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Abstract: Harmonic and interharmonic content in power system signals is increasing with the
development of renewable energy generation and power electronic devices. These multiple signal
components can seriously degrade power quality, trip thermal generators, cause oscillations, and
threaten system stability, especially the interharmonic tones with positive damping factors. The first
step to mitigate these adverse effects is to accurately and quickly monitor signal features, including
frequency, damping factor, amplitude, and phase. This paper proposes a concise and robust index to
identify the number of modes present in the signal using the singular values of the Hankel matrix and
discusses the scope of its application by testing the influence of various factors. Next, the simplified
matrix pencil theory is employed to estimate the signal component frequency and damping factor.
Then their estimates are considered in the modified least-squares algorithm to extract the wideband
multi-component phasors accurately. Finally, this paper designs a series of scenarios considering
varying signal frequency, damping factor, amplitude, and phase to test the proposed algorithm
thoroughly. The results verify that the proposed method can achieve a maximum total vector error of
less than 1.5%, which is more accurate than existing phasor estimators in various signal environments.
The high accuracy of the proposed method is because it considers both the estimation of the frequency
number and the effect of signal damping.

Keywords: damping factor; least squares; matrix pencil; phasor measurement unit; singular value
decomposition; wideband multi-component signal

1. Introduction
1.1. Background and Motivations

The diffusion of renewable energy generation has promoted the widespread use of
power electronic devices, but also introduced harmonic and interharmonic tones into the
power system signal and resulted in oscillation events. For example, 20 to 30 Hz oscillations
with a non-zero damping factor were found in a radial connection between wind turbines
and series capacitors [1], and 26.3 Hz oscillations with positive damping were captured
in a grid-connected permanent magnet synchronous generator [2]. Higher-frequency
oscillations, e.g., 250–350 Hz oscillations, were observed in the BorWin1 offshore wind farm
in Germany [3], and interharmonics in the range of about 1.7–2.0 kHz were also found
in several grid-connected inverters [4]. As a result, the difficulty of measuring phasors
under power system signals over a wide frequency range of 10–2000 Hz with multi-tone
and non-zero damping factors increases dramatically [5].

In addition to causing oscillations, the multiple harmonic and interharmonic tones can
also degrade power quality, trip thermal power generators, and damage armatures and
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insulators [6,7]. The accurate estimation of these signal component characteristics is a key
point to mitigate these negative effects effectively [6]. In addition, the accurate estimation
of wideband multi-component phasors is beneficial for developing co-simulations of large
power systems [8], for obtaining accurate distribution topology [9], for identifying sub-
synchronous control interaction sources [10], etc. To conclude, the accurate measurement
of these signal component characteristics is vital to ensure the stable operation of power
systems.

1.2. Literature Review

Wideband multi-component phasors contain fundamental, harmonic, and interhar-
monic tones according to different frequencies. Among these phasors, the study of al-
gorithms for measuring only the fundamental phasor is the most mature, including the
international standard [11] and many estimators based on discrete Fourier transform
(DFT) [12–17], least squares (LS) [18–24], etc. By extending the signal model, these funda-
mental phasor estimators can be developed to measure harmonic phasors, such as [25–33].
However, with the increase in interharmonic tones, the estimation error will significantly
increase when using these algorithms to extract fundamental or harmonic phasors from
signal samples. In contrast, the measurement of interharmonic phasors is more difficult
due to the randomness of the number and frequency, and the non-zero damping factor of
the tones in the measured signal.

There are some algorithms that try to estimate interharmonic parameters from phasor
measurement unit (PMU) data. For example, classical fast Fourier transform (FFT) has
been employed to analyze spectral PMU data in the second-level time window, and to
obtain the amplitude of sub-/super-synchronous oscillations [34]. An interpolated DFT
using 200 nominal cycles of synchrophasor data was applied to obtain the sub-synchronous
frequency, damping factor, and amplitude [35]. An entropy function based on the upper and
lower envelopes of PMU data was maximized to determine whether there was a 5–45 Hz
oscillation. For data that may contain interharmonics, DFT analysis was applied to calculate
their amplitudes using a window length of several seconds [36]. However, these algorithms
typically tend to have a long response latency, and cannot estimate the interharmonic phase
and high-frequency oscillation parameters. In addition, the interharmonic energy in PMU
data is attenuated by synchrophasor algorithms [37].

Recently, another idea has been proposed to extract wideband multi-component
phasors directly from sampled signals. In such cases, it is necessary to accurately identify
the number and frequency of the modes in the measured signal. By improving the frequency
resolution of DFT to 1 Hz [37,38], some methods detected harmonics above 5% of the
fundamental amplitude and extracted the fundamental and harmonic phasors by infinite
impulse response filters. Then, oscillation phasors in the range of 0–100 Hz were calculated
based on the fundamental phasor. In addition, DFT and the least-squares algorithm
were combined to realize multi-tone spectrum separation and measurement under a ten-
nominal-cycle window [39]. The matrix pencil was used in the Hankel matrix [40] or the
autocorrelation matrix [41–43] to obtain the number and frequency of different components.
With the estimated component frequencies, the bandpass filter banks were designed by the
LS algorithm to obtain the amplitude and phase of all components [44]. These methods
have the merits of high estimation accuracy and a short time window. However, the
reliability of the application requires further investigation, as the performance may be
affected by whether the number of modes in the signal has been sufficiently identified. In
addition, most of the above methods do not consider the effect of non-zero attenuation. As
a result, the estimation accuracy of these algorithms may be degraded in complex signal
environments.
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1.3. Summary of Contributions

The critical point for accurate wideband multi-component phasor estimation is to
reduce the influence of random signal component number and non-zero damping oscilla-
tions. Then, this paper proposes a wideband multi-component phasor estimator (WMPE).
The proposal mainly includes presenting a concise and robust index to identify the signal
component number, using the matrix pencil theory to obtain the signal component fre-
quency and damping factor, and finally applying a modified LS algorithm that considers
signal damping to estimate the phasors accurately. Compared to other existing works, the
main contributions of this paper include the following.

