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Abstract: In this paper, we investigate a user pairing problem in power domain non-orthogonal
multiple access (NOMA) scheme-aided satellite networks. In the considered scenario, different
satellite applications are assumed with various delay quality-of-service (QoS) requirements, and
the concept of effective capacity is employed to characterize the effect of delay QoS limitations on
achieved performance. Based on this, our objective was to select users to form a NOMA user pair and
utilize resource efficiently. To this end, a power allocation coefficient was firstly obtained by ensuring
that the achieved capacity of users with sensitive delay QoS requirements was not less than that
achieved with an orthogonal multiple access (OMA) scheme. Then, considering that user selection in
a delay-limited NOMA-based satellite network is intractable and non-convex, a deep reinforcement
learning (DRL) algorithm was employed for dynamic user selection. Specifically, channel conditions
and delay QoS requirements of users were carefully selected as state, and a DRL algorithm was
used to search for the optimal user who could achieve the maximum performance with the power
allocation factor, to pair with the delay QoS-sensitive user to form a NOMA user pair for each state.
Simulation results are provided to demonstrate that the proposed DRL-based user selection scheme
can output the optimal action in each time slot and, thus, provide superior performance than that
achieved with a random selection strategy and OMA scheme.

Keywords: NOMA-based satellite networks; delay QoS limitation; user pairing

1. Introduction

Due to the inherent nature of providing vast coverage and economic service, satellite
communication has the ability to effectively supplement terrestrial networks during disas-
ters and in rural and deserts areas; thus, it has been considered as an important component
for next-generation wireless networks [1]. However, the dramatically increased demand
for data access can result in even bigger challenges, including massive connectivity, limited
power/spectral resources, and various quality of service (QoS) requirements, in future satel-
lite networks. Recently, non-orthogonal multiple access (NOMA) schemes, including power
domain NOMA [2] and code domain NOMA [3], featuring multiple access, high resource
utilization efficiency, and user fairness, has become a promising solution to alleviate these
challenges faced by future satellite networks. Of these two schemes, power domain NOMA
(or simply NOMA for short) scheme, which has the ability to harmoniously integrate with
orthogonal multiple access (OMA) techniques in existing satellite architectures, is the main
motivation and focus of this article.

In a NOMA-based satellite network, a satellite/multiple users can simultaneously
communicate with multiple users/a satellite in downlink/uplink transmissions by super-
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posing various signals with different power levels in the same time/spectral block. To date,
many works have investigated the performance enhancement of various NOMA-based
satellite networks, such as the improved outage probability in integrated satellite terrestrial
relay networks with perfect successive interference cancellation (SIC) [4], augmented ero-
godic capacity in uplink satellite communications [5], and increased network utility in the
satellite-based internet of things [6]. An extension of work [4] to an imperfect SIC scenario
with Alamouti space–time block coding was studied in [7]. Moreover, some works studied
resource management of the NOMA-based satellite network from the perspective of in-
creasing system resource efficiency, e.g., aiming to maximize long-term age of information,
the authors in [8] utilized a ListNet algorithm and a particle swarm optimization algorithm
to obtain an optimized power allocation solution in a satellite-based internet of things
scenario. Similarly, the work in [9] proposed a joint subchannel assignment and power
allocation algorithm to further optimize the sum rate of a secondary network in cognitive
satellite–unmanned aerial vehicle–terrestrial networks. Although NOMA-based satellite
networks can enhance spectrum/power utilization efficiency and a system’s performance,
we must note that these Shannon performance enhancements were achieved by selecting
users with distinctive differences in channel gains to form a NOMA pair, which is only
suitable for a system with delay-insensitive applications.

