
Citation: Chen, Z.; Zhao, Z.; Xu, J.;

Wang, X.; Lu, Y.; Yu, J. A Cooperative

Hunting Method for Multi-USV

Based on the A* Algorithm in an

Environment with Obstacles. Sensors

2023, 23, 7058. https://doi.org/

10.3390/s23167058

Received: 26 June 2023

Revised: 7 August 2023

Accepted: 7 August 2023

Published: 9 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Cooperative Hunting Method for Multi-USV Based on the A*
Algorithm in an Environment with Obstacles
Zhihao Chen 1, Zhiyao Zhao 1,2,3 , Jiping Xu 1,2,3, Xiaoyi Wang 1,3,4, Yang Lu 1 and Jiabin Yu 1,2,3,*

1 School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China;
2130062048@st.btbu.edu.cn (Z.C.); zhaozy@btbu.edu.cn (Z.Z.); xujp@th.btbu.edu.cn (J.X.);
wangxy@btbu.edu.cn (X.W.); 2230602063@st.btbu.edu.cn (Y.L.)

2 China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University,
Beijing 100048, China

3 Laboratory for Intelligent Environmental Protection, Beijing Technology and Business University,
Beijing 100048, China

4 School of Arts and Sciences, Beijing Institute of Fashion Technology, Beijing 100029, China
* Correspondence: yujiabin@th.btbu.edu.cn

Abstract: A single unmanned surface combatant (USV) has poor mission execution capability, so
the cooperation of multiple unmanned surface ships is widely used. Cooperative hunting is an
important aspect of multi USV collaborative research. Therefore, this paper proposed a cooperative
hunting method for multi-USV based on the A* algorithm in an environment with obstacles. First,
based on the traditional A* algorithm, a path smoothing method based on USV minimum turning
radius is proposed. At the same time, the post order traversal recursive algorithm in the binary tree
method is used to replace the enumeration algorithm to obtain the optimal path, which improves
the efficiency of the A* algorithm. Second, a biomimetic multi USV swarm collaborative hunting
method is proposed. Multiple USV clusters simulate the hunting strategy of lions to pre-form on the
target’s path, so multiple USV clusters do not require manual formation. During the hunting process,
the formation of multiple USV groups is adjusted to limit the movement and turning of the target,
thereby reducing the range of activity of the target and improving the effectiveness of the algorithm.
To verify the effectiveness of the algorithm, two sets of simulation experiments were conducted. The
results show that the algorithm has good performance in path planning and target search.

Keywords: multi-USV swarm; path planning; A* algorithm; target hunting; obstacle avoidance

1. Introduction

In the water environment, a single USV has poor ability on task processing and work
efficiency. Multi-USV can greatly improve work efficiency, and the multi-USV cooperation
has many advantages on exploration ability and task completion ability. Therefore, the
research on multi-USV control becomes important [1]. With development of control and
communication technology, the multi-USV cooperative hunting has gradually become a
hot spot in the field of multi-USV swarm control [2]. The core of the cooperative hunting
control is that the multi-USV swarm completes the target hunting task through cooperative
control [3]. In recent years, many scholars have studied the multi-USV cooperative hunting
control, and many hunting strategies has been proposed. The multi-USV cooperative
hunting strategy is generally divided into two parts. First, the path of the USV should be
planned. Then, the target is hunted and tracked in real time. In this study, environments
with obstacles are defined as water environments with numerous obstacles and constraints.
The above constraints include the dynamic features of the target and the smoothness
constraints of the planning path.

At present, there are various methods of path planning, which can be divided into
global and local path planning based on the cognition of environment information [4].

Sensors 2023, 23, 7058. https://doi.org/10.3390/s23167058 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167058
https://doi.org/10.3390/s23167058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8565-4430
https://orcid.org/0000-0002-4261-1585
https://doi.org/10.3390/s23167058
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167058?type=check_update&version=1

Sensors 2023, 23, 7058 2 of 23

Global path planning methods can search for an optimal path in a pre-built environment
model based on known environment information. Global path planning methods mainly
include the A* algorithm [5], Dijkstra algorithm [6], genetic algorithms [7], particle swarm
optimization (PSO) [8], and deep reinforcement learning (DRL) algorithms [9]. The above
methods usually require long calculation times, and their efficiency is low. Local path
planning methods can obtain the surrounding environment’s information by using sensors
and autonomously plan a collision-free path in partially unknown environments, so they
are suitable for dynamic unknown environments. The commonly used methods mainly
include the following three categories. The first type is path planning methods based on
virtual potential fields, such as the artificial potential field (APF) method [10]. This kind of
method is simple in structure and highly efficient. However, due to the obstacles, it has
disadvantages of falling into local minima, and even has the potential to not reach the goal.
The second type is path planning methods based on sampling, such as the probabilistic
roadmap method (PRM) [11] and rapidly exploring random tree (RRT) [12]. These algo-
rithms have fast sampling speed, but the cost of generating paths is higher, the randomness
greatly interferes with the planning rate, and sometimes they cannot even find a feasible so-
lution. Thus, these algorithms are often used to solve high-dimensional planning problems
with nonholonomic constraints. The third type is intelligent path planning methods based
on bionics, such as ant colony optimization (ACO) [13], the artificial bee colony (ABC)
algorithm [14], and the imperialist competitive algorithm (ICA) [15]. Such methods are
effective in solving complex optimization problems in low-dimensional, and they are easy
to find the global optimal solution. However, the above algorithms are easy to fall into a
local optimal solution. Meanwhile, the above algorithms have greater randomness during
the iterative process and many parameter adjustments are required. These parameters can
only be specified through experience or a neural network. Thus, the algorithm efficiency is
low.

Among the above algorithms, the A* algorithm is widely used to solve the path
planning problem. But the A* algorithm only selects the optimal path according to the
length of the planning path without considering the smoothness of the planning path. As a
result, the planning path contains many unnecessary turning points, which is suitable to
the motion dynamics of USV. To solve this problem, Zhang et al. proposed a new heuristic
function combined with the APF, and introduced it into A* algorithm, which effectively
reduces the turning points in the planning path and makes the path smoother [16]. Yu et al.
improved the expansion mode of the 8-connections of the traditional A* algorithm to the
20-connection, so that the sharpness of turning at the corner can be greatly reduced and
the planning path is smoother [17]. Zhang et al. made a minimum circumscribed circle
between two adjacent line segments of the turning point, retains the arc of this segment and
removes the sharp corners of the segment to make the path smoother [18]. However, the
above algorithm does not take into account that the differences in the movement ability of
different USV, which leads to the low generality of the above algorithm. The A* algorithm
uses the enumeration algorithm to get the optimal path, and the result is low operation
efficiency and a long planning time of the A* algorithm. To solve this problem, Liu et al.
combined the Voronoi diagram with the grid method to model the map. As a result, the
node does not need to be detected too much, and the total amount of planned paths has
been reduced; so the planning time has been reduced [19]. Hong et al. adopted the data
structure of the minimum heap and 2D array in the A* algorithm, which reduced the time
cost of data processing and reduced the planning time [20]. Zhang et al. introduced a 3D
bidirectional sector multilayer variable step search strategy into the A* algorithm to reduce
the total number of planning paths. At the same time, the efficiency of the algorithm has
improved, and the planning time has reduced [21]. The above methods reduce the planning
time by changing the search strategy, but they cannot ensure that the distance of the final
planning path is the shortest.

Multi USV collaborative hunting is the key to collaborative control of multi USV popu-
lations. Currently, many scholars have studied algorithms related to collaborative hunting

Sensors 2023, 23, 7058 3 of 23

with multiple unmanned underwater vehicles. These methods can be divided into two cat-
egories: deterministic methods and heuristic methods. The deterministic method uses
mathematical tools to solve the virtual capture points and paths of USV. This method has
the advantages of low computational complexity, a simple environment, and high efficiency.
Representative algorithms include a direct search based on potential field forces [22] and a
formation search based on virtual structures [23]. Heuristic hunting by imitating hunting
behavior in nature is a method that has a large number of assumptions and can effectively
track targets in environments. Representative algorithms include the expulsion ambush
method [24] and neural networks based on the hunting method [25]. When the target has
strong operability, the expulsion of the AM bus method has high time efficiency, low cost,
strong robustness, and fault tolerance [26]. Wang et al. [27] proposed a distributed obstacle
avoidance algorithm suitable for multiple mobile robots. This algorithm combines ant
colony optimization (ACO) and dynamic window analysis (DWA) to coordinate multiple
robot systems through priority strategies, which has high security and global optimality.
Guo et al. [28] proposed a distributed collaborative search algorithm and a dynamic target
bounding algorithm suitable for quadcopter aircraft clusters, which can effectively search
and dynamically monitor dynamic targets in unknown areas. Souza et al. [29] proposed a
decentralized multi-agent tracking method using Deep reinforcement learning, and trained
a given number of chasers using shared experience. Each agent executes independently
at runtime. Although the above algorithms improve the efficiency of target search, they
did not achieve preformation before the search. This algorithm has low flexibility. Sun
et al. [30] proposed a self-organizing cooperation strategy for multiple unmanned under-
water vehicles, dividing the pursuers into a pursuit group and an ambush group based
on the escape strategies of evaders under different encirclement states. This method can
effectively capture targets and has strong flexibility. Lv et al. [31] assigned tasks based
on the multi-layer circular ambush capture model and the characteristics of the pursuit
ship. This method can effectively capture targets and has strong flexibility. The above
algorithm sets up a pursuit group and an ambush group, which improves the flexibility of
the algorithm through collaborative hunting. The above algorithms require high operability
for the pursuit group USV, which reduces the practicality of the algorithm.

In summary, there is a problem of unsmooth paths in USV path planning, which is not
conducive to USV motion control during sailing. At the same time, most of the existing
cooperative hunting algorithms have low efficiency and poor redundancy. Based on the
above shortcomings, this paper proposes a cooperative hunting method for multi-USV
based on the A* algorithm in an environment with obstacles. First, based on the traditional
path planning A* algorithm, a path smoothing method based on the minimum turning
radius of USV is proposed. According to the position between obstacles and paths, paths
are divided into three scenarios. Second, based on the minimum turning radius of USV,
three different methods are used to select new path nodes and then connect these path
nodes using ARC. At the same time, the post order traversal recursive algorithm in the
Binary tree method is used to replace the enumeration algorithm to obtain the optimal path,
which improves the efficiency of the A* algorithm. Finally, in terms of collaborative hunting,
a biomimetic multi USV cooperative hunting method was proposed. By simulating the
hunting strategy of lion packs, multiple USV packs are preformed along the target’s path
and ambushed in a U-shaped array. In the collaborative hunting process, the movement of
the target in front of the target is limited by the USV, and the USV on both wings of the
target limits the direction of the target’s turn, thereby limiting the range of target activity.

The main contributions of this work can be summarized as follows:

(1) A path smoothing method based on USV minimum turning radius was proposed.
Based on the A* algorithm, select a new path node and connect it to an arc to make
the path smoother. At the same time, the reverse traversal recursive algorithm in the
Binary tree method is used to replace the enumeration algorithm to obtain the optimal
path, which improves the efficiency of the algorithm and shortens the planning time
of the algorithm.

Sensors 2023, 23, 7058 4 of 23

(2) A biomimetic based multi-USV collaborative hunting method is proposed. The pre-
formation of multiple USV groups is conducted independently on the path. Multiple
USV groups do not require manual formation. The universality of this algorithm
has been improved. In the hunting process, the formation of multiple USV groups
is adjusted to limit the movement and rotation of the target, effectively reducing the
range of target activities, and improving the effectiveness of the algorithm.