(1) A concise index and criterion for identifying the number of modes in the measured
signal with a non-zero damping factor is proposed. It is found to be more robust than
the existing index, and its applicability is analyzed by testing the influence of various
factors.

(2) The signal damping factor is taken into account by the proposed WMPE algorithm,
and thus the multiple phasors in the measured signal can be accurately estimated,
even if the signal includes fundamental, multi-harmonic, and multi-interharmonic
tones; covers the frequency range of 10–2000 Hz; and has non-zero damping factors.

(3) Several test scenarios are designed according to synchrophasor standards and litera-
ture studies on wideband phasor measurement. The test signals include wideband
multi-components with different damping factors, noise, amplitudes or phase modu-
lations, frequency deviations or ramps, and different interharmonic frequencies and
transient changes. The test results confirm that the proposed method can accurately
estimate wideband multi-component phasors, and has a short response time in these
complex signal environments.

2. The Complete Process of the Proposed WMPE Algorithm

This section proposes the WMPE algorithm to realize phasor extraction from signals
containing interharmonic tones. It includes three steps: signal component number iden-
tification, signal component frequency and damping factor estimation, and wideband
multi-component phasor extraction. The first step proposes a robust index to identify the
signal component number. Then, the methods in the last two steps take the signal damping
factor into account. These two points are critical to improving the accuracy of estimating
wideband multi-component phasors.

2.1. The Proposed Index for Identifying Signal Component Number

In this part, based on the singular value decomposition (SVD) of the Hankel matrix, an
index is proposed to obtain the number of signal components from the noisy samples [44].
It starts with the dynamic voltage or current signal x(t) with the following model as

x(t) =
M

∑
i=1

si(t) + w(t) =
M

∑
i=1

ai(t)eαit cos(2π fit + φi(t)) + w(t), (1)

where M is the number of the signal component si(t), which denotes the fundamental,
harmonic, or interharmonic tone; w(t) is the noise; and ai(t), αi, fi, and φi(t) denote the
amplitude, damping factor, frequency, and phase of the component si(t). Two of these
parameters form the phasor pi(t) = ai(t)ejφi(t) to be estimated. Before doing so, the number
of signal components must first be identified, which in this paper is obtained from the
SVD of the Hankel matrix. When the signal x(t) is sampled with frequency fs, the Hankel
matrix is composed of N = 2Nh + 1 signal samples x(−NhTs) · · · , x(NhTs) (the sampling
interval Ts = 1/ fs) in a data window Tw, i.e.,
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X =


x(−NhTs) x((−Nh + 1)Ts) · · · x((−Nh + L)Ts)

x((−Nh + 1)Ts) x((−Nh + 2)Ts) · · · x((−Nh + L + 1)Ts)
...

...
. . .

...
x((Nh − L)Ts) x((Nh − L + 1)Ts)· · · x(NhTs)

, (2)

where the parameter L is used to adjust the dimension of the matrix X, and is recommended
to choose L ∈ [N/3, 2N/3] to have a good suppression of noise in what follows [41].

Then, the matrix X is decomposed by the SVD [40] as

X = UΣVT, (3)

where the left singular matrix U ∈ R(N−L)×(N−L) and the right singular matrix
V ∈ R(L+1)×(L+1) are orthogonal matrices; their column vectors are ui, vj (1 ≤ i ≤ (N− L),
1 ≤ j ≤ (L + 1)), respectively; the matrix Σ ∈ R(N−L)×(L+1) is composed of singular values
σi in the diagonal and zero in other places (1 ≤ i ≤ B, B = min{(N − L), (L + 1)}, where
min{a, b} denotes the smaller one between a and b); and YT represents the transpose of the
matrix Y. Based on the singular values arranged in a non-increasing form, the following
index Gk and the corresponding criterion are presented to obtain the signal component
number M, i.e.,

Gk = (σ2k+3 + σ2k+4)/(σ2k+1 + σ2k+2), 0 ≤ k ≤ bB/2c − 1,

M̂ = kGmin + 1,
(4)

where kGmin means the location of the minimum Gk, b·c denotes the round-down operation,
and Ŷ represents the estimate of Y. Note that each cosine or sine signal corresponds to
two singular values, and the magnitude of the singular value is positively related to the
component amplitude or noise intensity [45,46]. Then, the singular values of one signal
component are close to those of another signal component, and the singular values of the
noise are about the same amount; that is, the signal component produces larger singular
values than the noise for having a larger amplitude. Therefore, the ratio index Gk has a
minimum value when the numerator is singular values for noise and the denominator is
singular values for signal components. The proposed index and criterion are proved to
be more robust than those of [44] in Appendix A, and require only 1/4 the computation
amount of those in [44].