However, with rising technological developments in wireless communications, new
satellite applications with diverse delay QoS requirements have occurred to facilitate our
daily life and provide more efficient service, such as applications on smart grids, environ-
mental monitoring and forecasting, navigation, smart cities, and telemedicine. Among these
applications, telemedicine and smart grids are identical delay-critical scenarios, while envi-
ronmental monitoring is a typical delay-tolerant scenario. Thus, Shannon capacity, which
fails to take users’ diverse delay QoS requirements into consideration, is no longer suit-
able to use in future satellite networks to characterize the performance of real-time and
delay-sensitive applications/scenarios, and it is of paramount importance to study the
achievable performance of satellite networks under heterogenous delay QoS requirements.
Under these conditions, the concept of effective capacity, which was proposed in [10] as
an effective performance metric to show the maximum constant arrival rate with a given
delay QoS constraint, has been introduced in various satellite communication scenarios to
show the adverse impact of delay QoS limitations on system performance [11–14], such
as the authors in [11], who proposed an algorithm to schedule users in different time
slots while guaranteeing users’ delay QoS requirements in a satellite–terrestrial backhaul
network. In cognitive satellite–terrestrial networks, the effective capacity was introduced to
guarantee the delay requirement of a primary user [12], whose extension to study effective
energy efficiency of the same networks was studied in [13]. Moreover, work [14] studied
the achieved effective capacity of a NOMA-based satellite system with delay adhering
to users’ service requirements. Although these aforementioned works have shown the
negative impact of delay QoS requirements on OMA-/NOMA-based satellite networks,
how to select users in a NOMA based system, i.e., whether it is effective to only select users
with big channel differences, to form a NOMA pair has not been investigated.

It is worth noting that, in addition to free space loss (FSL), antenna gain, fading
severity, and location information in a beam spot can also influence the link budget of a
satellite user, all of which, combined with users’ various delay QoS requirements, make the
user grouping in a NOMA-based system nontrivial, especially in satellite networks, which
are highly applied in military and civilian fields. To solve this challenge, a supervised
learning algorithm, with which solutions can be obtained without model-oriented analysis
and design, as an effective solution for resource management has been widely used in
several prior works, such as work [15], which proposed a genetic algorithm (GA)-improved
support vector machine scheme to effectively pair users for NOMA-based satellite net-
works. A fully connected deep neural network-assisted approach was studied in [16,17]
to facilitate efficient beam hopping and design beam illumination pattern in multibeam
satellite systems, respectively. The work in [18] proposed an accurate forecasting method
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by using deep neural networks for LEO satellite links. Notably, supervised learning, such
as the algorithms used in [15–18], needs to learn characteristics from input data and desired
output data, while a reinforcement learning (RL) algorithm, which is model-free and data-
driven, has been extensively adopted in various wireless networks with different objectives.
For example, based on Q-learning, an algorithm for jointly optimizing user pairing and
power allocation was proposed in [19] to maximize the total sum rate of a satellite random
access system. Considering large-scale low-earth orbit constellations, the work in [20]
developed a low-complexity successive deep Q-learning algorithm for optimal satellite
handover. The authors in [21] proposed a Q-learning NOMA-based random access scheme
for time slot and channel allocation in satellite–terrestrial relay networks. In [22], the au-
thors adopted a graph neural network and RL algorithms in a hybrid satellite–terrestrial
network to optimize UAV trajectory and maximize the number of served users. In [23,24],
the authors conducted resource management in a relay-aided network with the help of
distributionally robust deep RL (DRL) and enhanced DRL algorithms, respectively.

Motivated by these observations, for the work herein, we leaned upon a DRL algo-
rithm to pair users and provide services with various delay QoS requirements for future
NOMA-based satellite networks (since this paper’s aim was to pair users in delay-limited
NOMA-based satellite networks with a DRL algorithm, while the impacts of low-density
parity check codes [25] in NOMA-based satellite networks will be our follow-up research.).
The main contributions of this work can be described as follows:

• The concept of effective capacity is employed to measure the rate achieved with a given
delay QoS constraint, based on which, a power allocation coefficient is firstly obtained
by ensuring the achieved capacity of users with sensitive delay QoS requirements is
not less than that achieved with an OMA scheme, and then, the user pairing problem
is formulated with the aim of maximizing the sum effective capacity of the considered
system;

• Because various delay QoS requirements have varying negative impacts on users’
capacity, user pairing in a NOMA-based network with various delay QoS constraints
is different from that in traditional NOMA-based delay-insensitive system. In this
condition, to maximize system capacity with the obtained power allocation factor,
when the delay-critical user is fixed, a DRL approach is introduced to select one user
who has relatively insensitive delay requirement and good link condition, compared
to the other users, to optimize NOMA user pairing with low complexity;

• The proposed DRL-based NOMA user pairing strategy is compared to an OMA
scheme and NOMA with a random user-selecting scheme, which reveal the superi-
ority of introducing the NOMA scheme and DRL algorithm in the satellite networks
from the perspective of performance enhancement. Specifically, the advantage of the
proposed approach is achieved by selecting the most suitable delay tolerant user to
pair with the delay-sensitive user and form a NOMA user group in each time slot.

