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Abstract: Automatic hand gesture recognition in video sequences has widespread applications,
ranging from home automation to sign language interpretation and clinical operations. The primary
challenge lies in achieving real-time recognition while managing temporal dependencies that can
impact performance. Existing methods employ 3D convolutional or Transformer-based architectures
with hand skeleton estimation, but both have limitations. To address these challenges, a hybrid
approach that combines 3D Convolutional Neural Networks (3D-CNNs) and Transformers is pro-
posed. The method involves using a 3D-CNN to compute high-level semantic skeleton embeddings,
capturing local spatial and temporal characteristics of hand gestures. A Transformer network with
a self-attention mechanism is then employed to efficiently capture long-range temporal dependen-
cies in the skeleton sequence. Evaluation of the Briareo and Multimodal Hand Gesture datasets
resulted in accuracy scores of 95.49% and 97.25%, respectively. Notably, this approach achieves
real-time performance using a standard CPU, distinguishing it from methods that require specialized
GPUs. The hybrid approach’s real-time efficiency and high accuracy demonstrate its superiority over
existing state-of-the-art methods. In summary, the hybrid 3D-CNN and Transformer approach effec-
tively addresses real-time recognition challenges and efficient handling of temporal dependencies,
outperforming existing methods in both accuracy and speed.

Keywords: human–computer interaction (HCI); hand gesture recognition (HGR); real-time process-
ing; skeleton-based hand gesture recognition; 3D-CNNs; transformers; self-attention mechanism

1. Introduction

In recent years, there has been a significant increase in research on novel devices and
techniques for human–computer interactions (HCIs). In particular, hand gesture interfaces
have gained popularity in various applications, including smart homes, health monitoring,
virtual reality, automobile equipment control, and sign language
translation [1–4]. Human communication heavily relies on gestures as a natural and
intuitive means of expression. Therefore, developing accurate and efficient hand ges-
ture recognition systems can significantly enhance how humans interact with computers,
devices, and virtual environments. Such advancements can lead to more immersive
experiences in virtual reality (VR) and augmented reality (AR) applications [5,6], and rev-
olutionize gaming experiences by enabling gesture-based controls [7]. Moreover, it can
improve human–robot interactions in areas such as healthcare, manufacturing, and as-
sistance robotics. Additionally, hand gesture recognition has the potential to enhance
accessibility for individuals with disabilities by offering alternative and inclusive input
methods [8,9].

Existing technologies for hand gesture recognition can be classified into two main cat-
egories: sensor-based and vision-based methods. Sensor-based methods rely on wearable
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devices to capture motion data and recognize hand gestures. These devices include sensors
such as accelerometers [10], inertial measurement units (IMUs) [11], optical sensors [12],
and surface electromyography (sEMG) devices [13]. This approach has demonstrated
high accuracy in recognizing dynamic hand gestures. However, it requires significant
preprocessing to obtain clean data and employs hand-crafted feature techniques, which are
time-consuming. Additionally, it imposes significant constraints on real-life situations as
these devices need to be constantly attached to the body or hands.

Camera-based methods offer a more natural way to interact with human–machine
interfaces, eliminating the need for on-body devices. Existing studies have utilized various
sources of data for hand gesture recognition tasks, such as RGB, depth, infrared, and optical
flow, used either independently or in combination with each other [14,15]. Processing
continuous video streams of these data are computationally intensive due to their high in-
tradimensional and multidimensional nature. Alternatively, specific camera-based devices
can acquire skeletal data, which is more computationally efficient since it considers only
the position of the hand joint coordinates, resulting in a significantly lower data volume
compared to the number of image pixels. These methods also alleviate limitations regarding
varying illumination changes and common problems of self-occlusion in hand gestures.
Furthermore, the increasing accessibility of cost-effective human action capture systems,
such as Microsoft Kinect [16], Intel RealSense camera [17], or Leap Motion controller [18],
has facilitated the acquisition of skeletal data. However, these are proprietary systems that
cannot be modified, improved, or adapted to specific situations. Under such circumstances,
the hand recognition system must include a pose/skeleton recognition module specifically
designed to convert a video stream into a skeleton stream. Additionally, it is desirable
for such conversion to be achieved using a monocular camera to simplify the hardware
requirements of the system.

Regardless of the skeleton recognition method used, analyzing the temporal depen-
dencies of a sequence of skeletons offers more advantages than analyzing a sequence of
images. However, skeleton sequences can exhibit significant intra-class and inter-class
variability, making it challenging to learn discriminative features for accurate hand gesture
classification. Additionally, understanding the temporal dynamics of skeleton sequences is
crucial for capturing motion patterns and transitions between different hand poses. Model-
ing long-term dependencies and capturing subtle temporal changes in hand keypoints can
also pose challenges.

Motivated by this, some authors have applied CNN-based methods to hand skeleton
sequences to learn hand posture variations and hand movements in different branches and
subsequently fuse the learned features. However, Convolutional Neural Networks (CNNs)
may not efficiently address temporal dependencies compared to Transformers. To better
model long-range temporal changes, other authors have introduced Transformer-based
methods. Most of the employed embedding strategies are not efficient as they directly
model the pairwise relations of the entire input skeleton sequence, encompassing both
spatial and temporal dimensions. This approach overlooks the importance of spatial
interactions among distinctive local joints and the significance of capturing short-term
temporal dynamics, which are essential for recognizing hand motion patterns. In summary,
the main research gap lies in the fact that existing methods fail to achieve real-time hand
gesture recognition without compromising accuracy. This issue can be attributed to the
lack of more efficient embedding strategies capable of capturing spatial interactions among
joints in short-term temporal dynamics, as well as the absence of more effective methods to
analyze long-term temporal dependencies in skeleton sequences.