This paper is organized as follows. Section 2 provides the basis content of the algorithm
theory involved in this paper. Section 3 provides the modeling of this paper. Section 4
presents the algorithm proposed in this paper. The experiment results are discussed in
Section 5, and the paper is concluded finally in Section 6.

2. Preliminaries
2.1. A* Algorithm

The A* algorithm is a classical heuristic search algorithm based on the Dijkstra algo-
rithm combined with the Breadth First Search (BFS) algorithm [32]. The A* algorithm is
used to solve the optimal path problem in global path planning. This method continuously
approximates the goal by retrieving the nodes, and the optimal path is found. The A* algo-
rithm introduces a heuristic function h(n) to guide the search direction, omitting searches
in irrelevant regions, and thus, it has a high search efficiency. The valuation function of the
A* algorithm is defined as follows:

f (n) = g(n) + h(n) (1)

where f (n) is the valuation function from the starting point via node n to the goal point,
g(n) is the actual cost function from the starting point to node n in the state space, and h(n)
is the heuristic estimation cost function of the optimal path from node n to the goal point.
The cost function h(n) is usually expressed in terms of a Euclidean distance as follows:

h(n) =
√
(xn − xgoal)

2 + (yn − ygoal)
2 (2)

where (xn, yn) is the coordinate of node n and (xgoal, ygoal) is the coordinate of the goal.

2.2. Binary Tree Method

The binary tree is a tree structure, and the data structure of many problems can be
abstracted into the binary tree [33]. The characteristic of the binary tree is that each node
can only have two subtrees at most, and the two subtrees can be divided into left and
right. The binary tree is a set of n elements which can be composed of empty sets. The
set of the binary tree can also be composed of a root and two disjoint subtrees, which can
be divided into left and right. It is an ordered binary tree. When the set of binary tree is
empty, the binary tree is called an empty binary tree. The element of the binary tree is also
called a node. The recursion algorithm of postorder traversal in the binary tree method is a
common traversal method of binary tree. The recursion algorithm of postorder traversal in
the binary tree method traverses the left subtree at first, then traverses the right subtree,
and finally traverses the root. As shown in Figure 1.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24

Figure 1. The recursion algorithm of postorder traversal in the binary tree method.

3. Modeling
3.1. USV Modeling

This section provides a mathematical model of the USV, laying the foundation for
algorithm research and simulation experiments. The motion coordinate system of the USV
on the Earth’s surface is shown in Figure 2. Establish a fixed coordinate system on the
Earth’s surface, where the origin Oe can be any point on the Earth’s surface, with the Ye
axis pointing due north and the Xe axis pointing due east, which can be simplified as the
{e} coordinate system. In practical environments, USVs can heave, sway, surge, yaw, roll,
and pitch. This type of USV motion is called a Six degrees of freedom system. To simplify
the analysis, this article only considers the yaw, roll, and pitch of the USV. The Six degrees
of freedom mathematical model of the USV is simplified to the three degrees of freedom
mathematical model of the USV. The three degrees of freedom mathematical model of the
USV is represented as:

η η υ=' ()J (3)

where η = [x, y, ψ]T is the pose vector, which defines the position and heading angle; υ =
[u, v, r]T is the speed vector, which includes the forward, sway, and steering speeds; J(η) is
the transformation matrix from the Earth coordinate system to the USV motion coordinate
system [34].

Figure 2. The USV movement coordinate system.

Modeling a real USV using the Unity3D 2020.3.19f1c2 platform to obtain a 3D model
of the USV. The actual USV is shown in the figure. The 3D model of Figure 3a and the USV
is shown in Figure 3b. The collision module and collision detection module of the Unity3D
platform have been added to the 3D model of the USV to facilitate the observation of col-
lisions in the 3D model of the USV. In this paper, the rigid body and kinematics rigid body
collider are added to the 3D model of the USV, so that the 3D model of the USV has inertia
and gravity. Finally, add the buoyancy module to the 3D model of the USV. The above
modeling methods can enable the 3D model of the USV to have real physical

Figure 1. The recursion algorithm of postorder traversal in the binary tree method.

Sensors 2023, 23, 7058 5 of 23

3. Modeling
3.1. USV Modeling

This section provides a mathematical model of the USV, laying the foundation for
algorithm research and simulation experiments. The motion coordinate system of the USV
on the Earth’s surface is shown in Figure 2. Establish a fixed coordinate system on the
Earth’s surface, where the origin Oe can be any point on the Earth’s surface, with the Ye
axis pointing due north and the Xe axis pointing due east, which can be simplified as the
{e} coordinate system. In practical environments, USVs can heave, sway, surge, yaw, roll,
and pitch. This type of USV motion is called a Six degrees of freedom system. To simplify
the analysis, this article only considers the yaw, roll, and pitch of the USV. The Six degrees
of freedom mathematical model of the USV is simplified to the three degrees of freedom
mathematical model of the USV. The three degrees of freedom mathematical model of the
USV is represented as:

η′ = J(η)υ (3)

where η = [x, y, ψ]T is the pose vector, which defines the position and heading angle; υ =
[u, v, r]T is the speed vector, which includes the forward, sway, and steering speeds; J(η) is
the transformation matrix from the Earth coordinate system to the USV motion coordinate
system [34].

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24

Figure 1. The recursion algorithm of postorder traversal in the binary tree method.

3. Modeling
3.1. USV Modeling

This section provides a mathematical model of the USV, laying the foundation for
algorithm research and simulation experiments. The motion coordinate system of the USV
on the Earth’s surface is shown in Figure 2. Establish a fixed coordinate system on the
Earth’s surface, where the origin Oe can be any point on the Earth’s surface, with the Ye
axis pointing due north and the Xe axis pointing due east, which can be simplified as the
{e} coordinate system. In practical environments, USVs can heave, sway, surge, yaw, roll,
and pitch. This type of USV motion is called a Six degrees of freedom system. To simplify
the analysis, this article only considers the yaw, roll, and pitch of the USV. The Six degrees
of freedom mathematical model of the USV is simplified to the three degrees of freedom
mathematical model of the USV. The three degrees of freedom mathematical model of the
USV is represented as:

η η υ=' ()J (3)

where η = [x, y, ψ]T is the pose vector, which defines the position and heading angle; υ =
[u, v, r]T is the speed vector, which includes the forward, sway, and steering speeds; J(η) is
the transformation matrix from the Earth coordinate system to the USV motion coordinate
system [34].

Figure 2. The USV movement coordinate system.

Modeling a real USV using the Unity3D 2020.3.19f1c2 platform to obtain a 3D model
of the USV. The actual USV is shown in the figure. The 3D model of Figure 3a and the USV
is shown in Figure 3b. The collision module and collision detection module of the Unity3D
platform have been added to the 3D model of the USV to facilitate the observation of col-
lisions in the 3D model of the USV. In this paper, the rigid body and kinematics rigid body
collider are added to the 3D model of the USV, so that the 3D model of the USV has inertia
and gravity. Finally, add the buoyancy module to the 3D model of the USV. The above
modeling methods can enable the 3D model of the USV to have real physical

Figure 2. The USV movement coordinate system.

Modeling a real USV using the Unity3D 2020.3.19f1c2 platform to obtain a 3D model
of the USV. The actual USV is shown in the figure. The 3D model of Figure 3a and the
USV is shown in Figure 3b. The collision module and collision detection module of the
Unity3D platform have been added to the 3D model of the USV to facilitate the observation
of collisions in the 3D model of the USV. In this paper, the rigid body and kinematics
rigid body collider are added to the 3D model of the USV, so that the 3D model of the
USV has inertia and gravity. Finally, add the buoyancy module to the 3D model of the
USV. The above modeling methods can enable the 3D model of the USV to have real
physical characteristics in simulation experiments, and the proposed algorithm can be more
effectively validated in simulation experiments.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 24

characteristics in simulation experiments, and the proposed algorithm can be more effec-
tively validated in simulation experiments.

Figure 3. The USV: (a) The Real USV; (b) The 3D USV.

3.2. Obstacle Modeling
This paper uses the Unity3D platform to model obstacles in the map. Because a USV

is navigated only on the horizontal plane, the section of an obstacle on the horizontal plane
is regarded as an obstacle in the path-planning process. Owing to the uncertainty of ob-
stacles on the water surface, to ensure the navigation safety of a USV, we must leave a safe
distance between a USV and obstacles and conduct the expansion modeling for the obsta-
cles. The obstacle coordinate system {o} is established with the center of the obstacle as the
origin, as shown in Figure 4.

Figure 4. Modeling of obstacle: (a) Static obstacle. (b) Static obstacle after expansion.

The boundary coordinates of obstacles are (xo.i, yo.i), i = 1, 2, …, n. The obstacle is ex-
panded, and the expression is as follows:

()
()

 = + ⋅


= + ⋅

. .

. .

1

1
o i o i

o i o i

x E x

y E y
 (4)

where E is the obstacle expansion coefficient.

3.3. Target Modeling
This section is for target modeling, and the motion of the USV on the water surface

is shown in Figure 5a. To simplify the analysis, this article imitates the modeling method
of USV in Section 3.1 to model the target, considering only the yaw, roll, and pitch of the
target, and establishes a mathematical model of a three degrees of freedom target. The
target speed is vgoal, and the target angular velocity is ωgoal. This article uses Unity3D to
model the target in 3D, as shown in Figure 5b.

Figure 3. The USV: (a) The Real USV; (b) The 3D USV.

Sensors 2023, 23, 7058 6 of 23

3.2. Obstacle Modeling

This paper uses the Unity3D platform to model obstacles in the map. Because a USV is
navigated only on the horizontal plane, the section of an obstacle on the horizontal plane is
regarded as an obstacle in the path-planning process. Owing to the uncertainty of obstacles
on the water surface, to ensure the navigation safety of a USV, we must leave a safe distance
between a USV and obstacles and conduct the expansion modeling for the obstacles. The
obstacle coordinate system {o} is established with the center of the obstacle as the origin, as
shown in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 24

characteristics in simulation experiments, and the proposed algorithm can be more effec-
tively validated in simulation experiments.

Figure 3. The USV: (a) The Real USV; (b) The 3D USV.

3.2. Obstacle Modeling
This paper uses the Unity3D platform to model obstacles in the map. Because a USV

is navigated only on the horizontal plane, the section of an obstacle on the horizontal plane
is regarded as an obstacle in the path-planning process. Owing to the uncertainty of ob-
stacles on the water surface, to ensure the navigation safety of a USV, we must leave a safe
distance between a USV and obstacles and conduct the expansion modeling for the obsta-
cles. The obstacle coordinate system {o} is established with the center of the obstacle as the
origin, as shown in Figure 4.

Figure 4. Modeling of obstacle: (a) Static obstacle. (b) Static obstacle after expansion.

The boundary coordinates of obstacles are (xo.i, yo.i), i = 1, 2, …, n. The obstacle is ex-
panded, and the expression is as follows:

()
()

 = + ⋅


= + ⋅

. .

. .

1

1
o i o i

o i o i

x E x

y E y
 (4)

where E is the obstacle expansion coefficient.

3.3. Target Modeling
This section is for target modeling, and the motion of the USV on the water surface

is shown in Figure 5a. To simplify the analysis, this article imitates the modeling method
of USV in Section 3.1 to model the target, considering only the yaw, roll, and pitch of the
target, and establishes a mathematical model of a three degrees of freedom target. The
target speed is vgoal, and the target angular velocity is ωgoal. This article uses Unity3D to
model the target in 3D, as shown in Figure 5b.