The rest of this paper is outlined as follows. The system model is presented in Section 2.
Section 3 introduces the concept of effective capacity, obtains the power allocation scheme
by ensuring the achieved capacity of the user with sensitive delay QoS requirement is not
less than that achieved with the OMA scheme, and formulates the user pairing problem
for the delay-limited NOMA-aided satellite network. In Section 4, a DRL algorithm is
described in detail and tested in the proposed system. Performance results are discussed
and conclusions are given in Sections 5 and 6, respectively.

2. System Model

Consider a downlink NOMA-based satellite system that is designed to serve m (m ≥ 2)
users with the help of the NOMA scheme. These m users are randomly deployed in an
area approximated as a circle of radius R with different channel statistical prosperities and
delay QoS requirements. (In this paper, channel estimation errors, co-channel interference,
complexity, and mobility constraints are not taken into consideration in the proposed
system model; the influences of these parameters on user selection and system performance
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will be a focus in our future works, based on the contributions in the current work.) Without
loss of generality, users are ordered based on their link budgets, i.e., Q1 ≤ Q2 · · · ≤ Qm,
where Qj is the link budget of User j (j = 1, 2, · · · , m). For simplicity, we further assume
only the cth and tth users (1 ≤ c < t ≤ m) are selected to form a NOMA group, and each
user in the proposed model is equipped with a single antenna.

Thus, the received signal at User j (j = c, t) is

yj = Qjx + wj, (1)

where wj denotes the noise at User j with zero mean and δ2 variance, x = ∑j=c,t

√
α

p
j Psxj is

the superposed signal (with α
p
j being a fraction of the transmission power Ps allocated to

User j and xj (E[|xj|2] = 1) being the signal for User j), Qj (including FSL, antenna gain,
beam gain, and fading model) is the entire link budget from satellite to User j, which can
be described as follows:

Qj = ΦjGs
(

ϕj
)∣∣gj

∣∣2, (2)

where Φj = LjGj, with Lj and Gj being the FSL and antenna gain at User j, respectively.
Gs
(

ϕj
)
, which is the beam gain of User j, with ϕj denoting the angle between User j and

beam center with respect to the satellite, can be approximated as [5]

Gs
(
ϕj
)
≈Gmax

(
J1
(
adj
)

2adj
+36

J3
(
adj
)

a3d3
j

)2

=Gs
(
dj
)
, (3)

with Gmax representing the maximum antenna gain, Jn(·) being the Bessel function of first
kind and n-th order, dj being the distance from the beam center to User j, and a = 2.07123/R.∣∣gj
∣∣2 is the channel power gain of the satellite link, which is assumed to follow a widely

applied Shadowed Rician fading model [26–30]. According to [31], the probability density
function (PDF) of

∣∣gj
∣∣2 is

f|gj|2(x) = αje
−β jx1F1

(
mj; 1; δI x

)
, (4)

where αj=
(2bjmj)

mj

2bj(2bjmj+Ωj)
mj , δj=

Ωj

2bj(2bjmj+Ωj)
, β j=

1
2bj

with 2bj and Ωj, respectively, being

the average power of the multipath and the LoS components, mj
(
mj > 0

)
denoting the

Nakagami-m fading parameter, and 1F1(a; b; c) representing the confluent hypergeometric
function ([32], Equation (9.14.1)).