The main objective of the proposed work is to achieve real-time hand gesture recog-
nition and address the identified research gaps by introducing an efficient hybrid neural
network. This network comprises a Local Spatio-Temporal Embedding module imple-
mented using 3D-CNN and a Long-Term Embedding module implemented using a Trans-
former. The Local Spatio-Temporal Embedding module is designed to analyze both the
spatial relationships between subgroups of hand joints and the temporal evolution of those
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relationships over time. This local feature extraction proves beneficial for recognizing
fine-grained hand gestures. Implementing the Long-Term Embedding module using the
Transformer architecture, the network aims to better capture long-range dependencies,
thereby refining the learned representations by attending to the global temporal dynamics
and interactions between subgroups of hand joints. The experimental results demonstrate
that the proposed hybrid neural network achieves high recognition accuracies of 95.49%
and 97.25% after evaluation on Briareo and Multimodal Hand Gesture datasets, respectively.
This work contributes to the advancement of skeleton-based hand gesture recognition by
effectively addressing temporal dependencies and efficiently capturing spatial interactions,
leading to improved performance and potential applications in various fields, such as VR,
AR, and human–robot interactions.

The novelty of this research lies in its innovative hybrid neural network architec-
ture that combines 3D-CNN and Transformer models. By fusing these two techniques,
the system can leverage both spatial and temporal information contained in the embed-
dings, addressing the limitations of traditional methods. Previous sensor-based approaches
often suffered from high computational requirements, time-consuming preprocessing,
and restricted practicality due to the need for on-body devices. On the other hand, vision-
based methods face challenges in efficiently modeling temporal dependencies. However,
the proposed hybrid neural network overcomes these limitations.

The main contributions can be summarized as follows:

• Hybrid Neural Network Design: The proposed approach presents a novel hybrid
neural network for skeleton-based hand gesture recognition, efficiently combining a
3D-CNN to infer high-level semantic skeleton embeddings with a Transformer-based
model that utilizes a self-attention mechanism to capture long-term dependencies
of the previous sequence of skeleton embeddings. It should be noted that the skele-
ton embeddings contain partial information in the spatial and time domain; that is,
an embedding includes information from a subset of skeleton nodes along a limited
time span.

• Real-time Efficiency: A major breakthrough achieved in this research is the real-time
capability of the system. Thanks to the carefully designed neural network architecture,
the entire system can efficiently run on a Computer Processing Unit (CPU), eliminating
the need for specialized and resource-intensive hardware. This achievement is a crucial
step toward practical applications of hand gesture recognition in real-world scenarios.

• Competitive Performance: The proposed method demonstrates competitive perfor-
mance on the main hand gesture recognition benchmarks. By effectively capturing
local spatial relationships and long-term temporal dependencies, the hybrid neural
network outperforms the state-of-the-art accuracy by 4.19% on the Briareo dataset.

2. Related Work

Existing skeleton-based action recognition works [19–22] have inspired the closely
related area of skeleton-based hand gesture recognition [23–26]. Thus, raw skeletal data are
usually converted into pseudo-images, graph data, or time series to be efficiently processed.
Early works proposed hand-crafted descriptors for hand skeleton joints [23,24]. The usual
information managed by these descriptors was the distance among hand joints, the ge-
ometric shape of the hand, and the direction, translation, and rotation of the joints over
time. However, they offered a limited representation of the underlying skeletons, ignoring
complex, long, and not evident relationships among the hand joints. Deep learning ap-
proaches solve this problem by estimating adaptive representations and descriptors for the
target application, which can be divided into different families: Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs), 3D Convolutional Neural Networks
(3D-CNNs), Graph Convolutional Networks (GCNs), and Transformer-based methods.

Methods based on 1D Convolutional Neural Networks (CNNs). These methods
take sequences of skeleton joint coordinates as input and perform 1D convolution along the
temporal dimension. For instance, Devineau et al. [24] proposed a parallel Convolutional
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Neural Network to process each hand joint independently as a separate channel. They then
used a late fusion strategy to obtain a final hand feature vector for classification. However,
this approach presents some inconveniences. If some joints are missing or incomplete,
parallel CNNs may struggle to effectively handle such data. Moreover, the computational
complexity is notably higher than that of sequential or fused architectures, as independent
CNNs are required for each joint.

Long Short-Term Memory (LSTM). This is a type of Recurrent Neural Network
(RNN) that is well suited for modeling temporal sequences of joint coordinates. However,
LSTMs do not inherently handle spatial information or inter-joint coordinates. This lim-
itation can be addressed by integrating CNNs before LSTMs or RNNs. Previous works
often converted skeleton coordinates into pseudo-images and skeleton sequences into
video streams to apply convolutional layers to skeleton sequences. However, such input
conversions may not fully exploit the locality of convolutional layers [20], as skeletal data
are fundamentally non-Euclidean spatial data. Therefore, mapping joint coordinates into
pseudo-images could lead to a loss of spatial correlation among them. In [27,28], the authors
proposed a system based on a combination of CNN and LSTM. The CNN focuses on de-
tecting spatial patterns related to the location of skeletal joints in a 3D space. Subsequently,
the LSTM is employed to capture spatio-temporal patterns associated with the evolution of
the 3D coordinates of skeleton joints over time.

