.; Ko, B.C. Two-Step Real-Time Night-Time Fire Detection in an Urban Environment Using Static ELASTIC-YOLOv3 and
Temporal Fire-Tube. Sensors 2020, 20, 2202. [CrossRef]

18.  Mukhiddinov, M.; Abdusalomov, A.B.; Cho, ]. Automatic Fire Detection and Notification System Based on Improved YOLOV4 for
the Blind and Visually Impaired. Sensors 2022, 22, 3307. [CrossRef]

19. Mukhiddinov, M.; Abdusalomov, A.B.; Cho, J. A Wildfire Smoke Detection System Using Unmanned Aerial Vehicle Images Based
on the Optimized YOLOVS5. Sensors 2022, 22, 9384. [CrossRef]

20. Abdusalomov, A.B.; Islam, B.M.S.; Nasimov, R.; Mukhiddinov, M.; Whangbo, T.K. An Improved Forest Fire Detection Method
Based on the Detectron2 Model and a Deep Learning Approach. Sensors 2023, 23, 1512. [CrossRef]

21. Al-Smadi, Y,; Alauthman, M.; Al-Qerem, A.; Aldweesh, A.; Quaddoura, R.; Aburub, F,; Mansour, K.; Alhmiedat, T. Early Wildfire
Smoke Detection Using Different YOLO Models. Machines 2023, 11, 246. [CrossRef]

22. Jadon, A.; Omama, M.; Varshney, A.; Ansari, M.S.; Sharma, R. FireNet: A specialized lightweight fire & smoke detection model
for real-time IoT applications. arXiv 2019, arXiv:1905.11922.

23.  Abdusalomov, A.; Mukhiddinov, M.; Djuraev, O.; Khamdamov, U.; Whangbo, T.K. Automatic Salient Object Extraction Based on
Locally Adaptive Thresholding to Generate Tactile Graphics. Appl. Sci. 2020, 10, 3350. [CrossRef]

24. Abdusalomov, A.; Whangbo, T.K. Detection and Removal of Moving Object Shadows Using Geometry and Color Information for
Indoor Video Streams. Appl. Sci. 2019, 9, 5165. [CrossRef]

25. Abdusalomov, A.; Whangbo, TK. An Improvement for the Foreground Recognition Method using Shadow Removal Technique
for Indoor Environments. Int. J. Wavelets Multiresolut. Inf. Process. 2017, 15, 1750039. [CrossRef]

26. Du, H.;; Zhu, W,; Peng, K,; Li, W. Improved High Speed Flame Detection Method Based on YOLOvV?7. Open |. Appl. Sci. 2022, 12,
2004-2018. [CrossRef]

27. Terven, J.; Cordova-Esparza, D. A Comprehensive Review of YOLO: From YOLOv1 to YOLOvVS8 and Beyond. arXiv 2023,
arXiv:2304.00501.

28. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022; pp. 11976-11986.

29. Hussain, M.; Al-Aqgrabi, H.; Munawar, M.; Hill, R.; Alsboui, T. Domain Feature Mapping with YOLOv7for Automated Edge-Based

Pallet Racking Inspections. Sensors 2022, 22, 6927. [CrossRef]


https://doi.org/10.3390/electronics12040809
https://doi.org/10.1016/j.ijnaoe.2022.100489
https://doi.org/10.3390/app13137845
https://doi.org/10.3390/s23063161
https://doi.org/10.1109/ISRITI48646.2019.9034642
https://doi.org/10.1109/ACCESS.2018.2812835
https://doi.org/10.3390/s21196519
https://doi.org/10.3390/rs12193177
https://doi.org/10.3390/s22093243
https://doi.org/10.1186/s42408-022-00165-0
https://doi.org/10.3390/atmos11111241
https://doi.org/10.3390/app9142862
https://doi.org/10.3390/rs14133047
https://doi.org/10.3390/electronics11010073
https://doi.org/10.3390/s20082202
https://doi.org/10.3390/s22093307
https://doi.org/10.3390/s22239384
https://doi.org/10.3390/s23031512
https://doi.org/10.3390/machines11020246
https://doi.org/10.3390/app10103350
https://doi.org/10.3390/app9235165
https://doi.org/10.1142/S0219691317500394
https://doi.org/10.4236/ojapps.2022.1212140
https://doi.org/10.3390/s22186927

Sensors 2023, 23, 7078 15 of 15

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Zhang, L.; Du, X,; Zhang, R.; Zhang, ]. A Lightweight Detection Algorithm for Unmanned Surface Vehicles Based on Multi-Scale
Feature Fusion. J. Mar. Sci. Eng. 2023, 11, 1392. [CrossRef]

Boesch, G. YOLOV7: The Most Powerful Object Detection Algorithm (2023 Guide). Available online: https://viso.ai/deep-
learning /yolov7-guide/ (accessed on 15 May 2023).