Equation (4) shows that the performance of the proposed index is closely related to
the number and quantitative ratio of singular values of the Hankel matrix. In the following,
the influence of various factors on the reliability and robustness of the proposed index
and the criterion for determining the scope of application is discussed. The first type
of factors includes different damping ratios, signal component amplitudes, and noise
intensities, which can affect the quantitative relationship of singular values and thus the
accuracy of the proposed criterion. Sampling frequency and time window length belong to
another category and will affect the number of singular values and the signal components
available for estimation. Then, five tests are designed to explore the influences of the
above five factors, referring to [1,11,47] to set the test signal parameters in (5). The general
settings include the nominal frequency f0 = 50 Hz; the fundamental tone has amplitude
A1 = 1 p.u., frequency f1 = f0, and phase φ1 randomly chosen in [−π, π]; the harmonics
have amplitudes Ah = 0.1 p.u., frequencies fh = h f0, phases φh ∈ [−π, π], and maximum
harmonic order H = fs/2/ f0 − 1; the interharmonic tones have phases φi ∈ [−π, π]; and
the dimension parameter L = Nh has good noise immunity [41].

x(t) =
H

∑
h=1

Aheαht cos(2π fht + φh) +
Mi

∑
i=1

Aieαit cos(2π fit + φi) + w(t). (5)
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Moreover, in each test, only one of the five factors changes, and the others remain
unchanged as follows:

• T1: The damping ratios for all signal components, i.e., αh and αi, increase from
−1 to 1 with a step of 0.2; the interharmonic amplitudes Ai = 0.1 p.u., frequencies
fi = 47 + 100(i− 1), and number Mi = 50; the signal-to-noise ratio (SNR) is 60 dB;
the sampling frequency fs = 10 kHz; and the time window Tw = 3/ f0. Then, this
test signal contains a total of 149 signal components, i.e., the maximum component
number bB/2c in (4), and the minimum frequency interval is only 3 Hz.

• T2: The interharmonic tones have amplitudes Ai ∈ [0.02, 0.2]p.u. with a step of
0.02 p.u.; frequencies fi = 47 + 100(i− 1), and number Mi = 50; the damping ratios
αh = 1 and αi = 1; the SNR is 60 dB; the sampling frequency fs = 10 kHz; and the
time window Tw = 3/ f0.

• T3: The SNR changes from 50 dB to 80 dB in a step of 5 dB; the damping ratios αh = 1
and αi = 1; the interharmonic tones have amplitudes Ai = 0.1 p.u., frequencies
fi = 47 + 100(i− 1), and number Mi = 50; the sampling frequency fs = 10 kHz; and
the time window Tw = 3/ f0.

• T4: The sampling frequency fs increases from 5 kHz to 10 kHz with a step 1 kHz;
the damping ratios αh = 1 and αi = 1; the interharmonic tones have amplitudes
Ai = 0.1 p.u., frequencies fi = 47 + 100(i− 1), and number Mi = fs/(4 f0); the SNR
is 60 dB; and the time window Tw = 3/ f0.

• T5: The time window length c = Tw · f0 changes from 2 to 7 in a step of 1; the damping
ratios αh = 1 and αi = 1; the interharmonic tones have amplitudes Ai = 0.1 p.u.,
frequencies fi = fb + 100(i − 1), 1 ≤ i ≤ 50, fb traverses {47}, {47, 70}, {20, 47, 70},
{20, 47, 70, 90}, and {10, 30, 47, 70, 90} for c = 3, 4, 5, 6, 7, respectively, and number
Mi = 50(c− 2), i.e., the signal contains no interharmonic when c = 2; the SNR is 60 dB;
and the sampling frequency fs = 10 kHz.

Note that each signal configuration is performed 1000 times, and the accuracy perfor-
mance is defined as the proportion of M̂ ≥ (H + Mi), i.e., the estimated signal component
number is not less than the set value to guarantee that the signal information can be fully
extracted. The state-of-the-art maximum criterion (Max) in [45] and the commonly used
threshold method (Thr) in [41] are also compared. For different damping ratios in T1, both
the proposal and Max can have 100% accuracy to yield M̂ ≥ (H + Mi). The Thr method,
on the other hand, always produces M̂ < (H + Mi) and thus loses some signal information,
as will be observed in the following tests. The results for tests T2–T5 are shown in Table 1,
and three points can be observed: (1) The proposed index is more robust than the Max
and Thr criteria; (2) When the amplitude ratios of interharmonics and harmonics belong to
[0.8, 1.6], and the SNR is larger than 55 dB, the proposal has a good accuracy level, i.e., the
proportion of M̂ ≥ (H + Mi) is over 99.9%; (3) The sampling frequency and time window
length have little to do with the accuracy level, but are positively related to the number of
signal components available to be estimated.

2.2. The Signal Component Frequency and Damping Factor Estimation Based on the Matrix Pencil

Given the estimated signal component number M̂, a Hankel matrix with an improved
SNR can be reconstructed by removing the singular values and vectors related to noise as

X̂ = UsΣsVT
s , (6)

where X̂ ∈ R(N−L)×(L+1) and Us ∈ R(N−L)×2M̂, Vs ∈ R(L+1)×2M̂ are composed of the
first 2M̂ column vectors of U and V, respectively; and the diagonal matrix Σs ∈ R2M̂×2M̂

contains the singular values from signal components in Σ.
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Table 1. The probability that the proposed index and the compared Max and Thr methods can
identify the number of all signal components, i.e., the proportion of M̂ ≥ (H + Mi) (%).