Narayan et al. [29] proposed a system based on a concept very similar to those
in [27,28]. They utilized a multi-channel CNN followed by an LSTM to extract spatio-
temporal features from 3D hand joints for hand gesture recognition. Although LSTMs are
proficient in capturing short-term dependencies, they might struggle to learn and model
highly complex long-term dependencies in sequences. This limitation becomes significant
in cases where the skeleton data contain intricate patterns or gestures that depend on
actions occurring relatively far in the past.

Methods based on 3D Convolutional Neural Networks (3D-CNNs). These methods
are particularly interesting for analyzing dynamic hand gestures, as they can capture both
local spatial and temporal characteristics. Liu et al. [30] proposed a 3D-CNN-based method
to extract skeleton dynamics. Specifically, the authors encoded hand postures and hand
movements into separate streams and then applied a 3D-CNN and a 2D-CNN to each
stream individually. This approach may have limitations in fully capturing the complex
interactions between hand posture and hand movement. Additionally, the method’s perfor-
mance may be affected by the handcrafted separation of information into different streams.

Mohammed et al. [31] proposed a novel approach for skeleton-based hand gesture
recognition using a multi-model ensemble. Their method involves the combination of
multilayer 3D-CNN, temporal Convolutional Neural Networks, and convolutional LSTM
networks. These components process the input features, and the resulting representations
are then concatenated in a late-fusion manner to produce the final feature vector for clas-
sification. Combining multiple models in a multi-model ensemble network introduces
additional complexity and computational overhead. Training and deploying such a com-
bined system could require more resources and time compared to using a single model.
In their paper, the authors reported an improved accuracy of only 1% higher for the multi-
model ensemble network than that for the single model using 3D-CNN. The trade-offs
between the accuracy gains and computational complexity should be considered.

To the best of the authors’ knowledge, there are fewer studies exploring the full poten-
tial of 3D-CNNs for analyzing skeleton data compared to their more common utilization
for RGB-image-based hand gesture recognition. For example, Chen et al. [32] designed
a multiscale 3D-CNN to be applied to multimodal hand gesture data to make the final
classification. They obtained an accuracy on the Briareo dataset of 91.3% on RGB data and
92.7% on depth data. Dhingra et al. [33] introduced attention blocks and residual networks
between non-consecutive 3D convolution layers to build deeper and more discriminative
networks. In [34], 3D convolutional layers were used in a ResNet backbone to classify
between gesture and no gesture classes. Both works [33,34] leveraged 3D convolutional
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layers within a ResNet backbone for gesture classification; while this approach can effec-
tively capture spatio-temporal features from the input data, it may suffer from the limited
modeling of long-range dependencies. As hand gestures often involve complex temporal
dynamics, it is crucial to consider methods that can efficiently capture and exploit long-term
dependencies between gesture frames.

Graph Convolutional Networks (GCNs). These have gained significant attention in
recent years for recognizing skeleton-based hand gestures [35–39]. These methods treat
the skeleton as a graph, with joints as nodes and their spatial connections as edges. Graph
Convolutional Networks (GCNs) are capable of learning spatial dependencies among
joints and propagating information through the skeletal graph. However, they heavily
rely on the defined graph topology, making it crucial to construct an accurate and optimal
graph representation.

In a study by Li et al. [26], they defined a fixed hand graph structure as the input for
the GCN. This design limits the model’s capacity to learn dependencies between unlinked
joints since the graph convolution layers only operate among the connected hand joints.
To address this limitation, subsequent works have introduced improvements in the design
of the topology of the hand graph. For example, in [36,40], the authors designed a dynamic
hand graph that adjusts dynamically based on different hand gestures. However, this
approach may have limited generalization ability for unseen hand gestures as it heavily
relies on the learned hand graph structure. Similar to CNN-based methods, GCNs also face
challenges in modeling and capturing long-range temporal information.

Transformer-based methods. Transformer architectures excel at capturing long-term
dependencies, in contrast to previous methods that mainly focused on short-term infor-
mation. Therefore, they are particularly well suited for analyzing long skeleton sequences
that represent hand gestures. Surprisingly, while there is a substantial body of research
on Transformer-based architectures in skeleton-based action recognition [41–44], their
application for skeleton-based hand gesture recognition remains comparatively limited.

The main drawback of a pure Transformer architecture is the simplistic modeling
of spatial data, specifically the joint relationships inside the skeleton. This is typically
accomplished by using a fully connected layer to create an embedding that globally encodes
all the joints in the skeleton [45]. As a result, information exchange and dependencies
among neighboring joints are either not considered or not adequately addressed. In the
pure Transformer-based network proposed by Liu et al. [46], the aim is to capture local and
global spatio-temporal features of the skeleton sequence. However, they manually group
the joints of each finger into the same subgroup and then apply a linear projection layer to
each subgroup to obtain the final embedding. This local embedding strategy converts the
skeleton sequence into a predefined structure, leading to the same limitation as using the
local linear projection mentioned above. For color image data, D’Eusanio et al. [14] propose
using ResNet-18 as the backbone to extract spatial characteristics from each input frame
and the Transformer encoder to perform temporal analysis between frames. The model
obtains a classification accuracy of 90.6% for the 12 gesture classes in the Briareo dataset.
ResNet-18 is a relatively shallow architecture compared to deeper variants like ResNet-
50 or larger models like ResNet-101. The limited capacity of ResNet-18 could affect its
ability to capture complex spatial features in color image data, potentially resulting in
suboptimal performance.