Figure 4. Modeling of obstacle: (a) Static obstacle. (b) Static obstacle after expansion.

The boundary coordinates of obstacles are (xo.i, yo.i), i = 1, 2, . . ., n. The obstacle is
expanded, and the expression is as follows:{

xo.i = (1 + E) · xo.i
yo.i = (1 + E) · yo.i

(4)

where E is the obstacle expansion coefficient.

3.3. Target Modeling

This section is for target modeling, and the motion of the USV on the water surface
is shown in Figure 5a. To simplify the analysis, this article imitates the modeling method
of USV in Section 3.1 to model the target, considering only the yaw, roll, and pitch of the
target, and establishes a mathematical model of a three degrees of freedom target. The
target speed is vgoal, and the target angular velocity is ωgoal. This article uses Unity3D to
model the target in 3D, as shown in Figure 5b.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 24

Figure 5. The target: (a) Mathematical modeling of target; (b) 3D modeling of target.

4. Proposed Algorithm
4.1. Improved A* Algorithm

The traditional A* algorithm’s planning path does not comply with the motion con-
straints of USV, and the turning point of the planning path is sharp. Therefore, it is neces-
sary to smooth the planning path of the A* algorithm to ensure that the USV can navigate
on the planning path and reach the endpoint.

P is the planning path of the traditional A* algorithm:

=  1 1 2 2 3 3[(,),(,),(,), ,(,), ,(,)]i i k kP x y x y x y x y x y (5)

where (xi, yi) is the coordinates of the path nodes in the planning path, and k is the total
number of path nodes of the A* algorithm for path planning based on grid graph method.

Let kc be the curvature of P. rmax is the maximum angular velocity of USV. u is the
forward speed of the USV. R is the minimum turning radius of the USV. The expression is
as follows:

' ()
2

R
r

η θ ϕ⋅ −
=


 (6)

where η′ and r are obtained according to Formula (3). θ is the angle between the path L′
and the Xe-axis. φ is the angle between the path L and Xe-axis.

Rs is the safety range of USV. P is the set of path nodes before smoothing. P′ is the set
of smoothed path nodes. (xi, yi) is the coordinate of the path node where the USV is located,
where i = 1, 2, …, k. (xt, yt) is the coordinate of the turning point. t is the abbreviation for
turn, and (xt, yt) is the turning point. (xn, yn) is the coordinate of the farthest point of the
path section after the truning point, where n is the abbreviation for node. L is the length of
path from (xt, yt) to (xn, yn). L′ is the length of path between (xi, yi) and (xt, yt). As shown in
Figure 6, the red straight line represents the local path before smoothing, and the direction
of the red arrow is the forward direction of the path.

Figure 5. The target: (a) Mathematical modeling of target; (b) 3D modeling of target.

4. Proposed Algorithm
4.1. Improved A* Algorithm

The traditional A* algorithm’s planning path does not comply with the motion con-
straints of USV, and the turning point of the planning path is sharp. Therefore, it is necessary
to smooth the planning path of the A* algorithm to ensure that the USV can navigate on
the planning path and reach the endpoint.

Sensors 2023, 23, 7058 7 of 23

P is the planning path of the traditional A* algorithm:

P = [(x1, y1), (x2, y2), (x3, y3), · · · , (xi, yi), · · · , (xk, yk)] (5)

where (xi, yi) is the coordinates of the path nodes in the planning path, and k is the total
number of path nodes of the A* algorithm for path planning based on grid graph method.

Let kc be the curvature of P. rmax is the maximum angular velocity of USV. u is the
forward speed of the USV. R is the minimum turning radius of the USV. The expression is
as follows:

R =

∣∣∣ .
η
′
∣∣∣ · (θ − ϕ)

2r
(6)

where η′ and r are obtained according to Formula (3). θ is the angle between the path L′

and the Xe-axis. ϕ is the angle between the path L and Xe-axis.
Rs is the safety range of USV. P is the set of path nodes before smoothing. P′ is the set

of smoothed path nodes. (xi, yi) is the coordinate of the path node where the USV is located,
where i = 1, 2, . . ., k. (xt, yt) is the coordinate of the turning point. t is the abbreviation for
turn, and (xt, yt) is the turning point. (xn, yn) is the coordinate of the farthest point of the
path section after the truning point, where n is the abbreviation for node. L is the length of
path from (xt, yt) to (xn, yn). L′ is the length of path between (xi, yi) and (xt, yt). As shown in
Figure 6, the red straight line represents the local path before smoothing, and the direction
of the red arrow is the forward direction of the path.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 24

Figure 6. Local path before and after turning point.

When the distance between (xi, yi) and the (xt, yt) is Rs and the curvature of the path P
is greater than the maximum navigable curvature of the USV, i.e., L = Rs and kc > rmax/u,
start smoothing the path. If the above conditions are not met, it will be considered a
smooth planned path and the original path will be retained. The smoothing method is
divided into two steps. First, select the path node based on the relative position between
the obstacle and the planning path. Second, the path nodes are connected with arcs for
smoothing. The relative position between the obstacle and the planning path can be di-
vided into three categories, and different methods are used to select the path node:

(1) When there is no obstacle within the square with the turning point as the center
and the side length of 2Rs, i.e., {(x, y) ||x − xt| < Rs, |y − yt| < Rs} ∩ O = Ø, take the (xn, yn) as
the i + 1-th path node and save the i + 1-th path node in P′. The coordinates of xi+1 and yi+1
are as follows:

θ ϕ
θ ϕ

θ ϕ
θ ϕ

+

+

 ⋅ + ⋅= + +
 ⋅ + ⋅ = +
 +

1

1

' cos cos
sin()

' sin sin
cos()

i i

i i

L Lx x

L Ly y
 (7)

The result is shown in node 2 on the right in Figure 7.

Figure 7. Selection results of the i + 1-th path node when there are no obstacles on both sides of the
path.

If there are multiple turning points in the path, the multiple turning points are pro-
cessed iteratively by (6). In Figure 8, there are two turning points in the planning path.
First, re-select the path node according to the first turning point, node 3 on the right side
of Figure 8 is obtained by (6) based on node 1. Then, after processing the first turning
point, re-select the path node according to the second turning point. Select the point be-
tween node 1 and node 3 and away from the second turning point Rs as node 2. Based on
node 2, node 4 in the right figure is obtained by (6).

Figure 6. Local path before and after turning point.

When the distance between (xi, yi) and the (xt, yt) is Rs and the curvature of the path P
is greater than the maximum navigable curvature of the USV, i.e., L = Rs and kc > rmax/u,
start smoothing the path. If the above conditions are not met, it will be considered a smooth
planned path and the original path will be retained. The smoothing method is divided into
two steps. First, select the path node based on the relative position between the obstacle
and the planning path. Second, the path nodes are connected with arcs for smoothing.
The relative position between the obstacle and the planning path can be divided into three
categories, and different methods are used to select the path node:

(1) When there is no obstacle within the square with the turning point as the center
and the side length of 2Rs, i.e., {(x, y) ||x − xt| < Rs, |y − yt| < Rs} ∩ O = Ø, take the
(xn, yn) as the i + 1-th path node and save the i + 1-th path node in P′. The coordinates of
xi+1 and yi+1 are as follows:  xi+1 = xi +

L′ ·cos θ+L·cos ϕ
sin(θ+ϕ)

yi+1 = yi +
L′ ·sin θ+L·sin ϕ

cos(θ+ϕ)

(7)

Sensors 2023, 23, 7058 8 of 23

The result is shown in node 2 on the right in Figure 7.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 24

Figure 6. Local path before and after turning point.

When the distance between (xi, yi) and the (xt, yt) is Rs and the curvature of the path P
is greater than the maximum navigable curvature of the USV, i.e., L = Rs and kc > rmax/u,
start smoothing the path. If the above conditions are not met, it will be considered a
smooth planned path and the original path will be retained. The smoothing method is
divided into two steps. First, select the path node based on the relative position between
the obstacle and the planning path. Second, the path nodes are connected with arcs for
smoothing. The relative position between the obstacle and the planning path can be di-
vided into three categories, and different methods are used to select the path node:

(1) When there is no obstacle within the square with the turning point as the center
and the side length of 2Rs, i.e., {(x, y) ||x − xt| < Rs, |y − yt| < Rs} ∩ O = Ø, take the (xn, yn) as
the i + 1-th path node and save the i + 1-th path node in P′. The coordinates of xi+1 and yi+1
are as follows:

θ ϕ
θ ϕ

θ ϕ
θ ϕ

+

+

 ⋅ + ⋅= + +
 ⋅ + ⋅ = +
 +

1

1

' cos cos
sin()

' sin sin
cos()

i i

i i

L Lx x

L Ly y
 (7)

The result is shown in node 2 on the right in Figure 7.

Figure 7. Selection results of the i + 1-th path node when there are no obstacles on both sides of the
path.

If there are multiple turning points in the path, the multiple turning points are pro-
cessed iteratively by (6). In Figure 8, there are two turning points in the planning path.
First, re-select the path node according to the first turning point, node 3 on the right side
of Figure 8 is obtained by (6) based on node 1. Then, after processing the first turning
point, re-select the path node according to the second turning point. Select the point be-
tween node 1 and node 3 and away from the second turning point Rs as node 2. Based on
node 2, node 4 in the right figure is obtained by (6).

Figure 7. Selection results of the i + 1-th path node when there are no obstacles on both sides of the
path.

If there are multiple turning points in the path, the multiple turning points are pro-
cessed iteratively by (6). In Figure 8, there are two turning points in the planning path.
First, re-select the path node according to the first turning point, node 3 on the right side of
Figure 8 is obtained by (6) based on node 1. Then, after processing the first turning point,
re-select the path node according to the second turning point. Select the point between
node 1 and node 3 and away from the second turning point Rs as node 2. Based on node 2,
node 4 in the right figure is obtained by (6).

Sensors 2023, 23, x FOR PEER REVIEW 9 of 24

Figure 8. Selection results of path nodes when there are multiple turning points in the path.

(2) When there are obstacles within the square that the midpoint of path L’ as the
center and the side length of Rs, i.e., {(x, y) ||x − xt + (L cosφ)/2| < Rs/2, |y − yt + (L sinφ)/2|
< Rs/2|} ∩ O = Ø, set the turning point as the i-th path node. After the i-th path node, take
the point inclined by 45 degrees along the path direction and the distance is √2R as the i +
1-th path node, and save the i + 1-th path node in P′. The coordinate values xi+1 and yi+1 are
as follows:

π θ π θ

π θ π θ

+

+

 = + ⋅ − ⋅ −

 = + ⋅ − ⋅ −


1

1

3 3tan() sin()
4 4
3 3sec() cos()
4 4

i i

i i

x x R

y y R
 (8)

where R is the minimum turning radius of USV. The result is shown in node 3 on the right
in Figure 9. Node 2 is the i-th path node selected in the first iteration.

Figure 9. Selection results of path nodes when there are obstacles on both sides of the straight path
before the turning point.

After obtaining node 3, set node 3 as the i-th path node for the second iteration. After
the i-th path node, take the point inclined by 30 degrees along the forward direction of the
path and the distance is R as the i + 1-th path node, and save the i + 1-th path node in P′.
The coordinate values xi+1 and yi+1 are as follows:

π θ π θ

π θ π θ

+

+

 = + ⋅ − ⋅ −

 = + ⋅ − ⋅ −


1

1

5 5tan() sin()
6 6
5 5sec() cos()
6 6

i i

i i

x x R

y y R
 (9)

The result is shown in node 4 on the right in Figure 9. Then set node 4 as the i-th path
node, and repeat the above steps to obtain node 5, and save node 5 in P′.