T2 (Ai) 0.02 0.04 0.06 0.08–0.14 0.16 0.18 0.2

Min 0.3 14.3 84.7 100.0 99.9 98.6 97.2
Max 0.3 11.7 78.9 100.0 99.8 97.1 94.9
Thr 0 0 0 0 0 0 0

T3 (SNR) 50 55 60 65 70 75 80

Min 80.2 99.9 100.0 100.0 100.0 100.0 100.0
Max 72.8 99.4 100.0 100.0 100.0 100.0 100.0
Thr 0 0 0 0 0 0 0

T4 ( fs) 5 k 6 k 7 k 8 k 9 k 10 k

Min 99.6 99.8 100.0 99.9 100.0 100.0
Max 99.5 99.8 100.0 99.9 100.0 100.0
Thr 0 0 0 0 0 0

T5 (c) 2 3 4 5 6 7

Min 100.0 96.1 99.9 100.0 100.0 100.0
Max 100.0 94.0 99.3 100.0 100.0 100.0
Thr 0 0 0 0 0 0

In order to estimate the signal component frequency and damping factor using the ma-
trix pencil, the signal in (1) is discreted and then rewritten with phasor pi(t) = ai(t)ejφi(t) as

x(nTs) =
M

∑
i=1

(0.5pi(nTs)zn
i + 0.5p∗i (nTs)(z∗i )

n) + w(nTs), (7)

where Y∗ denotes the conjugate of complex number Y, and zi = e(αi+j2π fi)Ts . With (7), the
Hankel matrix in (6) can be decomposed as

X̂ =


z0

1 · · · z0
M̂

(z∗1)
0 · · · (z∗

M̂
)0

z1 · · · zM̂ z∗1 · · · z∗
M̂

...
. . .

...
...

. . .
...

z(2Nh−L)
1 · · ·z(2Nh−L)

M̂
(z∗1)

(2Nh−L) · · ·(z∗
M̂
)(2Nh−L)



×



0.5p1
. . .

0.5pM̂
0.5p∗1

. . .
0.5p∗

M̂



×



z(−Nh)
1 z(−Nh+1)

1 · · · z(−Nh+L)
1

...
...

. . .
...

z(−Nh)

M̂
z(−Nh+1)

M̂
· · · z(−Nh+L)

M̂
(z∗1)

(−Nh) (z∗1)
(−Nh+1) · · · (z∗1)(−Nh+L)

...
...

. . .
...

(z∗
M̂
)(−Nh)(z∗

M̂
)(−Nh+1) · · ·(z∗

M̂
)(−Nh+L)


= ZLPZR.

(8)
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Then, two matrices X̂1, X̂2 ∈ R(N−L−1)×(L+1) that are obtained by, respectively, re-
moving the last and the first column vector of X̂ can be decomposed as

X̂1 = ZLPZR1,

X̂2 = ZLPZR2,
(9)

where ZR1, ZR2 ∈ C2M̂×L are formed by removing the last column vector and the first
column vector of ZR, respectively, and there is

ZR2 = ZZR1, (10)

where the diagonal matrix Z ∈ C2M̂×2M̂ is composed of zi (1 ≤ i ≤ 2M̂), and explains that
the element X̂2(i, j) is one sampling interval ahead of the element X̂1(i, j). Then, the matrix
pencil form X̂2 − λ(I)X̂1 = ZLP(Z− λ(I))ZR1 takes the matrix Z as a solution [48], and a
simplified form can be deduced as

Ẑ = eig(X̂+
1 X̂2) = eig((UsΣsVT

s1)
+UsΣsVT

s2) = eig(V̂+
s1 V̂s2), (11)

where eig(Y) denotes obtaining the eigenvalues of the matrix Y, Y+ represents the Moore–
Penrose pseudoinverse of the matrix Y, and Vs1, Vs2 ∈ RL×2M̂ are formed by removing
the last row vector and the first-row vector of Vs, respectively. Then, the frequency and
damping factor of each cosine or sine signal component are obtained by

f̂i =
Im(loge(ẑi))

2πTs
,

α̂i =
Re(loge(ẑi))

Ts
, 1 ≤ i ≤ M̂,

(12)

where Im(Y) and Re(Y) represent the imaginary and real parts of the complex number Y;
loge(·) denotes the natural logarithmic function.

2.3. The Wideband Multi-Component Phasor Estimation Based on the Modified
Least-Squares Algorithm

Combining the decomposition of X̂ in (8) and the estimated frequency and damp-
ing factor in (12), the phasor matrix P can be obtained by the modified least-squares
algorithm as

P̂ = eig((ZH
L ZL)

−1ZH
L X̂ZH

R (ZRZH
R )−1), (13)

where YH, Y−1 denote the Hermitian and inverse operations of the matrix Y. Finally, the
amplitude and phase for each cosine or sine signal component can be calculated from the
phasor estimation P̂, i.e.,

âi =2|P̂i,i|,
φ̂i =∠P̂i,i, 1 ≤ i ≤ M̂,

(14)

where P̂i,i denotes the i-th diagonal element of the phasor matrix P̂.
As seen in Figure 1, in conclusion, the proposed WMPE algorithm includes three

crucial steps to extract all the phasors in the measured signal. The first step, the accurate
identification of the frequency number by the proposed index and criterion, is very impor-
tant for the subsequent estimation of the frequency, damping factor, amplitude, and phase.
Therefore, its effectiveness and scope of application are specifically analyzed in Section 2.1.
In the following section, numerical and experimental tests are carried out to verify the
phasor estimation accuracy of the proposed WMPE algorithm.
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Figure 1. The block diagram of the proposed WMPE algorithm.