Despite the advances made in previous studies, effectively capturing both spatial
and temporal information in hand skeleton sequences for gesture recognition remains a
challenging task. To address these specific issues, this work proposes a novel method,
named 3D-Jointsformer, that combines the power of 3D-CNN and Transformers. The pro-
posed method is specifically designed for skeleton-based gesture recognition, where input
sequences consist of hand-skeleton data. By leveraging the strengths of both architectures,
the proposed hybrid approach aims to effectively encode spatial and temporal information,
achieving real-time hand gesture recognition without compromising accuracy.
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3. Proposed Method

The proposed system, called 3D-Jointsformer, enables real-time recognition of hand
gestures from color video sequences using a standard CPU, in contrast to other approaches
that require specialized hardware like Graphical Processing Units (GPUs). The system con-
sists of two modules (see Figure 1): Hand Skeleton Detection and hand gesture recognition.
In the first module, Hand Skeleton Detection, a set of 3D key points or joints representing
the hand skeleton is inferred from every image. This results in a sequence of hand skeletons
obtained from the video stream. The second module, hand gesture recognition, processes
and classifies this sequence into one of the predetermined hand gestures. This recognition
module consists of three blocks. The first block, the Local Spatio-Temporal Embedding Esti-
mator, employs a specially designed 3D-CNN architecture to compute local embeddings
that encode subsets of skeleton joints within a short time span. These embeddings serve
as local high-level semantic representations of the hand skeleton sequence. The second
block, the Long-Term Embedding Estimator, utilizes a Transformer-based architecture
to efficiently capture long-term dependencies among all the previous local embeddings.
The output is a final and holistic feature-based representation of the hand skeleton se-
quence. The third and final stage, hand gesture classification, globally combines all the
information from the previous holistic feature to infer the class of the involved hand gesture.
Overall, 3D-Jointsformer offers real-time hand gesture recognition capabilities without
compromising accuracy, using readily available CPU resources.

Figure 1. Block diagram of the proposed 3D-Jointsformer. The proposed system aims to be applied in
real-world scenarios where the input consists of a sequence of RGB frames captured by a monocular
camera. These sequences of images are subsequently processed by the Hand Skeleton Detection
component. The obtained hand skeleton keypoints are then fed into the hand gesture recognition
component to determine the final hand gesture class. The hand gesture recognition component is
composed of a Local Spatio-Temporal Embedding Estimator, which computes Local Spatio-Temporal
Embeddings from subsets of keypoints, and a Long-Term Embedding Estimator, which models
long-range temporal relations of the output embeddings. These components are implemented using
3D-CNN and Transformer, respectively.

3.1. Hand Skeleton Detection

The Hand Skeleton Detection module is based on [47] and integrates a hand detector
and skeleton estimator. The hand detector estimates the location of hand instances in real
time across a wide range of scales and appearances with high accuracy using just color
imagery. Then, the hand skeleton estimator infers the hand keypoints from previous hand
image regions. Given that T is the length of the sequence of hand keypoints and V is the
total number of hand joints, a gesture sample, nth, is encoded by a sequence of vectors,
Xn = {Hn

t |t = 1, 2, . . . , T}, where every vector Hn
t = {xn

v,t, yn
v,t, zn

v,t‖v = 1, . . . , V}, which
represents a set of 3D joint coordinates encoding a hand skeleton. In addition, to be able
to process gestures of variable temporal length, either because they belong to different
categories of gestures or are performed by different individuals, an interpolation in the
time domain is performed over the sequences of hand skeletons of different lengths to
consider a fixed-length hand sequence of 32 skeletons.
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3.2. Hand Gesture Recognition

The hand gesture recognition module estimates the category of the performed gesture
from a sequence of 3D skeletons through three different stages. First, the Local Spatio-
Temporal Embedding Estimator computes local embeddings that encode subsets of skeleton
joints within short time spans, resulting in high-level semantic representations of subparts
of a hand skeleton sequence. These embeddings are obtained using a 3D-CNN neural
network, which is a modified implementation of SlowFast Networks, initially conceived
for Video Recognition [48]. The original SlowFast architecture comprises two streams:
the Slow Pathway and the Fast Pathway. The Slow Pathway processes frames at a lower
frame rate and aims to capture broader motion patterns and context changes in the video.
On the other hand, the Fast Pathway operates at a higher frame rate and is designed to
capture fast and subtle motion patterns. The backbone architecture of the original SlowFast
combines 3D convolutional layers for the Slow Pathway and 2D convolutional layers for
the Fast Pathway. Finally, the outputs from both the Slow and Fast Pathways are fused
together to obtain the final prediction. While this architecture has shown great success in
recognizing actions performed by the entire body, it may not be ideal for capturing the
fine-grained movements specific to hand gestures. Therefore, several key modifications
have been designed and implemented to adapt and enhance the existing framework for
Local Spatio-Temporal Embeddings of hand skeleton sequences.