(3) When there are obstacles within the square that the midpoint of path L as the
center and the side length of Rs, i.e., {(x, y) ||x − xt + (L cos φ)/2| < Rs/2, |y − yt + (L sin φ)/2|
< Rs/2|} ∩ O = Ø. After the i-th path node, take the point inclined by 30 degrees along the
negative direction of the path after the turning point and the distance is R as the i + 1-th
path node, and save the i + 1-th path node in P′. The coordinate values xi+1 and yi+1 are as
follows:

Figure 8. Selection results of path nodes when there are multiple turning points in the path.

(2) When there are obstacles within the square that the midpoint of path L′ as the
center and the side length of Rs, i.e., {(x, y) ||x − xt + (L cosϕ)/2| < Rs/2, |y − yt + (L
sinϕ)/2| < Rs/2|} ∩ O = Ø, set the turning point as the i-th path node. After the i-th path
node, take the point inclined by 45 degrees along the path direction and the distance is√

2R as the i + 1-th path node, and save the i + 1-th path node in P′. The coordinate values
xi+1 and yi+1 are as follows:{

xi+1 = xi + R · tan(3
4 π − θ) · sin(3

4 π − θ)
yi+1 = yi + R · sec(3

4 π − θ) · cos(3
4 π − θ)

(8)

where R is the minimum turning radius of USV. The result is shown in node 3 on the right
in Figure 9. Node 2 is the i-th path node selected in the first iteration.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 24

Figure 8. Selection results of path nodes when there are multiple turning points in the path.

(2) When there are obstacles within the square that the midpoint of path L’ as the
center and the side length of Rs, i.e., {(x, y) ||x − xt + (L cosφ)/2| < Rs/2, |y − yt + (L sinφ)/2|
< Rs/2|} ∩ O = Ø, set the turning point as the i-th path node. After the i-th path node, take
the point inclined by 45 degrees along the path direction and the distance is √2R as the i +
1-th path node, and save the i + 1-th path node in P′. The coordinate values xi+1 and yi+1 are
as follows:

π θ π θ

π θ π θ

+

+

 = + ⋅ − ⋅ −

 = + ⋅ − ⋅ −


1

1

3 3tan() sin()
4 4
3 3sec() cos()
4 4

i i

i i

x x R

y y R
 (8)

where R is the minimum turning radius of USV. The result is shown in node 3 on the right
in Figure 9. Node 2 is the i-th path node selected in the first iteration.

Figure 9. Selection results of path nodes when there are obstacles on both sides of the straight path
before the turning point.

After obtaining node 3, set node 3 as the i-th path node for the second iteration. After
the i-th path node, take the point inclined by 30 degrees along the forward direction of the
path and the distance is R as the i + 1-th path node, and save the i + 1-th path node in P′.
The coordinate values xi+1 and yi+1 are as follows:

π θ π θ

π θ π θ

+

+

 = + ⋅ − ⋅ −

 = + ⋅ − ⋅ −


1

1

5 5tan() sin()
6 6
5 5sec() cos()
6 6

i i

i i

x x R

y y R
 (9)

The result is shown in node 4 on the right in Figure 9. Then set node 4 as the i-th path
node, and repeat the above steps to obtain node 5, and save node 5 in P′.

(3) When there are obstacles within the square that the midpoint of path L as the
center and the side length of Rs, i.e., {(x, y) ||x − xt + (L cos φ)/2| < Rs/2, |y − yt + (L sin φ)/2|
< Rs/2|} ∩ O = Ø. After the i-th path node, take the point inclined by 30 degrees along the
negative direction of the path after the turning point and the distance is R as the i + 1-th
path node, and save the i + 1-th path node in P′. The coordinate values xi+1 and yi+1 are as
follows:

Figure 9. Selection results of path nodes when there are obstacles on both sides of the straight path
before the turning point.

Sensors 2023, 23, 7058 9 of 23

After obtaining node 3, set node 3 as the i-th path node for the second iteration. After
the i-th path node, take the point inclined by 30 degrees along the forward direction of the
path and the distance is R as the i + 1-th path node, and save the i + 1-th path node in P′.
The coordinate values xi+1 and yi+1 are as follows:{

xi+1 = xi + R · tan(5
6 π − θ) · sin(5

6 π − θ)
yi+1 = yi + R · sec(5

6 π − θ) · cos(5
6 π − θ)

(9)

The result is shown in node 4 on the right in Figure 9. Then set node 4 as the i-th path
node, and repeat the above steps to obtain node 5, and save node 5 in P′.

(3) When there are obstacles within the square that the midpoint of path L as the center
and the side length of Rs, i.e., {(x, y) ||x − xt + (L cos ϕ)/2| < Rs/2, |y − yt + (L sin ϕ)/2|
< Rs/2|} ∩ O = Ø. After the i-th path node, take the point inclined by 30 degrees along the
negative direction of the path after the turning point and the distance is R as the i + 1-th
path node, and save the i + 1-th path node in P′. The coordinate values xi+1 and yi+1 are as
follows: {

xi+1 = xi + R · sec(5
6 π − θ) · cos(5

6 π − θ)
yi+1 = yi + R · tan(5

6 π − θ) · sin(5
6 π − θ)

(10)

The result is shown in node 2 on the right in Figure 10. Then, set node 2 as the i-th
path node, and repeat the above steps to obtain node 3, and save the node 3 in P′.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 24

π θ π θ

π θ π θ

+

+

 = + ⋅ − ⋅ −

 = + ⋅ − ⋅ −


1

1

5 5sec() cos()
6 6
5 5tan() sin()
6 6

i i

i i

x x R

y y R
 (10)

The result is shown in node 2 on the right in Figure 10. Then, set node 2 as the i-th
path node, and repeat the above steps to obtain node 3, and save the node 3 in P′.

Figure 10. Selection results of path nodes with obstacles on both sides of the straight path after the
turning point.

Finally, set node 3 as the i-th path node. Use (7) to obtain node 4, and save the node
4 in P′.

After all the path nodes are obtained, the path nodes need to be connected with arcs
for smoothing. Take the path node as the tangent point and the path direction of the path
node as the slope to make a straight line:

= +y Ax B (11)

where A and B are the coefficients of the straight line. This straight line is the tangent of
the planning path, which determines the values of A and B and can be obtained through
differentiation and algebra. In this study, the Unity3D platform can directly obtain tangent
information.

Set (xi+1, yi+1) are the coordinates of the i + 1-th path node. After obtaining the i + 1-th
path node, connect the path between (xi, yi) and (xi+1, yi+1) using an arc in the circular with
radius Ro, as shown in Figure 11.

Figure 10. Selection results of path nodes with obstacles on both sides of the straight path after the
turning point.

Finally, set node 3 as the i-th path node. Use (7) to obtain node 4, and save the node 4
in P′.

After all the path nodes are obtained, the path nodes need to be connected with arcs
for smoothing. Take the path node as the tangent point and the path direction of the path
node as the slope to make a straight line:

y = Ax + B (11)

where A and B are the coefficients of the straight line. This straight line is the tangent of
the planning path, which determines the values of A and B and can be obtained through
differentiation and algebra. In this study, the Unity3D platform can directly obtain tangent
information.

Set (xi+1, yi+1) are the coordinates of the i + 1-th path node. After obtaining the i + 1-th
path node, connect the path between (xi, yi) and (xi+1, yi+1) using an arc in the circular with
radius Ro, as shown in Figure 11.

In Figure 11, the grid represents the path node, and the connection process of the
arc path between node 1 and node 4 is shown from (a) to (d). The red line represents
the planning path before smoothing. The blue straight line is obtained by (10). The black
curve is a smooth path, which is composed of multiple arcs. The expression of the arc is as
follows:

Sensors 2023, 23, 7058 10 of 23

{
(x− xc.i)

2 + (y− yc.i)
2 = Ro

2

|A · xc.i − yc.i + B| = Ro
, Ro ≥ R (12)

where x∈[xi, xi+1], y∈[yi,yi+1], (xc.i, yc.i) is the center coordinate of the arc path from path
node i to path node i + 1. In Figure 11, (xc.1, yc.1) is the center coordinate of the arc path
between path nodes 1 to 2, (xc.2, yc.2) is the center coordinate of the arc path between path
nodes 2 to 3, and (xc.3, yc.3) is the center coordinate of the arc path between path nodes
3 to 4. After completing path P′, replace P with P′. Ro is the radius of the circle used for
smoothing the path. When the coordinates of two path nodes and the tangent equation of
the circle are known, the value of Ro can be obtained through Formula (12).

Sensors 2023, 23, x FOR PEER REVIEW 11 of 24

eY

eX
eO

eY

eX
eO

(xc.2,yc.2)

eY

eX
eO

(xc.3,yc.3)

(a)

(c) (d)

eY

eX
eO (xc.1,yc.1)

(b)

2
3

4

1

2
3

4

1

2
3

4

1

2
3

4

1

Figure 11. Results of the completing method of the planned path between path nodes: (a) before
completing; (b) connection of nodes 1 to 2; (c) connection of nodes 2 to 3; (d) connection of nodes 3
to 4.

In Figure 11, the grid represents the path node, and the connection process of the arc
path between node 1 and node 4 is shown from (a) to (d). The red line represents the
planning path before smoothing. The blue straight line is obtained by (10). The black curve
is a smooth path, which is composed of multiple arcs. The expression of the arc is as fol-
lows:

− + − =
≥

⋅ − + =




2 2 2
. .

. .

(
,

) ()c i c i o
o

c i c i o

x x y y R
R R

A x y B R
 (12)

where x∈[xi, xi+1], y∈[yi,yi+1], (xc.i, yc.i) is the center coordinate of the arc path from path node
i to path node i + 1. In Figure 11, (xc.1, yc.1) is the center coordinate of the arc path between
path nodes 1 to 2, (xc.2, yc.2) is the center coordinate of the arc path between path nodes 2
to 3, and (xc.3, yc.3) is the center coordinate of the arc path between path nodes 3 to 4. After
completing path P′, replace P with P′. Ro is the radius of the circle used for smoothing the
path. When the coordinates of two path nodes and the tangent equation of the circle are
known, the value of Ro can be obtained through Formula (12).

Based on the above content, the planning path of the traditional A* algorithm is
smoothed. Using Algorithm 1 for path planning between the starting point and the target
point, and the steps of the Algorithm 1 are presented by pseudocode:

Figure 11. Results of the completing method of the planned path between path nodes: (a) before
completing; (b) connection of nodes 1 to 2; (c) connection of nodes 2 to 3; (d) connection of nodes 3
to 4.

Based on the above content, the planning path of the traditional A* algorithm is
smoothed. Using Algorithm 1 for path planning between the starting point and the target
point, and the steps of the Algorithm 1 are presented by pseudocode:

Sensors 2023, 23, 7058 11 of 23

Algorithm 1: Smoothing method of path turning point

Step1: Initialize parameters;
Step2: If L′ = Rs and kc > rmax/u
Step3: If {(x, y) ||x − xt| < Rs, |y − yt| < Rs} ∩ O = Ø
Step4: Obtain the path node 2 using (6);
Step5: If {(x, y) ||x − xt + (L′ cos ϕ)/2| < Rs/2, |y − yt + (L′ sin ϕ)/2| < Rs/2|} ∩ O = Ø
Step6: Set (xt,yt) as path node 2;
Step7: Obtain the path node 3 using (7);
Step8: Obtain the path node 4 using (8);
Step9: Obtain the path node 5 using (8);
Step10: If {(x, y) ||x − xt + (L cos ϕ)/2| < Rs/2, |y − yt + (L sin ϕ)/2| < Rs/2|} ∩ O = Ø
Step11: Obtain the path node 2 using (9);
Step12: Obtain the path node 3 using (9);
Step13: Obtain the path node 4 using (7);
Step14: Save all path node in P′;
Step15: Complete the path of P′ using (11);
Step16: If kc > rmax/u
Step17: Repeat Step3–16;
Step18: Else Replace P with P′;
Step19: Else Replace P with P′.