3. Numerical Tests

This section designs seven scenarios referring to [1,11,47] to test the accuracy and
transient response performance of the proposed WMPE algorithm under the condition of
different damping factors, amplitudes, phases, and frequencies of the signal components.
Three state-of-the-art algorithms, HI−MP [41], MEMO−ESPRIT [49], and SD−ESPRIT [50],
are employed for comparison. The definition of total vector error (TVE), response time, and
reporting rate fre refers to the IEC/IEEE standard [11]. Some general parameter settings
include the sampling frequency fs = 10 kHz, the reporting rate fre = 50 frames/s, the nom-
inal frequency f0 = 50 Hz, and the data window Tw = 3/ f0 to achieve signal component
number identification under the noise interference, and the dimension parameter L = Nh
to yield good noise immunity [41].

Case A: Various damping factors

The first case is carried out to test the accuracy performance of the proposed WMPE
and the compared MEMO−ESPRIT and HI−MP algorithms under various damping factors.
The test signal has the form of (5). The fundamental amplitude, frequency, and phase are
A1 = 1 p.u., f1 = f0, φ1 ∈ [−π, π], respectively; the harmonic amplitude, frequency, and
phase are Ah = 0.1 p.u., fh = h f0, φh ∈ [−π, π] (h ∈ [2, H]), respectively; the maximum
harmonic order H = 13 [32]; the interharmonic amplitude, frequency, and phase are
Ai = 0.1 p.u., fi = 35 + 100(i − 1), φi ∈ [−π, π], respectively; and the interharmonic
number Mi = 20. Then, the signal contains a total of 33 components for each test, and
the maximum component frequency is close to 2000 Hz. In this scenario, all the damping
factors αh and αi increase from −1 to 1 in a step of 0.1 in every test. The added white noise
w(t) has an SNR of 60 dB. The settings of the noise intensity of 60 dB and the maximum
harmonic order H = 13 [32] remain the same across all the seven cases and will not be
repeatedly stated.

Figure 2 shows the maximum TVEs of the proposed WMPE, the HI−MP,
MEMO−ESPRIT, and SD−ESPRIT algorithms, as well as a TVE reference limit of 1.5%
according to [11]. The TVE limit will also be plotted in Cases B to F to check the accuracy of
the four algorithms. As seen in Figure 2, the proposed WMPE algorithm performs much
better accuracy than the three compared algorithms for all signal components. When the
damping factors of all signal components change between [−1, 1], the maximum TVEs of
the proposed WMPE are always less than 1.5%, which indicates that the proposal has good
robustness to damping factor changes. In addition, the red curve shows that the HI−MP
algorithm cannot estimate the signal components with a frequency interval below 50 Hz
when the time window is only three nominal cycles, which can also be observed in the
following tests. The blue curve indicates that the proposed WMPE algorithm produces
fewer TVEs than the MEMO−ESPRIT and SD−ESPRIT algorithms because it considers
the influence of the damping factor. Note that there are 33 tones in the test signal, and the
frequency interval for adjacent components below 650 Hz is less than 50 Hz, while that for
tones above 650 Hz is 100 Hz. Therefore, there will be some error peaks for phasors close in
frequency when using the proposed WMPE algorithm to estimate phasors.
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Figure 2. Maximum TVEs obtained by WMPE, HI−MP, MEMO−ESPRIT, and SD−ESPRIT algo-
rithms under various damping factors.

Case B: Amplitude modulation of fundamental and harmonics

Cases B and C aim to test the four algorithms under dynamic conditions. When there
is amplitude modulation for fundamental and harmonics accompanied by the increasing
amplitude for interharmonics, the test signal is given as

x(t) =
H

∑
h=1

Ah(1 + 0.1 cos(2π fmt)) cos(2π fht + φh) +
Mi

∑
i=1

Aieαit cos(2π fit + φi) + w(t), (15)

where the fundamental has amplitude, frequency, and phase are A1 = 1 p.u., f1 = f0,
φ1 ∈ [−π, π]; the harmonics have amplitude, frequency, and phase of Ah = 0.1 p.u.,
fh = h f0, φh ∈ [−π, π] (h ∈ [2, H]); all the amplitudes of the fundamental and harmon-

ics are modulated at frequency fm, which changes from 0.1 Hz to 2 Hz by 0.1 Hz in each
implementation; the interharmonic amplitude, damping factor, frequency, and phase are
Ai = 0.1 p.u., αi = 1, fi = 35 + 100(i − 1), φi ∈ [−π, π], respectively; and the interhar-
monic number Mi = 20.

The amplitude modulation frequency fm changes in the range of [0.1, 2]Hz. The
maximum estimation error of the WMPE, HI−MP, MEMO−ESPRIT, and SD−ESPRIT algo-
rithms is shown in Figure 3. It is observed that the proposal still yields a better estimation
than the other three algorithms under this dynamic condition. However, Figure 3 also
shows that for the proposed WMPE algorithm, the maximum TVE of the first component,
i.e., a sub-synchronous component of 35 Hz, is more than 1.5%. This is because the dynamic
fundamental produces more spectral leakage and a worse effect on the estimation of the
sub-synchronous phasor than the steady fundamental (similar conclusions can be observed
when estimating the super-synchronous phasor under the interference of the dynamic
fundamental).