Regarding the nature of the hand skeleton, four modifications were introduced to
the original architecture. The first modification is to adopt only the Slow Pathway stream
from the original architecture to fulfill the purpose of this local embedding module, which
is to compute the Local Spatio-Temporal Embedding from subsets of joints. By using
only the Slow Pathway, the overall computational complexity of the model is reduced,
facilitating real-time operation. The second modification reduces the depth of the network
by using fewer convolutional blocks, considering that the number of joints is much less
than the number of pixels in an image. This helps avoid overfitting problems associated
with excessive network parameters while reducing computational complexity. The third
modification involves reducing the width of the network by using fewer channels for
similar purposes. The fourth modification is to use a smaller kernel size, which reduces
the receptive field, aiming to focus on capturing more local spatial information. Figure 2
depicts the specific sizes and channels. The overall architecture of the modified system aims
to capture finer spatial features of the input skeleton sequence. It does so by processing
frames at a lower temporal resolution in the earlier layers of the network while increasing
the temporal resolution in the deeper layers to capture fine-grained temporal dynamics
and hand motion information. The detailed architecture of the proposed 3D-CNN network
is shown in Figure 2.

Based on the optimal trade-off between computational efficiency and performance,
the final setting of the proposed lightweight Local Spatio-Temporal Embedding Estimator
is composed of four CNN blocks. The first block, also known as the stem layer, processes
an input tensor of C × T × V, representing a hand skeleton sequence, where C stands
for channel, T stands for temporal, and V stands for spatial dimensions. The kernel size
applied is 1× 32, considering neighborhoods of three joints since hand gestures are finer
than whole-body actions and operate on smaller spatial dimensions. Note that the temporal
stride is set to one to preserve the temporal resolution, while the spatial stride is three,
allowing the model to capture global patterns of the hand joints inside each frame. The
second block stacks several 3D-CNN layers with kernel sizes of 1× 32 and 1× 12, focusing
on processing local spatial joint information without mixing the temporal aspect. The last
two blocks, 3 and 4, introduce a kernel size of 3× 12, combining temporal information and
increasing the temporal receptive field to capture a wider temporal context.

For all blocks, batch normalization (BN) and rectified linear unit (ReLU) layers are
applied after each convolutional layer, helping to regularize the model. Moreover, residual
connections are adopted after each block to alleviate the problem of vanishing gradients
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and stabilize the network training. Consequently, the output of the 3D-CNN backbone is a
feature map of size S ∈ RTxD, where D represents the embedding dimension of the model.

Figure 2. Overview of the proposed Local Spatio-Temporal Embedding Estimator. By utilizing
3D convolutions, the model can handle the time-based evolution of skeleton joints, capturing their
temporal dynamics over successive frames. The dimensions of the kernels in the convolutional blocks
are represented as (T× S2, C), where T and S denote the temporal and spatial strides, respectively,
and C represents the number of channels. The choice of (T × S2) for the kernel dimensions is influ-
enced by the SlowFast and other 3D-CNN-based architectures commonly used for video recognition.
Experimental results verify that processing the input skeleton sequences with these temporal and
spatial resolutions facilitates the learning of hierarchical representations of the gestures.

The second stage, known as the Long-Term Embedding Estimator, focuses on inferring
long-term temporal interactions from the previous feature map, S, which contains local
spatio-temporal joint skeleton information. To achieve this, a Transformer neural net-
work [49] is employed, consisting of multiple Transformer encoder blocks that determine
the depth of the model. These encoder blocks refine and improve the representations by
capturing increasingly complex patterns and long-range dependencies. Each encoder block
utilizes a self-attention mechanism to draw long-term dependencies among the spatio-
temporal joint skeleton embeddings. Specifically, the Long-Term Embedding Estimator
comprises an initial embedding layer followed by N Transformer encoder blocks (as il-
lustrated in Figure 3). The best performance was achieved by employing N = 2 blocks
of the Transformer encoder. This result confirms our hypothesis that the spatio-temporal
embeddings obtained from the previous Local Spatio-Temporal Embedding Estimator rep-
resent high-level representations of the input skeleton sequence. Adding more Transformer
encoder blocks would propagate unnecessary information through the network, leading to
an insignificant improvement in accuracy.

The embedding layer takes every component of the feature map, S, as a token and
adds a positional embedding proposed by Vaswani et al. [49], which adopts the sine and
cosine functions with different frequencies.

Defining PE as the positional embedding; p and i as the position of the embedded
skeleton component and the total number of components of S, respectively; dmodel as the
dimension of the output embedding space; and sin and cos as the sine and cosine functions,
respectively, the positional embedding equation is represented as follows:

PE(p, 2i) = sin

(
p

10,000
2i

dmodel

)

PE(p, 2i + 1) = cos

(
p

10,000
2i

dmodel

) (1)

Next, the resulting embeddings are passed through the attention blocks, where a nor-
malization layer is applied, and three distinct new embeddings, namely, Query (Q), Key
(K), and Value (V), are computed using fully connected layers. Subsequently, the dot prod-
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uct, QKT , is calculated to determine the pairwise similarities between different components
of S, the input sequence. To ensure proper scaling, the dot product is normalized by a factor
of
√

dk, where dk represents the dimension of each embedding (Q or K) . The resulting
values are referred to as attention scores, and they contain information about the affinity of
each spatio-temporal joint skeleton embedding with respect to the others in the sequence.
These attention scores are further processed using the softmax function, which enables
them to represent the importance of each embedding in relation to the others. Finally,
the attention scores are used as weights to integrate the most relevant spatio-temporal
contextual information into each local joint skeleton embedding. This process is illustrated
in Equation (2), where Att represents the attention function.