The traditional A* algorithm uses enumeration algorithms to obtain the optimal path.
If all possible situations of a certain type of thing are examined one by one and a universal
conclusion is drawn, then this conclusion is reliable. This method is called an enumeration
method. The enumeration method utilizes the characteristics of fast computing speed
and the high accuracy of computers to test all possible scenarios to solve problems and
find answers that meet the requirements. Therefore, the characteristic of enumeration is
sacrificing time for a comprehensive answer. In the traditional A* algorithm, although the
enumeration method can obtain the optimal path by comparing the lengths of all paths, it
does a lot of useless work in obtaining the path, resulting in low efficiency of the algorithm.
Therefore, it is necessary to solve the problems of low computational efficiency and long
planning time in traditional A* algorithms.

In order to obtain the optimal path from all paths, the algorithm uses the post order
traversal recursive algorithm in the binary tree method in reference [33] to replace the
enumeration method to obtain the optimal path.

4.2. A Biomimetic Multi USV Swarm Collaborative Hunting Method

The speed of the target is vgoal. The location of the target is Pg (xgoal, ygoal). The velocity
of the i-th USV in a multi USV group is vship.i (xship.i, yship.i). For n virtual structural points,
there are n USVs in a multi-USV swarm. The target path is used to obtain the initial virtual
structure point Pi of the USV on the path. The coordinates of Pi are (xvirtual.i, yvirtual.i) and
satisfy the following formula:

(xvirtual.i − xgoal)
2

(yvirtual.i − yship.i)
2 +

(yvirtual.i − ygoal)
2

(xvirtual.i − xship.i)
2 =

vship.i

vgoal
(13)

where i = 1, 2, . . ., n. After obtaining the initial virtual structure points of multi-USV swarm,
adjust the position of the virtual structure points on the target path to obtain a U-shaped
array. The average value of all initial virtual structural points is Pa (xaverage, yaverage), which
is expressed as follows: 

xaverage =
n
∑

i=1

xvirtual.i
n

yaverage =
n
∑

i=1

yvirtual.i
n

(14)

Sensors 2023, 23, 7058 12 of 23

Pa is the midpoint Pmid of the U-shaped array. Ymid is the ray from Pmid to Pg. Xmid is a
ray that rotates 90 degrees clockwise based on Ymid. The coordinate system is established
with Pg as the origin, Ymid as the y-axis, and Xmid as the x-axis. The U-shaped array is
shown in Figure 12. The expression for a U-shaped array is as follows:

y = ax2 − b (15)

where a is the width coefficient, and the larger the value, the wider the U-shaped array, with
a > 0. b is the distance coefficient, and the larger the value, the farther the U-shaped array is
from the target, b > (4a2λ2 + 1)/4a. λ Is the minimum distance between the U-shaped array
and the target.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

=

=


=


 =





.
average

1

.
average

1

n
virtual i

i
n

virtual i

i

x
x

n
y

y
n

 (14)

Pa is the midpoint Pmid of the U-shaped array. Ymid is the ray from Pmid to Pg. Xmid is a
ray that rotates 90 degrees clockwise based on Ymid. The coordinate system is established
with Pg as the origin, Ymid as the y-axis, and Xmid as the x-axis. The U-shaped array is shown
in Figure 12. The expression for a U-shaped array is as follows:

= −2y ax b (15)

where a is the width coefficient, and the larger the value, the wider the U-shaped array,
with a > 0. b is the distance coefficient, and the larger the value, the farther the U-shaped
array is from the target, b > (4a2λ2 + 1)/4a. λ Is the minimum distance between the U-shaped
array and the target.

Figure 12. U-shaped array.

The U-shaped array is designed to ambush targets. When the target approaches the
U-shaped array, multi-USVs can more conveniently hunt the target.

xmid.1 is xaverage, ymid.1 is yaverage. Pmid.i is arranged on the U-shaped array, and its x-axis co-
ordinate value xmid.i is as follows:

()
η−

⋅ − + −
= +

⋅. . 1

ship average goal average goal

mid i mid i
goal

v x x y y
x x

v
 (16)

The y-axis coordinate value ymid.i is as follows:

=
2

.
.

()mid i
mid i

x
y

a
 (17)

where η is a compaction parameter of the formation, and the larger the value, the more
compact the U-shaped array. On the contrary, the smaller the value, the looser the U-
shaped array. i = 2, …, n.

When all USVs reach the formation position, i.e., the distance between all USVs and
their corresponding virtual structural points is 0, multi-USV groups begin to pursue the
target. The angular velocity of the target is ωgoal, the angular velocity of the i-th USV is
ωship.i. The target is the center of the circle, with a radius of Rv. The expression for radius Rv
is as follows:

Figure 12. U-shaped array.

The U-shaped array is designed to ambush targets. When the target approaches the
U-shaped array, multi-USVs can more conveniently hunt the target.

xmid.1 is xaverage, ymid.1 is yaverage. Pmid.i is arranged on the U-shaped array, and its x-axis
coordinate value xmid.i is as follows:

xmid.i = xmid.i−1 +
vship ·

(∣∣∣xaverage − xgoal

∣∣∣+ ∣∣∣yaverage − ygoal

∣∣∣)
η · vgoal

(16)

The y-axis coordinate value ymid.i is as follows:

ymid.i =
(xmid.i)

2

a
(17)

where η is a compaction parameter of the formation, and the larger the value, the more
compact the U-shaped array. On the contrary, the smaller the value, the looser the U-shaped
array. i = 2, . . ., n.

When all USVs reach the formation position, i.e., the distance between all USVs and
their corresponding virtual structural points is 0, multi-USV groups begin to pursue the
target. The angular velocity of the target is ωgoal, the angular velocity of the i-th USV is
ωship.i. The target is the center of the circle, with a radius of Rv. The expression for radius
Rv is as follows:

Rv =

n ·
(

vgoal ·
n
∑

i=1
ωship.i + ωgoal ·

n
∑

i=1
vship.i

)
n
∑

i=1

(
ωship.i · vship.i

) (18)

The expression of the circle is as follows:

(x− xgoal)
2 + (y− ygoal)

2 = R2
v (19)

Sensors 2023, 23, 7058 13 of 23

xcircle.1 is xgoal, the expression of ymid.1 is as follows:

ycircle.1 = ygoal −
√

1− R2
v (20)

The virtual structure points on the circle are arranged. The expression of the virtual
structure points (xcircle.i, ycircle.i) is as follows:

xcircle.i =

{
xcircle.(i−1) +

4Rv
n , 1 < i ≤ n

2
xcircle.(i−1) − 4Rv

n − Rv, n
2 < i ≤ n

ycircle.i =

 ygoal −
∣∣∣xcircle.i + 1− xgoal

∣∣∣, 1 < i ≤ n
2

ygoal +
∣∣∣xcircle.i + 1− xgoal

∣∣∣, n
2 < i ≤ n

(21)

The improved A-star algorithm was used to obtain the planned path from the current
position of the USV to the virtual structure point. Then, form a circle around the target, as
shown in Figure 13. In Figure 13, the USV directly in front of the target is the intercepting
vessel. The blocking ship is used to block the forward escape route of the target. The USVs
on both sides of the target are mainly used to limit the target’s turning and be ready to
block the target’s escape route at any time.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

()

ω ω

ω

= =

=

 
⋅ ⋅ + ⋅ 
 =

⋅

 



. .
1 1

. .
1

n n

goal ship i goal ship i
i i

v n

ship i ship i
i

n v v
R

v
 (18)

The expression of the circle is as follows:

− + − =2 2 2() ()goal goal vx x y y R (19)

xcircle.1 is xgoal, the expression of ymid.1 is as follows:

= − − 2
.1 1circle goal vy y R (20)

The virtual structure points on the circle are arranged. The expression of the virtual
structure points (xcircle.i, ycircle.i) is as follows:

−

−


+ < ≤= 

 − − < ≤
 − + − < ≤= 
 + + − < ≤


.(1)

.

.(1)

.

.

.

4
,1

2
4

,
2

1 ,1
2

1 ,
2

v
circle i

circle i
v

circle i v

goal circle i goal

circle i

goal circle i goal

R nx i
nx
R nx R i n
n

ny x x i
y

ny x x i n

 (21)

The improved A-star algorithm was used to obtain the planned path from the current
position of the USV to the virtual structure point. Then, form a circle around the target, as
shown in Figure 13. In Figure 13, the USV directly in front of the target is the intercepting
vessel. The blocking ship is used to block the forward escape route of the target. The USVs
on both sides of the target are mainly used to limit the target’s turning and be ready to
block the target’s escape route at any time.

Figure 13. Narrow the surrounding circle for hunting.

Narrowing the surrounding circles, multi-USV swarms have achieved hunting. The
target is in the center, resulting in a circle with a radius of Rc. The expression for radius Rc
is as follows:

Figure 13. Narrow the surrounding circle for hunting.

Narrowing the surrounding circles, multi-USV swarms have achieved hunting. The
target is in the center, resulting in a circle with a radius of Rc. The expression for radius Rc
is as follows:

Rc =

n ·
(

vgoal ·
n
∑

i=1
ωship.i + ωgoal ·

n
∑

i=1
vship.i

)
n
∑

i=1

(
ωship.i · vship.i

) (22)

The expression of the circle is as follows:

(x− xgoal)
2 + (y− ygoal)

2 = R2
c (23)

xcatch.1 is xgoal, the expression of ycatch.1 is as follows:

ycatch.1 = ygoal −
√

1− R2
c (24)

Sensors 2023, 23, 7058 14 of 23

The virtual structural points are evenly arranged in a circle. The position of virtual
structural points (xcatch.i, ycatch.i) is obtained by (20). The improved A-star algorithm was
used to obtain the planned path from the current position of the USV to the virtual structure
point. Multiple USV groups begin to form a capture circle.

When the target attempts to escape the capture circle, adjust the position of the USV
to limit the target and make the actual distance d between the USV and the target close to
Rc. The distance d between Pship.i and Pg is as follows:

d =
∣∣∣Pship.iPg

∣∣∣ = ∣∣∣xship.i − xgoal

∣∣∣+ ∣∣∣yship.i − ygoal

∣∣∣ (25)

where xship.i is the x-axis coordinate of the i-th USV. yship.i is the y-axis coordinate of the i-th
USV. The USV gathers towards the target direction, reducing the accommodation space
between USVs. The escape direction angle of the target is θrun, the angle between the line
from the i-th USV to the target and the target direction is θi. When the target escapes,
adjust the formation of multiple USV groups to block the target’s escape route. The virtual
structure point (xblock.i, yblock.i) of the i-th USV needs to satisfy the following expression:

yblock.i = tan θi · xblock.i − tan θi · xgoal + ygoal

(xblock.i − xgoal)
2 + (yblock.i − ygoal)

2 = R2
c

θi = θrun + (−1)i · Dimx[i+1
2] · π

12

(26)

where i = 1, 2, . . ., n. Finally, the improved A-star algorithm is used to get the planning path
from the current position of the USV to the virtual structure point as shown in Figure 14.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

()

ω ω

ω

= =

=

 
⋅ ⋅ + ⋅ 
 =

⋅

 



. .
1 1

. .
1

n n

goal ship i goal ship i
i i

c n

ship i ship i
i

n v v
R

v
 (22)

The expression of the circle is as follows:

− + − =2 2 2() ()goal goal cx x y y R (23)

xcatch.1 is xgoal, the expression of ycatch.1 is as follows:

= − − 2
.1 1catch goal cy y R (24)

The virtual structural points are evenly arranged in a circle. The position of virtual
structural points (xcatch.i, ycatch.i) is obtained by (20). The improved A-star algorithm was used
to obtain the planned path from the current position of the USV to the virtual structure
point. Multiple USV groups begin to form a capture circle.