Figure 3. Maximum TVEs obtained by WMPE, HI−MP, MEMO−ESPRIT, and SD−ESPRIT algo-
rithms under amplitude modulation of fundamental and harmonics.
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Case C: Phase modulation of fundamental and harmonics

In this test, the signal contains fundamental and harmonics having phase modulation
and interharmonics with positive damping factor, i.e.,

x(t) =
H

∑
h=1

Ah cos(2π fht + φh + 0.1 cos(2π fmt− π)) +
Mi

∑
i=1

Aieαit cos(2π fit + φi) + w(t), (16)

where A1 = 1 p.u., f1 = f0, φ1 ∈ [−π, π], and Ah = 0.1 p.u., fh = h f0, φh ∈ [−π, π]
(h ∈ [2, H]); all the phases of the fundamental and harmonics are added with a modulation
part at frequency fm, which increases from 0.1 Hz to 2 Hz by 0.1 Hz in each test. For interhar-
monic tones, there are Ai = 0.1 p.u., αi = 1, fi = 35 + 100(i− 1), φi ∈ [−π, π], Mi = 20.

As seen in Figure 4, the test results show that even when the phase modulation
frequency fm is up 2 Hz, the WMPE, MEMO−ESPRIT, and SD−ESPRIT algorithms can
have good phasor estimation of all the signal components, whereas the proposal achieves a
better estimation than the MEMO−ESPRIT and SD−ESPRIT algorithms, and produces a
TVE below 1.5% for most components. However, for the sub-synchronous phasor (and the
super-synchronous phasor), the proposal achieves an estimation accuracy similar to that in
Case B, because it is affected by fundamental phase modulation.

Figure 4. Maximum TVEs obtained by WMPE, HI−MP, MEMO−ESPRIT, and SD−ESPRIT algo-
rithms under phase modulation of fundamental and harmonics.

Case D: Frequency deviation of fundamental and harmonics

In this test, the frequency deviation of fundamental and harmonics and the increasing
amplitude of the interharmonic tones are considered. Then, the test signal has the form of

x(t) =
H

∑
h=1

Ah cos(2πh fdt + φh) +
Mi

∑
i=1

Aieαit cos(2π fit + φi) + w(t), (17)

where the amplitude and phase of the fundamental and harmonics (h ∈ [2, H]) are
A1 = 1 p.u., Ah = 0.1 p.u., φ1, φh ∈ [−π, π]; the fundamental frequency fd changes
from 49.5 Hz to 50.5 Hz [32] in a step of 0.1 Hz, while the harmonic frequency keeps an inte-
ger multiple of fd; and the amplitude, damping factor, frequency, phase, and number of the
interharmonic tones are Ai = 0.1 p.u., αi = 1, fi = 30 + 100(i− 1), φi ∈ [−π, π], Mi = 20.

As Figure 5 shows, the proposal performs better than the HI−MP, MEMO−ESPRIT,
and SD−ESPRIT algorithms under the deviated fundamental and harmonic frequencies.
Figure 5 also indicates that the estimation errors of odd harmonics increase with the har-
monic order. This is because the deviated harmonics become closer to the adjacent interhar-
monic tones, which deteriorates their mutual spectral leakage interference.
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Figure 5. Maximum TVEs obtained by WMPE, HI−MP, MEMO−ESPRIT, and SD−ESPRIT algo-
rithms under frequency deviation of fundamental and harmonics.

Case E: Frequency ramp change of fundamental and harmonics

The dynamic frequency change may cause a larger estimation error than the steady
frequency deviation when covering the same frequency range. Therefore, this test signal
considers the dynamic change in the fundamental and harmonic frequencies, i.e.,

x(t) =
H

∑
h=1

Ah cos(2πh fdt + φh + πRht2) +
Mi

∑
i=1

Aieαit cos(2π fit + φi) + w(t), (18)

where A1 = 1 p.u., fd = 49.5 Hz, φ1 ∈ [−π, π]; Ah = 0.1 p.u., h fd = 49.5h Hz,
φh ∈ [−π, π] (h ∈ [2, H]); the fundamental frequency increases from 49.5 Hz to 50.5 Hz
in a second, i.e., R1 = 1 Hz/s, while the harmonic frequencies change from 49.5h Hz to
50.5h Hz, i.e., Rh = h Hz/s; and the interharmonic amplitude, damping factor, frequency,
phase, and number are Ai = 0.1 p.u., αi = 1, fi = 30 + 100(i− 1), φi ∈ [−π, π], Mi = 20,
respectively.

As shown in Figure 6, the proposal realizes similar phasor estimation accuracy as in
Case D for all signal components, while MEMO−ESPRIT and SD−ESPRIT may produce
larger error in this case than in Case D. This again confirms that the proposed WMPE
algorithm has good dynamic performance.

Figure 6. Maximum TVEs obtained by WMPE, HI−MP, MEMO−ESPRIT, and SD−ESPRIT algo-
rithms under frequency ramp change of fundamental and harmonics.