Att(Q, K, V) = softmax

(
QKT
√

dk

)
·V (2)

MHA(s) = Concat(Att1(s), . . . , Att8(s)) ·Wo (3)

The attention block illustrated in Equation (2) is applied in a parallel fashion, known
as Multi-Head Attention (MHA) [49], by dividing the input embedding vector into parts,
which are processed by different heads or attention blocks. Each head learns a different
representation from different perspectives, which are then linearly combined into one final
feature vector. Specifically, eight heads are used, each with a dimension of 64. The attention
scores obtained from each head (Att1, . . . , Att8), where s denotes the input sequence of
the corresponding Transformer encoder block, are then concatenated using the Concat
operation. This concatenated output is projected into a vector of dimension dmodel = 512
using the matrix of learned parameters represented by Wo, as shown in Equation (3). The
number of attention heads, the embedding size of the model, and the head dimension
were determined based on the settings commonly applied in the literature and tuned by
the experimental observations performed in this work, taking into account the trade-off
between model size and performance.

Figure 3. The Long-Term Embedding Estimator implemented by the Transformer neural network.
Each encoder block in the Transformer consists of a Multi-Headed Attention (MHA) layer and a
Feed-Forward Neural Network (FFN). MHA enables the model to attend to different parts of the
input sequence simultaneously, allowing it to learn complex relationships and dependencies between
different joints in the hand skeleton. The FFN further refines the representations by applying non-
linear transformations. To enhance the training process and stabilize the learning, layer normalization
is applied before each layer in the encoder block. A global pooling layer (GAP) is applied to aggregate
the representations across all time steps. Finally, the aggregated feature representation is fed to the
classifier head, which predicts the final gesture.
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Each Transformer encoder block is composed of Multi-Head Attention (MHA) and
Feed-Forward Neural Network (FFN) blocks (Equations (4) and (5)). Given the input
sequence, sn−1, the feature representation, s

′
n, obtained by MHA is then passed to the FFN

block, which globally aggregates all the spatio-temporal skeleton information. As shown in
Equation (5), the FFN comprises a Multilayer Perceptron (MLP) and Layer Normalization
(LN). The MLP is composed of two fully connected layers, followed by a Gaussian Error
Linear Unit (GELU) activation function. The output of the Transformer encoder block is
added to the subsequent one, and the dimension of the embedding remains consistent
across all the encoder blocks.

s
′
n = MHA(LN(sn−1)) + sn−1 n = 1 . . . N (4)

sn = MLP(LN(s
′
n)) + s

′
n n = 1 . . . N (5)

In the final stage, the classifier head comprises a fully connected layer followed by a
softmax layer, which calculates a probability distribution across all hand gesture classes.
The predicted gesture is then determined to be the one with the highest probability.

4. Results and Discussion

This section provides a comprehensive explanation of the experimental setup used
to assess the performance of the proposed real-time hand gesture recognition system. It
includes the evaluation metrics and provides details about the hardware and software
configurations to ensure reproducibility and facilitate further research in the field.

4.1. Experimental Settings, Metrics, and Datasets

The proposed system was implemented using the PyTorch deep learning framework. It
was trained and evaluated on a server equipped with an Intel Core i7-4790 with a 3.30 GHz
CPU and 32 GB of memory, along with an Nvidia Titan Xp (12 GB) GPU. The proposed
model was trained with a batch size of 32 video samples for a total of 100 epochs. The Adam
optimizer was chosen to minimize the cross-entropy loss due to its adaptive learning rate
property. The initial learning rate was set to 1 × 10−3, with a weight decay of 1 × 10−4.
Furthermore, gradient clipping was applied to stabilize the training process by imposing
an L2 norm constraint on the gradient values. Specifically, if ||g|| ≥ c, then ||g|| is rescaled
to c, where ||g|| represents the L2 norm of the gradient, g, and c is the threshold for
the maximum norm, empirically set to 40. To avoid overfitting, we also applied the
“drop attention” strategy introduced by Zehui et al. [50] to regularize attention weights in
Transformer networks. This dropout rate of attention was set to 0.2, which randomly drops
20% of the columns of the attention weight matrix. This value was found to best generalize
the model after conducting several experiments.

Regarding metrics, prediction accuracy was used to evaluate the proposed model
using the standard top-1 accuracy. Equation (6) shows the general mathematical expression
for the top-k accuracy, where yi is the true label of the ith sample and ŷi,j represents the
corresponding predicted value for the ith sample and the jth highest probability score.

Acctop−k(y, ŷ) =
1

nsamples

nsamples−1

∑
i=0

k

∑
j=1

1(ŷi,j = yi) (6)

The Briareo [51] and Multimodal Hand Gesture [52] datasets were used to evaluate the
proposed hand recognition system. They contain RGB and IR images, unlike other related
datasets, such as the DHG 14/28 [23] and SHREC’17 track [53], easing the integration of the
system into a wide range of applications as no specialized sensors are required. The Briareo
dataset is focused on dynamic hand gesture recognition and contains 12 different classes
of gestures performed with the right hand by 40 different people (33 men and 7 women).
Each action is repeated three times and captures the entire motion of the gesture. The entire
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dataset contains 1440 sequences divided into training, validation, and test sets, with 65%,
15%, and 20% for each set, respectively. The authors of the Briareo dataset proposed this
specific data distribution, which has been widely adopted by other works to facilitate fair
and meaningful comparisons between different methods. The gestures were designed to
facilitate interaction between the driver and the vehicle information system. Figure 4 shows
an example of the RGB images containing different dynamic hand gestures in the Briareo
dataset. The conditions of acquisition are quite challenging since the illumination is very
low, the hand was visually blurred in several frames, and the shape of the fingers is not
well appreciated.