Based on the principle of the downlink NOMA scheme, decoding order is decided
by users’ channel qualities, i.e., the user with a worse link condition decodes its own
information firstly and directly. Thus, the signal-to-interference-plus-noise ratio (SINR) of
User c is

γN
c =

α
p
c γΦcGs(dc)|gc|2

α
p
t γΦcGs(dc)|gc|2 + 1

=
α

p
c γQc

α
p
t γQc + 1

, (5)

where α
p
c +α

p
t =1 and γ=Ps/δ2 is the average transmission SNR. At the same time, the user

with better channel quality, i.e., User t, adopts the SIC strategy to decode and remove the
interference from User c; the decoding SINR can be derived as

γN
t→c =

α
p
c γΦtGs(dt)|gt|2

α
p
t γΦtGs(dt)|gt|2 + 1

=
α

p
c γQt

α
p
t γQt + 1

. (6)
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We can derive that γN
c <γN

t→c, since Qc <Qt. Then, User t decodes its own information,
and the achieved SINR is

γN
t = α

p
t γΦtGs(dt)|gt|2 = α

p
t γQt. (7)

3. Effective Capacity and Power Allocation
3.1. Effective Capacity

To provide services with different delay QoS requirements, the concept of effective
capacity is employed to characterize the effect of delay QoS limitation on achieved per-
formance, characterized by θ (θ ≥ 0) [10]. In this paper, the uncorrelated service process
across different slots is further assumed and the normalized effective capacity is adopted.
Under these conditions, given a delay QoS exponent θj, the normalized effective capacity
of User j in bps/Hz is

Cj
(
θj
)
=
−1

θjTf B
ln
(
E
{

e−θjTf BRj
})

=
1

ψjln2
ln
(
E
[(

1 + γj
)ψj
])

, (8)

where ψj =−θjTf B/ln2, with Tf and B being the frame duration and the occupied band-
width, respectively, Rj = log2(1 + γj) is User j’s transmission rate, and E is the expectation
operator. We note that a larger/smaller delay QoS exponent θj is required in a more
critical/tolerant delay-limited scenario.

3.2. Power Allocation Strategy

To ensure the capacity achieved by the user with a critical delay QoS requirement
using the NOMA scheme is always better than that with the TDMA scheme, the power
allocation coefficient should be further constrained. In this section, a power allocation
scheme is investigated for two cases, i.e., User c in Case 1 and User t in Case 2 are assumed
to be delay-sensitive users.

For Case 1, θc > θt is assumed and the power allocation factor is limited by CN
c (θc) ≥

CT
c (θc) , where

CN
c (θc) =

1
ψcln2

ln
(
E
[(

1 + γN
c

)ψc
])

, (9)

and

CT
c (θc) =

1
ψcln2

ln
(
E
[(

1 + γT
c

)0.5ψc
])

, (10)

with γT
j = γΦjGs

(
dj
)∣∣gj

∣∣2 = γQj being the SINR of User j (j = c, t) achieved with the
TDMA scheme, and 0.5 owes to the loss in multiplexing in the TDMA system. By substitut-
ing (5) into (8), along with some manipulations, α

p
c can be derived as

α
p
c ≥ 1− 1√

1 + γQc + 1
, (11)

which means that the value of α
p
c is decided by γ, location information, and fading severity

of User c.
For Case 2, θt > θc is considered, and factor α

p
c is limitied by restriction condition

CN
t (θt) ≥ CT

t (θt), with

CN
t (θt) =

1
ψtln2

ln
(
E
[(

1 + (1− α
p
c )γQt

)ψt
])

, (12)
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and

CT
t (θt) =

1
ψtln2

ln
(
E
[
(1 + γQt)

0.5ψt
])

. (13)

Then, we can obtain

α
p
c ≤ 1− 1√

1 + γQt + 1
. (14)

Based on the power allocation coefficient obtained in (11) for Case 1 or (14) for Case 2,
the effective capacity of User c can be given by

CN
c (θc) =

1
ψcln2

ln
(
E
[(

1 + γN
c

)ψc
])

=
1

ψcln2
ln

(∫ Rj f

Rjn

∫ ∞

0

(
1 + γN

c

)ψc
f|gc |2

(x) fdc(y)dxdy

)
, (15)

where fdj(y)=
2y

R2
j f−R2

jn
is the PDF of User j’s location [4] if it distributes in an annular area

with inner radius Rjn and outer radius Rj f . To evaluate (15), we first express 1F1
(
mj; 1; δjx

)
in (4) and (1 + x)a in terms of the Meijer G-functions from Equation (9.34.8) in [32] and
binominals represented by Equation (1.11) in [32], as