Case F: Different interharmonic frequency

For Cases A to E, the first interharmonic component is always sub-synchronous
oscillation. In this case, the super-synchronous oscillation is also employed to test the four
algorithms. The test signal is given as

x(t) =
H

∑
h=1

Ah cos(2π fht + φh) +
Mi

∑
i=1

Aieαit cos(2π fit + φi) + w(t), (19)
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where the fundamental amplitude, frequency, and phase are A1 = 1 p.u., f1 = f0,
φ1 ∈ [−π, π], respectively; the harmonic amplitude, frequency, and phase are Ah = 0.1 p.u.,
fh = h f0, φh ∈ [−π, π] (h ∈ [2, H]), respectively; the interharmonic amplitude, damp-
ing factor, frequency, phase, and number are Ai = 0.1 p.u., αi = 1, fi = fb + 100(i −
1), φi ∈ [−π, π], Mi = 20, respectively; and the first interharmonic frequency fb ∈
{10, 15, 20, 25, 30, 35, 65, 70, 75, 80, 85, 90}.

In each test, the signal contains 33 components, and one value from the set of fb is cho-
sen to determine the interharmonic frequencies. All set values of fb are traversed. The max-
imum TVEs obtained by the proposed WMPE, HI−MP, MEMO−ESPRIT, and SD−ESPRIT
algorithms are shown in Figure 7. For the WMPE, MEMO−ESPRIT, and SD−ESPRIT
algorithms, the accuracy of estimating sub-synchronous and super-synchronous phasors
is about the same. However, when the frequency interval of two signal components is as
small as 10 Hz, e.g., 200 Hz and 210 Hz, their maximum estimation errors may be more
than 1.5%, as seen in Figure 7.

Figure 7. Maximum TVEs obtained by WMPE, HI−MP, MEMO−ESPRIT, and SD−ESPRIT algo-
rithms under different interharmonic frequencies.

Case G: Transient response

This case is carried out to test the transient response time of the four algorithms, and
hence the signal contains a transient change, i.e.,

x(t) =



H
∑

h=1
Ah cos(2π fht + φh) + w(t), t < t0,

H
∑

h=1
Ah cos(2π fht + φh)

+
Mi
∑

i=1
Aieαit cos(2π fit + φi) + w(t), t ≥ t0,

(20)

where the fundamental has amplitude, frequency, and phase are A1 = 1 p.u., f1 = f0,
φ1 ∈ [−π, π]; the harmonic has amplitude, frequency, and phase are Ah = 0.1 p.u., fh = h f0,
φh ∈ [−π, π] (h ∈ [2, H]); and the interharmonic has an amplitude, damping factor,
frequency, phase, and numbers of Ai = 0.1 p.u., αi = 1, fi = 35 + 100(i − 1), φi ∈
[−π, π], Mi = 20.

As seen in (20), at the time t0 = 0 in this paper, there are Mi interharmonic tones with
increasing amplitude added to the signal x(t). Table 2 shows the response times of the
proposed WMPE algorithm, defined as the duration in which the estimation error exceeds
1% [11] when a transient occurs. For the HI−MP, MEMO−ESPRIT, and SD−ESPRIT algo-
rithms, the response times are not available for some components because the estimation
errors are also greater than 1% for signals without a transient event. However, the proposed
WMPE achieves the response times below the data window length Tw = 60 ms for all
signal components.
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Table 2. The response time (ms) obtained by the WMPE algorithm.

Order h 1 2 3 4 5 6 7

WMPE 58.5 58.6 58.7 57.9 58.7 57.9 58.7

Order h 8 9 10 11 12 13

WMPE 57.9 58.7 57.9 58.7 57.9 58.7

4. Experimental Test

In this section, an experimental test is performed to verify the performance of the
proposed WMPE algorithm under the physical environment. As shown in Figure 8, the
experimental platform mainly includes the devices that generate, sample, and process the
test signals; that is, the test signals are physically generated by the Tektronix AFG 31252,
sampled by the Keysight 3458A, and processed on a computer by the proposed WMPE
and the compared HI−MP, MEMO−ESPRIT, and SD−ESPRIT algorithms. The results
are wideband multiplier phasors extracted by these algorithms from the signal samples.
The Tektronix AFG 31252, on the other hand, is used because it can output signals that
are clear to the real power grid signals according to the formulas entered.In this section,
an experimental platform is constructed with an arbitrary waveform signal generator
(Tektronix AFG 31252) and a digital voltmeter (Keysight 3458A) to test the proposed WMPE
algorithm. As shown in Figure 8, the Tektronix AFG 31252 is employed to produce signals
according to the entered formulas, and the Keysight 3458A is used to sample signals.
Finally, the signal samples are processed using the WMPE, HI−MP, MEMO−ESPRIT, and
SD−ESPRIT algorithms. The result is wideband multiplier phasors.

Figure 8. The block diagram (the left) and the photo (the right) of the constructed physical platform.

The signal form and settings in Case A are also used in this test. Namely, each test
signal contains the fundamental, 12 harmonics, and 20 interharmonics, and the damping
factors of these 33 components increase from −1 to 1 in steps of 0.2. Therefore, there
are 11 test signals, and Figure 9 shows 3 of them. Then, these samples of all 11 distorted
signals are used as the input data of the proposed WMPE, HI−MP, MEMO−ESPRIT and
SD−ESPRIT algorithms to estimate the amplitudes and phases of all 33 signal components.
To describe the estimation accuracy, the signal residual index in a time window is employed,
i.e.,

Res =

√√√√ Nh

∑
n=−Nh

(x(nTs)−
M̂

∑
i=1

ŝi(nTs))2/
Nh

∑
n=−Nh

x2(nTs), (21)

where x(nTs) denotes the signal samples, and ŝi(nTs) presents the constructed samples
with the estimated components’ parameters obtained by different estimators.
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Figure 9. The samples of 3 test signals in the experimental test.