When the target attempts to escape the capture circle, adjust the position of the USV
to limit the target and make the actual distance d between the USV and the target close to
Rc. The distance d between Pship.i and Pg is as follows:

= = − + −. . .ship i g ship i goal ship i goald P P x x y y (25)

where xship.i is the x-axis coordinate of the i-th USV. yship.i is the y-axis coordinate of the i-th
USV. The USV gathers towards the target direction, reducing the accommodation space
between USVs. The escape direction angle of the target is θrun, the angle between the line
from the i-th USV to the target and the target direction is θi. When the target escapes,
adjust the formation of multiple USV groups to block the target’s escape route. The virtual
structure point (xblock.i, yblock.i) of the i-th USV needs to satisfy the following expression:

θ θ

πθ θ


 = ⋅ − ⋅ +
 − + − =
 + = + − ⋅ ⋅


. .

2 2 2
. .

tan tan

() ()
1(1) []

2 12

block i i block i i goal goal

block i goal block i goal c

i
i run

y x x y

x x y y R
iDimx

 (26)

where i = 1, 2, …, n. Finally, the improved A-star algorithm is used to get the planning
path from the current position of the USV to the virtual structure point as shown in Figure
14.

Figure 14. Multi-USV swarm intercepts target.

Figure 14. Multi-USV swarm intercepts target.

5. Simulation Experiment and Discussion

This part is mainly about the comparison and analysis of the experimental results.
The simulation experiment used Windows 10 as the operating system and Unity3D as
the simulation tool. The hardware platform was an Intel Core i5-10200h processor (Intel
Corporation, City of Santa Clara, CA, USA) with a main frequency of 2.4 GHz and 16 GB
memory. This experiment is implemented in two steps. First, conduct path planning
simulation experiments and compare the experimental results. Second, a comparative
experiment between the proposed algorithm and the approaching method is implemented
to verify the effectiveness of the proposed algorithm. The relevant parameters of the
proposed algorithm and simulation experiment in this paper are shown in Table 1, and
their values are obtained from reference [8,11].

Sensors 2023, 23, 7058 15 of 23

Table 1. The algorithm and simulation experimental parameters.

Parameters Definition Numerical Value

u (m/s) Forward speed of USV 15
vgoal (m/s) Forward speed of target 10
r (rad/s) Angular velocity of USV 1

ωgoal (rad/s) Angular velocity of target 0.7
E Obstacle expansion coefficient 1.5
a Width factor 20
b Distance factor 190

R (m) Minimum turning radius of
USV 3

Rs (m) Safety range of USV 6

5.1. Simulation Experiment of Path Planning in Scene 1

In Scene 1, the coordinate of the start point is (−55, −284), and the coordinate of the
end point is (291, −49). Based on the above map parameters, a comparative experiment
between the traditional A* algorithm and the proposed algorithm is conducted to verify the
obstacle avoidance ability of the proposed algorithm. The experimental results are shown
in Figures 15 and 16.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 24

5. Simulation Experiment and Discussion
This part is mainly about the comparison and analysis of the experimental results.

The simulation experiment used Windows 10 as the operating system and Unity3D as the
simulation tool. The hardware platform was an Intel Core i5-10200h processor (Intel Cor-
poration, City of Santa Clara, CA, USA) with a main frequency of 2.4 GHz and 16 GB
memory. This experiment is implemented in two steps. First, conduct path planning sim-
ulation experiments and compare the experimental results. Second, a comparative exper-
iment between the proposed algorithm and the approaching method is implemented to
verify the effectiveness of the proposed algorithm. The relevant parameters of the pro-
posed algorithm and simulation experiment in this paper are shown in Table 1, and their
values are obtained from reference [8,11].

Table 1. The algorithm and simulation experimental parameters.

Parameters Definition Numerical Value
u (m/s) Forward speed of USV 15

vgoal (m/s) Forward speed of target 10
r (rad/s) Angular velocity of USV 1
ωgoal (rad/s) Angular velocity of target 0.7

E Obstacle expansion coefficient 1.5
a Width factor 20
b Distance factor 190

R (m) Minimum turning radius of USV 3
Rs (m) Safety range of USV 6

5.1. Simulation Experiment of Path Planning in Scene 1
In Scene 1, the coordinate of the start point is (−55, −284), and the coordinate of the

end point is (291, −49). Based on the above map parameters, a comparative experiment
between the traditional A* algorithm and the proposed algorithm is conducted to verify
the obstacle avoidance ability of the proposed algorithm. The experimental results are
shown in Figures 15 and 16.

Figure 15. Results of traditional A* algorithm in Scene 1. Figure 15. Results of traditional A* algorithm in Scene 1.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

Figure 16. Results of proposed algorithm in Scene 1.

In Scene 1, the traditional A* algorithm does not consider the path smoothing prob-
lem. There are turning points in the planning path that do not account for the motion
ability of the USV. As a result, USV deviates from the planning path and collides with
obstacles, as shown in Figure 15. The proposed algorithm smooths the planning path
based on the minimum turning radius of the USV, so that the USV can navigate on the
planning path and reach the end point, as shown in Figure 16. Therefore, the proposed
algorithm has stronger obstacle avoidance ability than the traditional A* algorithm, and
the planning path of the proposed algorithm is smoother than the planning path of the
traditional A* algorithm.

5.2. Simulation Experiment of Path Planning in Scene 2
In Scene 2, the coordinate of the start point is (181, −419) and the coordinate of the

end point is (−84, 103). The planning path of the traditional A* algorithm is not smooth,
the USV deviates from the path and collides with obstacles when tracking the planning
path of the traditional A* algorithm. Therefore, in scene 2, based on the above map pa-
rameters, the A* algorithm combined with the B-spline curve is selected as the comparison
algorithm. The comparison experiment is conducted with the A* algorithm combined
with the B-spline curve and the proposed algorithm to verify the effectiveness of the plan-
ning path of proposed algorithm and the high operation efficiency of proposed algorithm.
The experimental results are shown in Figures 17 and 18, and Table 2.

Figure 17. Results of A* algorithm combined with B-spline curve in Scene 2.

Figure 16. Results of proposed algorithm in Scene 1.

Sensors 2023, 23, 7058 16 of 23

In Scene 1, the traditional A* algorithm does not consider the path smoothing problem.
There are turning points in the planning path that do not account for the motion ability
of the USV. As a result, USV deviates from the planning path and collides with obstacles,
as shown in Figure 15. The proposed algorithm smooths the planning path based on the
minimum turning radius of the USV, so that the USV can navigate on the planning path
and reach the end point, as shown in Figure 16. Therefore, the proposed algorithm has
stronger obstacle avoidance ability than the traditional A* algorithm, and the planning
path of the proposed algorithm is smoother than the planning path of the traditional A*
algorithm.

5.2. Simulation Experiment of Path Planning in Scene 2

In Scene 2, the coordinate of the start point is (181, −419) and the coordinate of the end
point is (−84, 103). The planning path of the traditional A* algorithm is not smooth, the
USV deviates from the path and collides with obstacles when tracking the planning path of
the traditional A* algorithm. Therefore, in scene 2, based on the above map parameters, the
A* algorithm combined with the B-spline curve is selected as the comparison algorithm.
The comparison experiment is conducted with the A* algorithm combined with the B-
spline curve and the proposed algorithm to verify the effectiveness of the planning path
of proposed algorithm and the high operation efficiency of proposed algorithm. The
experimental results are shown in Figures 17 and 18, and Table 2.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

Figure 16. Results of proposed algorithm in Scene 1.

In Scene 1, the traditional A* algorithm does not consider the path smoothing prob-
lem. There are turning points in the planning path that do not account for the motion
ability of the USV. As a result, USV deviates from the planning path and collides with
obstacles, as shown in Figure 15. The proposed algorithm smooths the planning path
based on the minimum turning radius of the USV, so that the USV can navigate on the
planning path and reach the end point, as shown in Figure 16. Therefore, the proposed
algorithm has stronger obstacle avoidance ability than the traditional A* algorithm, and
the planning path of the proposed algorithm is smoother than the planning path of the
traditional A* algorithm.

5.2. Simulation Experiment of Path Planning in Scene 2
In Scene 2, the coordinate of the start point is (181, −419) and the coordinate of the

end point is (−84, 103). The planning path of the traditional A* algorithm is not smooth,
the USV deviates from the path and collides with obstacles when tracking the planning
path of the traditional A* algorithm. Therefore, in scene 2, based on the above map pa-
rameters, the A* algorithm combined with the B-spline curve is selected as the comparison
algorithm. The comparison experiment is conducted with the A* algorithm combined
with the B-spline curve and the proposed algorithm to verify the effectiveness of the plan-
ning path of proposed algorithm and the high operation efficiency of proposed algorithm.
The experimental results are shown in Figures 17 and 18, and Table 2.

Figure 17. Results of A* algorithm combined with B-spline curve in Scene 2. Figure 17. Results of A* algorithm combined with B-spline curve in Scene 2.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 24

Figure 18. Results of proposed algorithm in Scene 2.

Table 2. Simulation results in Scene 2.

Algorithm Name Planning Time (s) Path Length (m)
A* algorithm combined with B-spline curve 0.90211 701.87774

Proposed Algorithm 0.66402 678.60917

Combined with the experimental results in Table 2. It can be seen from Figure 17 that
the planning time of the A* algorithm combined with the B-spline curve is longer than the
planning time of the proposed algorithm, and the length of the planning path in the A*
algorithm combined with the B-spline curve is longer than the length of the planning path
in the proposed algorithm. And the total turning angle of the A* algorithm combined with
the B-spline curve is also larger than the total turning angle of the proposed algorithm. As
can be seen from Figure 18, since the algorithm in this paper smooths the path based on
the minimum turning radius of the USV, which shortens the length of the planning path
in proposed algorithm and reduces the total turning angle in proposed algorithm, the
planning path of proposed algorithm is suitable for the motion ability of the USV. In this
paper, the recursion algorithm of postorder traversal in the binary tree method is used
instead of the enumeration algorithm to get the optimal path, which improves the opera-
tion efficiency of the proposed algorithm and shortens the planning time of the proposed
algorithm.

In order to avoid the contingency of the experiment results, three groups of different
start points and end points are selected in Scene 2 for the simulation experiments. The
result is shown in Table 3.

Table 3. Simulation results of different start and end points under Scene 2.

Start End Algorithm
Planning Time

(s)
Path Length

(m)
Total Turning

Angle

(181, −419) (−84, 103)
A* algorithm combined with B-spline curve 0.90211 701.87774 161°1548′

Proposed Algorithm 0.66402 678.60917 87°0683′

(−94, −27) (347, −451) A* algorithm combined with B-spline curve 0.97951 725.15104 45°1268′
Proposed Algorithm 0.61845 709.13587 44°1534′

(400, 400) (−400, −400) A* algorithm combined with B-spline curve 1.24851 1634.9875 109°8418′
Proposed Algorithm 0.75112 1568.27831 105°7518′

(400, −400) (−400, 400) A* algorithm combined with B-spline curve 1.190011 1612.83788 141°4894′
Proposed Algorithm 0.74848 1567.15489 134°4537′

Figure 18. Results of proposed algorithm in Scene 2.