Yandouzi, M.; Grari, M.; Berrahal, M.; Idrissi, I.; Moussaoui, O.; Azizi, M.; Ghoumid, K.; Elmiad, A K. Investigation of Combining
Deep Learning Object Recognition with Drones for Forest Fire Detection and Monitoring. Int. J. Adv. Comput. Sci. Appl. 2023, 14,
377-384. [CrossRef]

Kaya, O.; Codur, M.Y,; Mustafaraj, E. Automatic Detection of Pedestrian Crosswalk with Faster R-CNNandYOLOV?7. Buildings
2023, 13, 1070. [CrossRef]

Liu, S.; Wang, Y.; Yu, Q.; Liu, H.; Peng, Z. CEAM-YOLOV?: Improved YOLOv7 Based on Channel Expansion and Attention
Mechanism for Driver Distraction Behavior Detection. IEEE Access 2022, 10, 129116-129124. [CrossRef]

Abdusalomov, A.B.; Nasimov, R.; Nasimova, N.; Muminov, B.; Whangbo, T.K. Evaluating Synthetic Medical Images Using
Artificial Intelligence with the GAN Algorithm. Sensors 2023, 23, 3440. [CrossRef] [PubMed]

Mamieva, D.; Abdusalomov, A.B.; Kutlimuratov, A.; Muminov, B.; Whangbo, T.K. Multimodal Emotion Detection via Attention-
Based Fusion of Extracted Facial and Speech Features. Sensors 2023, 23, 5475. [CrossRef] [PubMed]

Safarov, F.; Temurbek, K.; Jamoljon, D.; Temur, O.; Chedjou, J.C.; Abdusalomov, A.B.; Cho, Y.-I. Improved Agricultural Field
Segmentation in Satellite Imagery Using TL-ResUNet Architecture. Sensors 2022, 22, 9784. [CrossRef]

Mamieva, D.; Abdusalomov, A.B.; Mukhiddinov, M.; Whangbo, T.K. Improved Face Detection Method via Learning Small Faces
on Hard Images Based on a Deep Learning Approach. Sensors 2023, 23, 502. [CrossRef]

Abdusalomov, A.B.; Safarov, F; Rakhimov, M.; Turaev, B.; Whangbo, T.K. Improved Feature Parameter Extraction from Speech
Signals Using Machine Learning Algorithm. Sensors 2022, 22, 8122. [CrossRef]

Farkhod, A.; Abdusalomov, A.B.; Mukhiddinov, M.; Cho, Y.-I. Development of Real-Time Landmark-Based Emotion Recognition
CNN for Masked Faces. Sensors 2022, 22, 8704. [CrossRef]

Abdusalomov, A.B.; Mukhiddinov, M.; Kutlimuratov, A.; Whangbo, T.K. Improved Real-Time Fire Warning System Based on
Advanced Technologies for Visually Impaired People. Sensors 2022, 22, 7305. [CrossRef]

Wu, H; Hu, Y.,; Wang, W.; Mei, X.; Xian, J. Ship Fire Detection Based on an Improved YOLO Algorithm with a Lightweight
Convolutional Neural Network Model. Sensors 2022, 22, 7420. [CrossRef]

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates Inc.: Red
Hook, NY, USA, 2012; pp. 1097-1105.

Wu, S.; Zhang, L. Using popular object detection methods for real time forest fire detection. In Proceedings of the 11th International
Symposium on Computational Intelligence and Design (SCID), Hangzhou, China, 8-9 December 2018; pp. 280-284.

Avazov, K,; Hyun, A.E.; Sami S, A.A.; Khaitov, A.; Abdusalomov, A.B.; Cho, Y.I. Forest Fire Detection and Notification Method
Based on Al and IoT Approaches. Future Internet 2023, 15, 61. [CrossRef]

Avazov, K.; Abdusalomov, A.; Cho, Y.I. Automatic Moving Shadow Detection and Removal Method for Smart City Environments.
J. Korean Inst. Intell. Syst. 2020, 30, 181-188. [CrossRef]

Safarov, F.; Akhmedov, F.; Abdusalomov, A.B.; Nasimov, R.; Cho, Y.I. Real-Time Deep Learning-Based Drowsiness Detection:
Leveraging Computer-Vision and Eye-Blink Analyses for Enhanced Road Safety. Sensors 2023, 23, 6459. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/jmse11071392
https://viso.ai/deep-learning/yolov7-guide/
https://viso.ai/deep-learning/yolov7-guide/
https://doi.org/10.14569/IJACSA.2023.0140342
https://doi.org/10.3390/buildings13041070
https://doi.org/10.1109/ACCESS.2022.3228331
https://doi.org/10.3390/s23073440
https://www.ncbi.nlm.nih.gov/pubmed/37050503
https://doi.org/10.3390/s23125475
https://www.ncbi.nlm.nih.gov/pubmed/37420642
https://doi.org/10.3390/s22249784
https://doi.org/10.3390/s23010502
https://doi.org/10.3390/s22218122
https://doi.org/10.3390/s22228704
https://doi.org/10.3390/s22197305
https://doi.org/10.3390/s22197420
https://doi.org/10.3390/fi15020061
https://doi.org/10.5391/JKIIS.2020.30.3.181
https://doi.org/10.3390/s23146459

	Introduction 
	Related Work 
	Traditional Fire Detection Techniques 
	Different Fire Detection Methods Using Deep Learning Algorithms 
	Fire Detection Using YOLO (You Only Look Once) Algorithms 

	Proposed Work 
	Fire Dataset Description 
	Methodology 
	Fire Detection Using YOLOv7 

	Experimental Results and Discussion 
	Model Evaluation 
	Analysis by Experiment 
	Performance of Model in Varying Ambient Lighting 
	Discussion 

	Limitations 
	Conclusions 
	References