Figure 10 shows the variation of the maximum residual with damping factor obtained
by the four algorithms. It is observed that the proposal yields maximum Res below 1.5%,
and still achieves the best estimation for all damping factors in the experimental test,
proving the effectiveness of the proposed WMPE algorithm.

Figure 10. Maximum Res obtained by WMPE, HI−MP, MEMO−ESPRIT, and SD−ESPRIT algorithms
under experimental test.

5. Discussion

The numerical and experimental results show that the proposed WMPE algorithm
yields a maximum total vector error of less than 1.5%, achieving a more accurate phasor
estimation than existing methods under various signal environments. The proposed index
and criterion can well identify the frequency number from the signal samples. Then, the
modified matrix pencil and least-squares algorithm can accurately estimate the phasors in
a wide frequency range and complicated signal environment. The obtained phasor data
can be used to detect the oscillation source, improve the power quality by filtering the
harmonic and interharmonic tones, help build accurate models of power electronics for
better control performance, etc. However, the accuracy of the proposed WMPE algorithm
is not guaranteed when the energy difference between the broadband signal components is
large or when the noise is intense.

6. Conclusions

With the proliferation of power electronic devices and renewable energy generation,
the signal condition of the power system becomes more complicated as they introduce
harmonic and interharmonic tones into the power system over a wide frequency range and
with non-zero damping. Then, considering the above signal characteristics, a wideband
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multi-component phasor estimator is proposed in this paper. Under the designed steady
and dynamic signal environments, the proposal is able to achieve a maximum estimation
error below 1.5%. It is more accurate than the existing algorithms. In particular, because
the proposed method is more accurate and robust for identifying all the signal components,
it provides a lower estimation error than the compared HI−MP algorithm. On the other
hand, by considering the influence of the signal damping factor, the proposed method
achieves more accurate wideband multi-component phasor estimation than the two ESPRIT
algorithms. Moreover, the experimental results show that the proposed WMPE algorithm
produces the smallest residual energy among the four algorithms, verifying it is of great
application potential. However, it is worth noting that further accuracy improvement is
needed for estimating the sub-/super-synchronous phasors under dynamic fundamental
conditions and for estimating adjacent phasors that are close in frequency.
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Abbreviations
The following abbreviations are used in this manuscript:

PMU Phasor measurement unit
FFT Fast Fourier transform
DFT Discrete Fourier transform
LS Least squares
WMPE Wideband multi-component phasor estimator
SVD Singular value decomposition
SNR Signal–noise ratio
Max Maximum criterion
Thr Threshold method
MEMO Modified exact model order
ESPRIT Estimation of signal parameters using rotational invariance technique
HI−MP Harmonic and interharmonic phasor estimation using matrix pencil

Appendix A

This section proves the proposed index and criterion are more robust than those in [44].
The following equations give the index Rk and criterion in [44].

Rk = σk+2/σk, 0 ≤ k ≤ B− 2,

M̂ = dkRmin/2e,
(A1)
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where σk is the k-th diagonal element of matrix Σ in (3), kRmin denotes the location of
minimum Rk, and d·e represents the round-up operation. The proposed index Gk and
criterion in (4) are more robust than that in [44] when the difference between the signal
components and noise of Gk is larger than that of Rk, i.e., ∆G = GM−2 − GM−1 is larger
than ∆R =min{R2M−3, R2M−2}− max{R2M−1, R2M} where min{a, b} and max{a, b},
respectively, mean the smaller and bigger ones of a and b. Then, it is necessary to prove
that ∆ = ∆G − ∆R ≥ 0 where

∆ =


∆G − (R2M−2 − R2M−1), R2M−2 ≤ R2M−3, R2M ≤ R2M−1,
∆G − (R2M−3 − R2M−1), R2M−3 < R2M−2, R2M ≤ R2M−1,
∆G − (R2M−2 − R2M), R2M−2 ≤ R2M−3, R2M−1 < R2M,
∆G − (R2M−3 − R2M), R2M−3 < R2M−2, R2M−1 < R2M.

(A2)

The first equation in (A2) is taken as an example to show that there is always ∆ ≥ 0.
As R2M−2 ≤ R2M−3 results in σ2M−1/σ2M ≥ σ2M−3/σ2M−2, and R2M ≤ R2M−1 results in
σ2M+2/σ2M+1 ≤ σ2M/σ2M−1, there is

∆ = GM−2 − GM−1 − (R2M−2 − R2M−1)

=
σ2M−1 + σ2M

σ2M−3 + σ2M−2
− σ2M+1 + σ2M+2

σ2M−1 + σ2M
− (

σ2M
σ2M−2

− σ2M+1

σ2M−1
)

= (
σ2M−1 + σ2M

σ2M−3 + σ2M−2
− σ2M

σ2M−2
) + (

σ2M+1

σ2M−1
− σ2M+1 + σ2M+2

σ2M−1 + σ2M
)

=
σ2M

σ2M−2
(

σ2M−1/σ2M + 1
σ2M−3/σ2M−2 + 1

− 1)

+
σ2M+1

σ2M−1
(1− 1 + σ2M+2/σ2M+1

1 + σ2M/σ2M−1
)

≥ 0. (A3)

The other three equations in (A2) can be proved similarly.
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