Figure 4. Examples of gestures in the RGB images from the Briareo dataset.

4.2. Results on Briareo Dataset

The proposed system, 3D-Jointsformer, is compared with other state-of-the-art meth-
ods on the Briareo dataset using RGB data in Table 1. C3D is a 3D Convolutional Neural
Network originally proposed by Tran et al. [54] for video classification. It is composed of a
backbone with five 3D convolution layers, each of which is followed by a pooling layer.
Then, the classification head is composed of two fully connected layers and a softmax layer.

The CNN-based architecture proposed by D’Eusanio [55] is based on a modified
DenseNet-161 architecture to adapt a 2D-CNN to a continuous input stream. The architec-
ture is composed of several dense transition blocks, with 161 layers in total. A 2D-CNN
architecture does not consider the temporal context and, therefore, cannot effectively
capture the hand motion dynamics over multiple frames.

Table 1. Comparison of the recognition accuracy of the proposed system against other state-of-the-art
methods on the Briareo Dataset.

Method Year Top-1 Acc (%)

C3D [51] 2019 72.2%
CNN-based [55] 2020 83.3%

ResNet-18 + Transformer [14] 2020 90.06%
Multiscale 3D-CNN [32] 2022 91.3%

STr-GCN [56] 2023 83.34%
3D-Jointsformer (Ours) 2023 95.49%

ResNet-18 + Transformer [14] is conceptually most similar to the proposed method
since it uses a 2D-CNN backbone based on ResNet-18 to extract spatial features at the frame
level and a Transformer to model the long-range temporal information of the spatial features
extracted by the backbone. However, the 2D-CNN only exploits the spatial information of
the input sequence, unlike the proposed 3D-CNN backbone that computes a local spatio-
temporal skeleton feature map, where each component encodes information about a subset
of joints along a short interval of time. Thus, the posterior Transformer architecture can
effectively capture long-term dependencies among different subsets of joints across all
time intervals.

Multiscale 3D-CNN [32] proposes another 3D-CNN-based backbone, Inflated 3D Con-
vNet, to extract spatio-temporal features from input sequences in a multimodal data fusion
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framework that combines RGB and depth data. Observe that the proposed method achieved
the best accuracy score, 95.49%, outperforming the other methods. The second best, Mul-
tiscale 3D-CNN, achieves an accuracy of 91.3%, almost 4.2% less than 3D-Jointsformer.
Notice also that the algorithm ResNet-18 + Transformer, the one reported as conceptually
most similar to 3D-Jointsformer, is not only significantly less accurate than 3D-Jointsformer
but also than Multiscale 3D-CNN. This proves that the neural network architecture of
3D-Jointsformer is definitely superior due to the proposed 3D-CNN architecture since it
effectively encodes subsets of joints (not just independent joints, nor all the skeleton) in
short-time intervals (not just one-time steps, nor all the hand gesture period), which are
then processed by the Transformer that captures long-range dependencies via the atten-
tion mechanism, integrating global information from the refined spatio-temporal features
extracted by the 3D-CNN. Slama et al. [56] proposed a hybrid network in which they
combine a spatial Graph Convolutional Network and a Transformer graph encoder for
skeleton-based hand gesture recognition. By employing this configuration oriented to
operate in real time, they have an accuracy of 83.34% compared to the previous Graph
Convolutional Network, which achieved an accuracy of 78.31%. Despite this advancement,
the performance of their approach still falls significantly short of the accuracy achieved by
the proposed 3D-Jointsformer at 95.49%.

Additionally, a fivefold cross-validation was conducted on the Briareo dataset to
mitigate the effects of data randomness and ensure the consistency of the proposed 3D-
Jointsformer’s performance. The average top-1 accuracy over the five folds of the dataset
is 95.21 ± 0.89%, which verifies the model’s performance and robustness. The confusion
matrix of 3D-Jointsformer shown in Figure 5 allows an analysis of the system’s accuracy
per hand gesture. The values on the diagonal represent the normalized percentage of
gestures correctly classified by the model, indicating a robust and consistent accuracy
score. The proposed 3D-Jointsformer has demonstrated accurate recognition in 8 out of
the 12 hand gesture classes present in the Briareo dataset. However, certain hand gesture
classes, such as clockwise rotation, right swipe, bottom–up swipe, and left swipe, inherently
pose more complexity and challenges for precise detection. This difficulty is due to the
temporal symmetry and near-identical spatial localization of the hand keypoints in those
closely related gestures. Despite these challenges, the 3D-Jointsformer achieved respectable
accuracy rates, correctly identifying 91.9% of the clockwise rotation gesture, 87.5% of the
left-swipe gesture, and 83.3% of the right-swipe and bottom–up-swipe gestures.