1F1
(
mj; 1; δjx

)
=

1
Γ
(
mj
)G1,1

1,2

[
−δjx

∣∣∣∣ 1−mj
0, 0

]
, (16)

and

(1 + x )a =
∞

∑
k=0

Γ(a + k)
k!Γ(a)

xk, (17)

where G1,1
1,2 [·|·] ([32], Equation (9.301)) is the Meijer-G function and Γ(·) ([32], Equation

(8.310.1)) is the Gamma function. Then, inserting (4), (5), (16)–(17) into (15) along with ([32],
Equation (7.813.1)), we obtain the result as

CN
c (θc) =

1
ϕc ln 2

ln

αc

∞

∑
k=0

∞

∑
m=0

(
1− α

p
c

)k
Φm+k

c γm+kGmaxΓ(m + ϕc)Γ(k− ϕc)

βk+m+1
c k!m!Γ(mc)Γ(−ϕc)Γ(ϕc)

× G1,2
2,2

[
− δc

βc

∣∣∣∣−k−m, 1−mc
0, 0

]∫ Rc f

Rcn

(
J1(ay)

2ay
+

J3(ay)
a3y3

)2 2y
R2

c f − R2
cn

dy

)
. (18)

By further defining Ψc to denote the integration part of (18) and, with the help of
Equation (8.442.2) in [32], we obtain

Ψc =
∞

∑
n=0

Θ(n)
(−1)na2n

(
R2n+2

c f − R2n+2
cn

)
n!4n(2n + 2)

(
R2

c f − R2
cn

) , (19)

where

Θ(n) =
F(−n,−1− n; 2; 1)

16Γ(2 + n)
+

F(−n,−1− n; 4; 1)
8Γ(4)Γ(2 + n)

+
F(−n,−3− n; 4; 1)

32Γ(4)Γ(4 + n)
, (20)

with F(a, b; c; d) being the hypergeometric function ([32], Equation (9.100)). Finally, substi-
tuting (19) and (20) into (18), the desired result for the expression of CN

c (θc) can be obtained.
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Similarly, the effective capacity of User t can be given by

CN
t (θc) =

1
ψtln2

ln
(∫ Rt f

Rtn

∫ ∞

0

(
1 + γN

t

)ψt
f|gt |2

(x) fdt(y)dxdy
)

. (21)

By substituting (4) and (7) into (21) and following with the similar steps as those in
the derivation of (12), the effective capacity expression of User t can be derived as

CN
t (θt) =

1
ϕt ln 2

ln

 ∞

∑
k=0

αtΓ(ϕt + k)
(

α
p
t γ̄Φt

)k

k!Γ(ϕt)Γ(mt)βk+1
t

G1,2
2,2

(
−δt

βt

∣∣∣∣−k, 1−mt
0, 0

)

×
∞

∑
n=0

Θ(n)
(−1)na2n

(
R2n+2

c f − R2n+2
cn

)
n!4n(2n + 2)

(
R2

c f − R2
cn

)
. (22)

Then, the sum effective capacity of the considered system can be given as CN =
CN

c (θc) + CN
t (θt).

3.3. Problem Formulation

Although the closed-form expression of sum rate for the considered system has been
derived, we must note that the rate of User j (j = c, t) is influenced by many factors, such
as delay exponent θj, transmission SNR γ, fading severity, location information dj, and α

p
j .

Thus, to expressively show the different impacts of these key parameters on the achieved
performance, the normalized effective capacity of User j is plotted in Figure 1, where ILS,
AS, and FHS are infrequent light shadowing, average shadowing, and frequent heavy
shadowing, respectively.
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Figure 1. Normalized effective capacity versus delay exponent θj for various SNR γ, fading severity,
and location information dj, when α

p
j = 1.