Sensors 2023, 23, 7058 17 of 23

Table 2. Simulation results in Scene 2.

Algorithm Name Planning Time (s) Path Length (m)

A* algorithm combined with B-spline curve 0.90211 701.87774
Proposed Algorithm 0.66402 678.60917

Combined with the experimental results in Table 2. It can be seen from Figure 17 that
the planning time of the A* algorithm combined with the B-spline curve is longer than
the planning time of the proposed algorithm, and the length of the planning path in the
A* algorithm combined with the B-spline curve is longer than the length of the planning
path in the proposed algorithm. And the total turning angle of the A* algorithm combined
with the B-spline curve is also larger than the total turning angle of the proposed algorithm.
As can be seen from Figure 18, since the algorithm in this paper smooths the path based
on the minimum turning radius of the USV, which shortens the length of the planning
path in proposed algorithm and reduces the total turning angle in proposed algorithm,
the planning path of proposed algorithm is suitable for the motion ability of the USV.
In this paper, the recursion algorithm of postorder traversal in the binary tree method
is used instead of the enumeration algorithm to get the optimal path, which improves
the operation efficiency of the proposed algorithm and shortens the planning time of the
proposed algorithm.

In order to avoid the contingency of the experiment results, three groups of different
start points and end points are selected in Scene 2 for the simulation experiments. The
result is shown in Table 3.

Table 3. Simulation results of different start and end points under Scene 2.

Start End Algorithm Planning Time (s) Path Length (m) Total Turning
Angle

(181, −419) (−84, 103)
A* algorithm combined with

B-spline curve 0.90211 701.87774 161◦1548′

Proposed Algorithm 0.66402 678.60917 87◦0683′

(−94, −27) (347, −451)
A* algorithm combined with

B-spline curve 0.97951 725.15104 45◦1268′

Proposed Algorithm 0.61845 709.13587 44◦1534′

(400, 400) (−400, −400)
A* algorithm combined with

B-spline curve 1.24851 1634.9875 109◦8418′

Proposed Algorithm 0.75112 1568.27831 105◦7518′

(400, −400) (−400, 400)
A* algorithm combined with

B-spline curve 1.190011 1612.83788 141◦4894′

Proposed Algorithm 0.74848 1567.15489 134◦4537′

5.3. Simulation Experiment of Target Hunting

In order to verify the effectiveness of the proposed algorithm, the approaching
method [35] was used to implement comparative experiments with the proposed algorithm.
The approaching method is a method to directly plan the path of virtual structure points,
and the virtual structure points were generated around the target. The target ship does not
escape the hunting of multi-USV swarm in this simulation experiment. The experimental
results of the approaching method are shown in Figures 19 and 20, and the experimental
results of the proposed algorithm are shown in Figures 21 and 22—where the ordinate d
of the curve in Figures 20 and 22 is the actual distance between the USV and the target
calculated by Formula (24), and the abscissa is time. In this experiment, the multi-USV
swarm consists of three ordinary ships, and the ordinary ships are called OS1, OS2, and
OS3.

Sensors 2023, 23, 7058 18 of 23

Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

5.3. Simulation Experiment of Target Hunting
In order to verify the effectiveness of the proposed algorithm, the approaching

method [35] was used to implement comparative experiments with the proposed algo-
rithm. The approaching method is a method to directly plan the path of virtual structure
points, and the virtual structure points were generated around the target. The target ship
does not escape the hunting of multi-USV swarm in this simulation experiment. The ex-
perimental results of the approaching method are shown in Figures 19 and 20, and the
experimental results of the proposed algorithm are shown in Figures 21 and 22—where
the ordinate d of the curve in Figures 20 and 22 is the actual distance between the USV
and the target calculated by Formula (24), and the abscissa is time. In this experiment, the
multi-USV swarm consists of three ordinary ships, and the ordinary ships are called OS1,
OS2, and OS3.

Figure 19. (a) The state of approaching method in the process of hunting. (b) The result of hunting
by approaching method.

Figure 20. Distance change between the USV and target in the process of surrounding by
approaching method.

Figure 19. (a) The state of approaching method in the process of hunting. (b) The result of hunting
by approaching method.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

5.3. Simulation Experiment of Target Hunting
In order to verify the effectiveness of the proposed algorithm, the approaching

method [35] was used to implement comparative experiments with the proposed algo-
rithm. The approaching method is a method to directly plan the path of virtual structure
points, and the virtual structure points were generated around the target. The target ship
does not escape the hunting of multi-USV swarm in this simulation experiment. The ex-
perimental results of the approaching method are shown in Figures 19 and 20, and the
experimental results of the proposed algorithm are shown in Figures 21 and 22—where
the ordinate d of the curve in Figures 20 and 22 is the actual distance between the USV
and the target calculated by Formula (24), and the abscissa is time. In this experiment, the
multi-USV swarm consists of three ordinary ships, and the ordinary ships are called OS1,
OS2, and OS3.

Figure 19. (a) The state of approaching method in the process of hunting. (b) The result of hunting
by approaching method.

Figure 20. Distance change between the USV and target in the process of surrounding by
approaching method.

Figure 20. Distance change between the USV and target in the process of surrounding by approaching
method.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

Figure 21. (a) The state of proposed algorithm in the process of hunting. (b) The result of hunting
by proposed algorithm.

Figure 22. Distance change between USV and target in the process of surrounding by proposed
algorithm.

In Figure 19a, it is shown that the multi-USV swarm was directly approaching the
target ship. Although this can reduce the traveling distance of the USV, OS1 was closer to
the target ship than OS2 and OS3. In Figure 19b, the result of target hunting is framed by
red squares, it is shown that OS1 tracked the target ship and scraped with the target ship.
In Figure 20, it is shown that OS2 and OS3 did not effectively encircle the target ship. The
distance between the multi-USV swarm was too large, leading to the hunting failure. In
Figure 21a, it is shown that the multi-USV swarm had generated a U-shaped array in front
of the target ship, making preparations for hunting. In Figure 21b, the result of target
hunting is framed by red squares; it is shown that the multi-USV swarm has surrounded
the target ship. Because of the U-shaped array, the multi-USV swarm had formed an en-
circlement circle and successfully hunted the target ship. In Figure 22, it is shown that the
USV with the proposed algorithm can maintain a similar distance from the target ship,
and the formation of multi-USV swarm is more stable.

In addition, this study utilized the cooperative hunting method based on the Long
short-term memory (LSTM) neural network and the cooperative hunting method based
on artificial potential field (APF) as a comparative algorithm and conducted 10 compara-
tive experiments with the proposed algorithm. The results are shown in Figure 23.

Figure 21. (a) The state of proposed algorithm in the process of hunting. (b) The result of hunting by
proposed algorithm.

Sensors 2023, 23, 7058 19 of 23

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

Figure 21. (a) The state of proposed algorithm in the process of hunting. (b) The result of hunting
by proposed algorithm.

Figure 22. Distance change between USV and target in the process of surrounding by proposed
algorithm.

In Figure 19a, it is shown that the multi-USV swarm was directly approaching the
target ship. Although this can reduce the traveling distance of the USV, OS1 was closer to
the target ship than OS2 and OS3. In Figure 19b, the result of target hunting is framed by
red squares, it is shown that OS1 tracked the target ship and scraped with the target ship.
In Figure 20, it is shown that OS2 and OS3 did not effectively encircle the target ship. The
distance between the multi-USV swarm was too large, leading to the hunting failure. In
Figure 21a, it is shown that the multi-USV swarm had generated a U-shaped array in front
of the target ship, making preparations for hunting. In Figure 21b, the result of target
hunting is framed by red squares; it is shown that the multi-USV swarm has surrounded
the target ship. Because of the U-shaped array, the multi-USV swarm had formed an en-
circlement circle and successfully hunted the target ship. In Figure 22, it is shown that the
USV with the proposed algorithm can maintain a similar distance from the target ship,
and the formation of multi-USV swarm is more stable.

In addition, this study utilized the cooperative hunting method based on the Long
short-term memory (LSTM) neural network and the cooperative hunting method based
on artificial potential field (APF) as a comparative algorithm and conducted 10 compara-
tive experiments with the proposed algorithm. The results are shown in Figure 23.

Figure 22. Distance change between USV and target in the process of surrounding by proposed
algorithm.

In Figure 19a, it is shown that the multi-USV swarm was directly approaching the
target ship. Although this can reduce the traveling distance of the USV, OS1 was closer
to the target ship than OS2 and OS3. In Figure 19b, the result of target hunting is framed
by red squares, it is shown that OS1 tracked the target ship and scraped with the target
ship. In Figure 20, it is shown that OS2 and OS3 did not effectively encircle the target
ship. The distance between the multi-USV swarm was too large, leading to the hunting
failure. In Figure 21a, it is shown that the multi-USV swarm had generated a U-shaped
array in front of the target ship, making preparations for hunting. In Figure 21b, the result
of target hunting is framed by red squares; it is shown that the multi-USV swarm has
surrounded the target ship. Because of the U-shaped array, the multi-USV swarm had
formed an encirclement circle and successfully hunted the target ship. In Figure 22, it is
shown that the USV with the proposed algorithm can maintain a similar distance from the
target ship, and the formation of multi-USV swarm is more stable.

In addition, this study utilized the cooperative hunting method based on the Long
short-term memory (LSTM) neural network and the cooperative hunting method based on
artificial potential field (APF) as a comparative algorithm and conducted 10 comparative
experiments with the proposed algorithm. The results are shown in Figure 23.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 24

Figure 23. Multiple simulation experimental results of three algorithms.

From Figure 23, the performance of the proposed algorithm is far superior to the co-
operative hunting method based on APF. At the same time, the proposed algorithm per-
forms better than the cooperative hunting method based on LSTM in most cases. Although
the cooperative hunting method based on LSTM outperformed the proposed algorithm in
experiments 3, 8, 10, 15, and 18, it is within a reasonable range. In addition, the cooperative
hunting method based on LSTM needs to be trained in advance and then applied to coop-
erative hunting, while the proposed algorithm does not require training. In summary, the
proposed algorithm has high cooperative hunting efficiency.

In order to further verify the effectiveness of the proposed algorithm, escape action
is added to the target ship. The target ship will always try to escape from the map bound-
ary. At the same time, when the target ship finds another USV in the environment, it will
stay away from the USV in the environment. The experimental results are shown in Fig-
ures 24 and 25. Where the ordinate d of the curve in Figure 25 is the actual distance be-
tween the USV and the target calculated by Formula (24), and the abscissa is time.

In Figure 24a, the start of target hunting is framed by red squares; it is shown that the
multi-USV swarm had chased the target ship and formed an encirclement circle to sur-
round the target. In Figure 24b, the process of target hunting is framed by red squares; it
is shown that the target ship turned left to escape, and OS1 blocked the escape route of
the target ship. In Figure 24c, the process of target hunting is framed by red squares; it is
shown that the target ship had performed two escape actions, both of which were blocked
by OS1. In Figure 24d, the result of target hunting is framed by red squares; it is shown
that the multi-USV swarm had trapped the target ship in the encirclement circle and suc-
cessfully controlled the target ship to prevent the target ship escaping from the map
boundary. Therefore, the proposed algorithm can successfully implement encirclement
when facing a target with a certain escape ability. In Figure 25, it is shown that the USV
with proposed algorithm can maintain a similar distance from the target ship, and the
formation of the multi-USV swarm is stable.