Figure 5. Confusion matrix results on the Briareo dataset.
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4.3. Ablation Study on Briareo Dataset

An ablation study is presented to measure the influence of the embedding strategy
for the input skeleton sequences on the final system performance. The proposed 3D-CNN
strategy is compared to a standard and widely used linear projection composed of two fully
connected layers followed by a GELU non-linear layer, which extracts a D-dimensional
skeleton feature vector per video frame used as tokens for the Transformer. Table 2 shows
the accuracy results of both embedding strategies. Observe that the proposed 3D-CNN-
based embedding used in the 3D-Jointsformer significantly improves the accuracy by 7.53%.
The main reason is that the linear embedding does not consider the local spatial–temporal
correlations among the joints.

Table 2. Effect of different embedding strategies for the input skeleton sequences on the Trans-
former architecture.

Model Configuration Top-1 Acc (%)

Transformer with linear embedding 87.96%
Transformer with 3D Convolutional embedding 95.49%

Another ablation study was carried out to measure the impact of using a Transformer
to capture long-term relationships by comparing the strategy adopted in a 3D-Jointsformer
with a 3D-CNN network followed by Global Temporal Average Pooling plus a fully con-
nected layer. Table 3 shows the results, revealing that the Transformer block can further
improve the accuracy by 1.74%.

Table 3. Comparison of the accuracy in two settings: 3D-CNN followed by a Global Temporal
Average Pooling (GTAP) and 3D-CNN followed by a Transformer encoder.

Model Configuration Top-1 Acc (%)

3D-CNN + Global Temporal Average Pooling 93.75%
3D-CNN + Transformer encoder 95.49%

Regarding computational cost, 3D-Jointsformer is very lightweight and efficient,
with only 8.8 M parameters and 0.17 GFLOPs, which achieves a top-1 accuracy of 95.49%,
as previously shown. Thus, it can operate in real time for hand gesture recognition applica-
tions. Moreover, it can operate not only in GPU real time but also in CPU. More specifically,
the 3D-Jointsformer can process 2790 skeletons/s and 2569 skeletons/s for GPU and CPU,
respectively. To ensure a consistent comparison, the metrics reported and the evaluation
format are calculated, as described in the referenced paper [51]. It is important to note that
the inference time mentioned does not account for the additional processing time required
for Hand Skeleton Detection. Additionally, Table 4 shows the inference time results per
frame of 3D-Jointsformer and C3D, revealing that 3D-Jointsformer is much faster than C3D.

Table 4. Comparison of the inference time results.

Model Hardware Architecture Inference Time (ms)

Briareo (C3D)
CPU (Intel i7-6850K, 64 GB) 4010 ± 240

GPU (Nvidia 1080 Ti) 1.96 ± 0.49
GPU (Nvidia Titan X) 1.87 ± 0.77

Ours (3D-Jointsformer) CPU (Intel Core i7-4790, 32 GB) 0.486 ± 0.016
GPU (Nvidia Titan Xp) 0.448 ± 0.007

4.4. Ablation Study on the Multimodal Hand Gesture Dataset

The recognition capabilities of the proposed method were also evaluated on the
Multimodal Hand Gesture Dataset (MMHGD) [52]. The dataset consists of infrared imagery
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comprising 16 static hand gesture classes acquired by a Leap Motion device. In total,
25 subjects (8 women and 17 men) participated in recording the dataset. Each gesture
has 20 instances (repetitions) per subject, performed in different locations in the image.
The dataset was split into train, validation, and test set, with 60%, 20%, and 20% for each
set, respectively.

The results, as reported in Table 5, compare the two different system configurations
presented in Table 2. Observe that, similarly to the previous dataset results, the Transformer
network captures better long-term dependencies, reaching a better accuracy (0.5% higher).
Nonetheless, the margin of improvement is less than with the previous dataset. This is due
to the fact that the temporal information in static hand gestures (the ones in the MMHGD
dataset) is less relevant than in dynamic ones (those in the Briareo dataset).

Table 5. Comparison of the performance of different model configurations on the MMHGD dataset.

Model Configuration Top-1 Acc (%)

3D-CNN + Global Temporal Average Pooling 96.75%
3D-CNN + Transformer Encoder 97.25%

Figure 6 presents the confusion matrix of 3D-Jointsformer, where it can be observed
that it correctly classifies gestures with very high accuracy in all classes.

Figure 6. Confusion matrix of results on the Multimodal Hand Gesture Dataset (MMHGD).

5. Conclusions

In conclusion, this work introduces a novel hybrid neural network for skeleton-based
hand gesture recognition, effectively capturing both local spatio-temporal information and
long-term dependencies. The primary objective was to develop a real-time model using only
the CPU without sacrificing accuracy. The proposed architecture combines a Local Spatio-
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Temporal Embedding Estimator utilizing 3D-CNN to capture local patterns and a Long-
Term Embedding Estimator based on a Transformer to model sequential dependencies. One
of the model’s notable achievements lies in its real-time operation, which addresses the long-
standing challenges of rapid data processing in many real-world scenarios. Through careful
network design and computational efficiency optimization, the model achieves real-time
performance without compromising accuracy. The experimental results on two publicly
available datasets demonstrate the superiority of the proposed hybrid neural network over
state-of-the-art methods, achieving accuracy rates of 95.49% on the Briareo dataset and
97.25% on the Multimodal Hand Gesture dataset. For future studies, real-world deployment
will be addressed by conducting experiments and evaluations of the model’s performance
in real-world settings. Feedback should be gathered to assess the model’s usability and
user experience, ensuring it meets the needs of the intended applications. This work
lays a strong foundation for advancing skeleton-based hand gesture recognition systems
with broad implications in human–computer interactions, gaming, robotics, and assistive
technologies.
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