From Figure 1, we can directly observe that, when θj → 0, effective capacity converges
to the ergodic capacity, since only delay-insensitive traffic is needed. However, when
θj > 10, even for case α

p
j = 1, effective capacity reduces to 0 due to the required delay QoS

being too stringent. Thus, the range of User j’s delay limitation is assumed to be constrained
as θj ∈ [0.5, 10] in this paper. In addition, an increased dj, i.e., a worse fading severity,
or decreased γ can degrade the capacity curves. Moreover, all capacity curves decrease
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with increasing θj. This observation clearly indicates that the achieved performance suffers
from a combination of these factors, although, in both Case 1 and Case 2, it seems like a user
with the smallest delay QoS exponent, nearest location information, and best shadowing
should be selected as User t/c and paired with the User c/t in Case 1/2 to maximize
the sum performance of the considered system. Conversely, while in a spot beam, the
user with the nearest location information or best fading condition may have a relatively
large θ, or vice versa. Thus, how to select User t/c in Case 1/2 is a vital issue in a delay-
limited scenario.

For simplicity, herein, we mainly focus on the user pairing in Case 1, which means
that α

p
c must meet CN

t (θt) ≥ CT
t (θt). Then, the optimization problem is to find a user who

can obtain the best power utilization efficiency, after taking into account link budget and
delay QoS requirement, to be the User t. The mathematical formulation of this problem can
be denoted by P1 and formulated as

P1 : max
{dt ,Qt ,θt}

CN
t (θt)

s.t. C1 : Qt > Qc, t ∈ 1, 2, · · · , c− 1, c + 1, · · · , m;

C2 : (11), θc > θt > 0;

C3 : dc,t ≤ R. (23)

In the aforementioned problem, C1 ensures that the link budget of User t must be
better than that of User c to successfully perform SIC; C2 denotes that, in Case 1, the
resource allocation threshold in (11) must be ensured to guarantee the minimum data rate
requirement of User c, and C3 implies that the limited location information of Users c and t.

4. DRL for Delay-Constrained User Pairing

The deep Q-network (DQN) algorithm, which combines the advantages of Q-learning
and deep neural networks, is one of the most representative value-based method in the
DRL family, with which the expected returns of actions can be predicted based on a certain
environmental observation; a framework of applying such an algorithm in user pairing for
the considered system is provided in Figure 2. (The DQN method is the classical approach
in the DRL family, whose complexity analysis is not provided in this paper—the interested
reader can refer to [33].) Although DRL deployment causes more delay, it is believed that
this delay can be significantly decreased with the improvement of chip processing speed).

Since our objective in problem P1 is to choose an appropriate user to be User t at
different time slots to maximize the power resource utilization, we thus define a tuple
M̄ :=< S, A, R, π > to model this problem as a Markov decision process (MDP) for a
stationary decision. Specifically, S means the state and observation space, A represents
the set of actions, R means the designed reward, and π is the policy that makes the
decision. Meanwhile, Qπ(sl , al) is defined as the Q-value obtained with policy π when the
environment is in state sl while adopting action al at the lth time slot. For the problem P1,
key elements, such as the states, actions, and cost, in an MDP model are described in detail
as follows:

• State S: At time slot l, a tuple denoted by sl = (Ps, Φj, dj, gj, θj), sl ∈ S is used
to describe the system state, where Ps, Φj, dj, gj, θj are transmission power, antenna
gains, location information, fading severity, and delay QoS exponent of User j (j =
1, 2, · · · , c − 1, c + 1, · · · , m), as analyzed in Sections 2 and 3, respectively. Since sl
varies in different time slots, the agent is required to adjust its action in each slot
accordingly;

• Action A: NOMA user pairing is important for NOMA-aided satellite networks with
delay QoS constraints because it directly impacts the resource utilization efficiency.
Thus, user selection should be designed based on current state; here, we set the action
space as [A = 1, 2, · · · , c− 1, c + 1, · · · , m], and then al = m means the mth user is
selected to be the User t;
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• Reward design: Equation (11) must be satisfied to ensure that User c’s performance
achieved with the NOMA scheme is not less than that achieved with the TDMA
scheme. Based on this, our objective is to select a user to be User t who, with the
remaining power resource, can achieve the largest effective capacity. Thus, if User j is
selected at time slot l, the reward is assigned as

CN
j
(
θj, l
)
= CN

j
(
θj
)
, (j = 1, 2, · · · , c− 1, c + 1, · · · , m) (24)

As can be seen from Figure 2, the DQN algorithm has two phases. In the data-
generation phase, Q-learning with experience pool D is used to generate data for the next
network-training phase. In this process, the agent chooses an action al according to its
observation sl under policy π. To trade off between exploration and exploitation, ε-greedy
exploration is used here, which means, for state sl , a random action with probability ε
(0 < ε < 1) or the best action with probability (1− ε) is chosen to be action al . With this
ε-greedy policy, Q-value function Qπ(sl , al), which describes the expected Rπ(l), can be
given by

Qπ(sl , al) = E(Rπ(l)|S = sl , A = al ). (25)

s

aN a2 a1

s

s

s a2 R2 s3

s a1 R1 s2

s aN RN sN

Q

Figure 2. DQN-based NOMA user pairing model.

This Q-value function is updated with

Qπ(sl , al) = Qπ(sl , al)(1− ᾱ) + ᾱ

(
Rπ(l) + γ̂ max

al+1

Qπ(sl+1, al+1)

)
, (26)

where ᾱ and γ̂ are the learning rate and discount factor, respectively. The best action can
be written as a?l = max

al∈A
Qπ(sl , al). Following the environmental transition resultant from

variations in users’ link budgets and delay QoS limitations, the tuple (sl , al , Rl , sl+1) at the
lth time slot is collected and stored in the experience pool, in which the old tuple gives
space to the newest tuple (if the pool is full).

Considering that the number of satellite users in a beam spot could be very large,
the size and computation efficiency of Q values of (25) for all possible actions are large
and low. In this context, deep neural networks parameterized by θ

′
and θ, called target

DQN and training DQN, respectively, are used in the neural network training phase to
estimate the Q-value by function approximations. As shown in Figure 2, the target of the
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DQN is to estimate the maximum Q-value for the next state, i.e., maxat+1 Q
(

st+1, at+1; θ
′
)

.
The training DQN network is deployed to make an action decision and estimate the Q-value
for the current state, whose loss function can be written as

L(θ) = E
[(

Rπ(t) + maxat+1
Q
(

st+1, at+1; θ
′)−Q(st, at; θ)

)2
]

. (27)

Using stochastic gradient descent to minimize the function in (27), the correct weights
of θ can be learned by the training DQN. The weights θ

′
are frozen for several steps and

then updated by setting θ
′
= θ for the goal of stabilizing the training. The specific steps for

the training DQN to select one from many users to be User t is given in Algorithm 1.

Algorithm 1: DQN Algorithm-based NOMA User Pairing in Satellite Networks.

Initialization: ᾱ, γ̂, pool capacity D, θ, θ
′
, state s0, l=k=1, parameter C.

while k≤K do
for l≤ T do

Observe state sl ;
Choose action al under policy π;
Perform action al , observe reward Rπ(l), and next state sl+1;
Store tuple (sl , al , Rπ(l), sl+1) in pool;
if number of tuples in pool is larger than Np then

Sample random mini-batch of tuples (sl , al , Rπ(l), sl+1) from D;
Update θ by performing stochastic gradient descent on (27);
Set θ

′
= θ in every C steps.

end
end
k=k+1;

end
Output: In each time slot, a user who can achieve the biggest capacity with the

power factor in (11) is selected to be User t.

5. Results

In this section, simulation results are provided to characterize the effects of users’
specific delay QoS requirements on the power allocation scheme, user selection strategy,
and system performance. Without loss of generality, we assumed Tf B = 1, the carrier
frequency as 4 GHz, and radius R = 125 km [5,13]. Moreover, we set the number of users
as 150, the fading severities, location information, and delay requirements of these users
were randomly generated within [ILS, AS, FHS], [0, 1R], and [0.5, 10], respectively, to show
the various channel conditions, locations, and application scenarios of different satellite
users. The delay QoS exponent of the delay-sensitive user, i.e., User c, was set as θc = 9.38,
and the label (ILS/AS) denotes the link-shadowing severity of User t/User c in this paper.

We first conducted numerical simulations to show the impact of shadowing, γ, and dc
on the power allocation coefficient α

p
c , as illustrated in Figure 3. From this figure, we

can clearly see that, when User c experiences a lighter shadowing, a higher γ, or a closer
location information dc, a larger α

p
c is needed to ensure that the performance achieved

with the NOMA scheme is not less than that achieved with the TDMA scheme, which is
consistent with the analytical result given in (11). In the following simulations, α

p
c was set

to meet the condition of CN
c (θc) = CT

c (θc) without other descriptions. Moreover, it can be
observed that the analytical results were all consistent with the Monte Carlo simulations.

Then, simulations were conducted to illustrate the capacity of User t achieved with
the NOMA scheme and TDMA scheme versus delay requirement θt, shown in Figure 4),
from which we can clearly observe that the capacity curves all degrade with increasing
θt. This is an expected result because a larger θt means a smaller tolerated delay outage
and a lower supported constant arrival rate. Moreover, we find that the superiority of the
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NOMA scheme gradually decreases with increasing delay limitation θt, i.e., when θt ≥ 100.4,
the capacity gap between NOMA and TDMA curves almost disappears. The superiority of
the NOMA scheme, for the case θt < 100.4, is significantly upgraded for a larger γ, a lighter
fading severity of User t, or a smaller dt. This is because any of these factors corresponds to
a more favourable condition. This phenomenon suggests that, in addition to the shadowing,
dt, and γ, θt must be taken into account to form a flexible NOMA user group and ensure
the superiority of NOMA-based satellite networks.
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Figure 3. Effective capacity of User c achieved with TDMA and NOMA schemes versus α
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c under

various system parameters.
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Figure 4. Effective capacity of User t for two access schemes versus θt with various γ, dt, and fading
severities, when dc ∈ [0.6R, R] and α

p
t = 1− α

p
c .

Finally, the DQN algorithm was adopted to select one from many users to be User t
and pair them with User c to form a NOMA user group. Specially, since the assumption
that Qc < Qt must be satisfied, only users with ILS/AS severity were viewed as candidates.
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Meanwhile, α
p
t = 1− α

p
c varied with the location and fading severity of User c as well as

the transmission average SNR γ, as shown in Figure 3.
The convergences of the proposed DQN algorithm with different learning rates are

shown in Figure 5, from which we find that a smaller value of learning rate leads to a faster
convergence, since a smaller learning rate means a lower newly acquired cost is accepted to
adjust the evaluated Qπ(sl , al). Thus, ᾱ = 0.01 was set in our algorithm. Figure 6 compares
the effective capacity of selected user achieved with NOMA and TDMA schemes under
the proposed strategy and random selection strategy. It can be seen from Figure 6 that
curves with the proposed NOMA scheme are superior to those with the TDMA scheme for
all cases, demonstrating the advantages of employing the NOMA scheme in delay QoS-
constrained satellite communication networks. Moreover, since the proposed DQN-based
user selection scheme can find the optimal action for each state, and, thus, it can provide
superior performance as well as a much bigger performance difference between NOMA
and TDMA schemes than those achieved with a random selection strategy in each time slot.
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Figure 5. Convergences of the proposed DQN user selection algorithm with different learning rates.

1 2 3 4 5 6
Time slots

0

10

20

30

40

E
ff

ec
ti

v
e 

ca
p

ac
it

y
 o

f 
U

se
r 

t 
(b

p
s/

H
z) NOMA with the proposed strategy

TDMA with the proposed strategy
NOMA with random user selection strategy
TDMA with random user selection strategy

Figure 6. Effective capacity of selected user achieved with two access schemes under the proposed
strategy and random selection strategy.



Sensors 2023, 23, 7062 13 of 14

6. Conclusions

In this paper, we have proposed a user pairing scheme in NOMA-based satellite
networks with delay QoS constraints. With the objective of maximizing the sum effective
capacity without degrading the performance of the delay-sensitive user, the user pairing
problem was formulated. In particular, we designed the power allocation strategy to make
sure that the performance of the delay-sensitive user achieved with the NOMA scheme was
not less than that achieved with an OMA scheme. Based on this, the DRL algorithm was
adopted to select a user from many users to pair with the delay-sensitive user and form
a NOMA group. Simulation results have been provided to validate those performance
analyses, show the effects of key parameters on system performance and the user selection
strategy, and demonstrate that the DRL algorithm can significantly improve the system
performance by finding the optimal action for each state.
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