Figure 23. Multiple simulation experimental results of three algorithms.

Sensors 2023, 23, 7058 20 of 23

From Figure 23, the performance of the proposed algorithm is far superior to the coop-
erative hunting method based on APF. At the same time, the proposed algorithm performs
better than the cooperative hunting method based on LSTM in most cases. Although the
cooperative hunting method based on LSTM outperformed the proposed algorithm in
experiments 3, 8, 10, 15, and 18, it is within a reasonable range. In addition, the cooperative
hunting method based on LSTM needs to be trained in advance and then applied to coop-
erative hunting, while the proposed algorithm does not require training. In summary, the
proposed algorithm has high cooperative hunting efficiency.

In order to further verify the effectiveness of the proposed algorithm, escape action is
added to the target ship. The target ship will always try to escape from the map boundary.
At the same time, when the target ship finds another USV in the environment, it will
stay away from the USV in the environment. The experimental results are shown in
Figures 24 and 25. Where the ordinate d of the curve in Figure 25 is the actual distance
between the USV and the target calculated by Formula (24), and the abscissa is time.

In Figure 24a, the start of target hunting is framed by red squares; it is shown that
the multi-USV swarm had chased the target ship and formed an encirclement circle to
surround the target. In Figure 24b, the process of target hunting is framed by red squares;
it is shown that the target ship turned left to escape, and OS1 blocked the escape route
of the target ship. In Figure 24c, the process of target hunting is framed by red squares;
it is shown that the target ship had performed two escape actions, both of which were
blocked by OS1. In Figure 24d, the result of target hunting is framed by red squares; it is
shown that the multi-USV swarm had trapped the target ship in the encirclement circle
and successfully controlled the target ship to prevent the target ship escaping from the map
boundary. Therefore, the proposed algorithm can successfully implement encirclement
when facing a target with a certain escape ability. In Figure 25, it is shown that the USV
with proposed algorithm can maintain a similar distance from the target ship, and the
formation of the multi-USV swarm is stable.

Sensors 2023, 23, x FOR PEER REVIEW 22 of 24

Figure 24. (a) One of the results of the hunting at the first moment. (b) One of the results of the
hunting at the second moment. (c) One of the results of the hunting at the third moment. (d) One of
the results of the hunting at the fourth moment.

Figure 25. Distance change between the USV and target in the process of hunting by proposed
algorithm.

6. Conclusions
This paper proposed a cooperative hunting method for multi-USV based on the A*

algorithm in an environment with obstacles. First, on the basis of the traditional A* algo-
rithm, a path smoothing method based on the minimum turning radius of USV is pro-
posed. Second, a bionic based cooperative hunting method for multi-USV swarm is pro-
posed to hunt the target. In order to verify the effectiveness of the proposed algorithm,
two groups of simulation experiments are implemented. The results show that the pro-
posed algorithm has good effectiveness in path planning and target hunting. The effi-
ciency of cooperative hunting methods based on virtual structural points has been

Figure 24. (a) One of the results of the hunting at the first moment. (b) One of the results of the
hunting at the second moment. (c) One of the results of the hunting at the third moment. (d) One of
the results of the hunting at the fourth moment.

Sensors 2023, 23, 7058 21 of 23

Sensors 2023, 23, x FOR PEER REVIEW 22 of 24

Figure 24. (a) One of the results of the hunting at the first moment. (b) One of the results of the
hunting at the second moment. (c) One of the results of the hunting at the third moment. (d) One of
the results of the hunting at the fourth moment.

Figure 25. Distance change between the USV and target in the process of hunting by proposed
algorithm.

6. Conclusions
This paper proposed a cooperative hunting method for multi-USV based on the A*

algorithm in an environment with obstacles. First, on the basis of the traditional A* algo-
rithm, a path smoothing method based on the minimum turning radius of USV is pro-
posed. Second, a bionic based cooperative hunting method for multi-USV swarm is pro-
posed to hunt the target. In order to verify the effectiveness of the proposed algorithm,
two groups of simulation experiments are implemented. The results show that the pro-
posed algorithm has good effectiveness in path planning and target hunting. The effi-
ciency of cooperative hunting methods based on virtual structural points has been

Figure 25. Distance change between the USV and target in the process of hunting by proposed
algorithm.

6. Conclusions

This paper proposed a cooperative hunting method for multi-USV based on the
A* algorithm in an environment with obstacles. First, on the basis of the traditional A*
algorithm, a path smoothing method based on the minimum turning radius of USV is
proposed. Second, a bionic based cooperative hunting method for multi-USV swarm is
proposed to hunt the target. In order to verify the effectiveness of the proposed algorithm,
two groups of simulation experiments are implemented. The results show that the proposed
algorithm has good effectiveness in path planning and target hunting. The efficiency of
cooperative hunting methods based on virtual structural points has been improved, and
compared with comparative algorithms, the proposed algorithm can more effectively hunt
targets.

This study did not consider the impact of ocean currents on USVs, and the impact of
ocean currents will also be considered during the cooperative hunting in future research.
In addition, in future research, the proposed algorithm in this paper can be improved in
two aspects. First, most of the parameters in this paper are obtained from experience. In
the future, the proposed algorithm will be improved with a depth learning algorithm to
optimize its parameters. Second, this paper does not study the task allocation method, and
the related algorithms will be studied to make reasonable task allocation for the multi-USV
swarm in the future.

Author Contributions: Conceptualization, Z.C. and J.Y.; methodology, Z.C.; software, Z.C.; vali-
dation, J.Y., Z.Z. and X.W.; formal analysis, Y.L.; investigation, Z.C.; resources, J.X.; data curation,
J.Y.; writing—original draft preparation, J.Y.; writing—review and editing, X.W.; visualization, X.W.;
supervision, Z.Z.; project administration, J.Y.; funding acquisition, Z.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program
of China, grant number 2022YFF1101103. National Key Research and Development Program of
China, grant number 2020YFC1606801. Beijing Municipal Natural Science Foundation, grant number
4222042.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 7058 22 of 23

References
1. Yu, J.; Liu, G.; Xu, J.; Zhao, Z.; Chen, Z.; Yang, M.; Wang, X.; Bai, Y. A Hybrid Multi-Target Path Planning Algorithm for Unmanned

Cruise Ship in an Unknown Obstacle Environment. Sensors 2022, 22, 2429. [CrossRef] [PubMed]
2. Yu, J.; Deng, W.; Zhao, Z.; Wang, X.; Xu, J.; Wang, L.; Sun, Q.; Shen, Z. A Hybrid Path Planning Method for an Unmanned Cruise

Ship in Water Quality Sampling. IEEE Access 2019, 7, 87127–87140. [CrossRef]
3. Chen, Z.; Yu, J.; Zhao, Z.; Wang, X.; Chen, Y. A Path-Planning Method Considering Environmental Disturbance Based on

VPF-RRT*. Drones 2023, 7, 145. [CrossRef]
4. Zhu, Z.; Xiao, J.; Li, J.; Wang, F.; Zhang, Q. Global path planning of wheeled robots using multi-objective memetic algorithms.

Integr. Comput. Aided Eng. 2015, 22, 387–404. [CrossRef]
5. Altunbas, C.; Alexeev, T.; Miften, M. Effect of grid geometry on the transmission properties of 2D grids for flat detectors in CBCT.

Phys. Med. Biol. 2019, 64, 225006. [CrossRef]
6. Zhang, Q.; Song, X.; Yang, Y.; Haotian, M.; Ryosuke, S. Visual graph mining for graph matching. Comput. Vis. Image Underst. 2019,

178, 16–29. [CrossRef]
7. Zhang, J.; Feng, Y.; Shi, F.; Wang, G.; Ma, B.; Li, R.; Jia, X. Vehicle routing in urban areas based on the oil consumption

weight-Dijkstra algorithm. IET Intell. Transp. 2016, 10, 495–502. [CrossRef]
8. Yershov, D.; Lavalle, S. Simplicial Dijkstra and A* Algorithms: From Graphs to Continuous Spaces. Adv. Robot. 2012, 26,

2065–2085. [CrossRef]
9. Ni, J.; Wu, L.; Shi, P.; Yang, S. A dynamic bioinspired neural network based real-time path planning method for autonomous

underwater vehicles. Comput. Intell. Neurosci. 2017, 2017, 9269742. [CrossRef]
10. Wang, P.; Gao, S.; Li, L.; Sun, B.; Cheng, S. Obstacle Avoidance Path Planning Design for Autonomous Driving Vehicles Based on

an Improved Artificial Potential Field Algorithm. Energies 2019, 12, 2342. [CrossRef]
11. Ye, B.; Tang, Q.; Yao, J. Collision-Free Path Planning and Delivery Sequence Optimization in Noncoplanar Radiation Therapy.

IEEE Trans. Cybern. 2019, 49, 42–55. [CrossRef]
12. Heon-Cheol, L.; Touahmi, Y.; Beom-Hee, L. Grafting: A Path Replanning Technique for RaPIly-Exploring Random Trees in

Dynamic Environments. Adv. Robot. 2012, 26, 2145–2168.
13. Wanna, P.; Wongthanavasu, S. An Improved Cellular Automata-Based Classifier with Soft Decision. J. Internet Technol. 2020, 21,

1701–1715. [CrossRef]
14. Zeng, M.; Xi, L.; Xiao, A. The free step length ant colony algorithm in mobile robot path planning. Adv. Robot. 2016, 30, 1509–1514.

[CrossRef]
15. Thi-Thoa, M.; Cosmin, C.; Duc-Trung, T.; Robin, D. A Hierarchical Global Path Planning Approach for Mobile Robots Based on

Multi-Objective Particle Swarm Optimization. Appl. Soft Comput. 2017, 59, 68–76. [CrossRef]
16. Jiang, Z.; Jun, W.; Xiao, S. Autonomous land vehicle path planning algorithm based on improved heuristic function of A-Star. Int.

J. Adv. Robot. Syst. 2021, 18, 1–10. [CrossRef]
17. Yu, J.; Hou, J.; Chen, G. Improved Safety-First A-Star Algorithm for Autonomous Vehicles. In Proceedings of the 2020 5th

International Conference on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, 18–21 December 2020.
18. Lin, Z.; Zhang, Y.; Li, Y. Mobile Robot Path Planning Based on Improved Localized Particle Swarm Optimization. IEEE Sens. J.

2021, 21, 6962–6972. [CrossRef]
19. Liu, Z.; Liu, H.; Lu, Z.; Zheng, Q. A Dynamic Fusion Pathfinding Algorithm Using Delaunay Triangulation and Improved A-star

for Mobile Robots. IEEE Access 2021, 9, 20602–20621. [CrossRef]
20. Hong, Z.; Sun, P.; Tong, X.; Pan, H.; Zhou, R.; Zhang, Y.; Han, Y.; Wang, J.; Yang, S.; Xu, L. Improved A-Star Algorithm for

Long-Distance Off-Road Path Planning Using Terrain Data Map. ISPRS Int. J. Geo-Inf. 2021, 10, 785. [CrossRef]
21. Zhang, Z.; Wu, J.; Dai, J.; He, C. Optimal path planning with modified A-Star algorithm for stealth unmanned aerial vehicles in

3D network radar environment. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 236, 72–81. [CrossRef]
22. Zhao, Z.; Hu, Q.; Feng, H.; Feng, X.; Su, W. A Cooperative Hunting Method for Multi-AUV Swarm in Underwater Weak

Information Environment with Obstacles. J. Mar. Sci. Eng. 2022, 10, 1266. [CrossRef]
23. Chen, Y.; Ma, X.; Bai, G.; Sha, Y.; Liu, J. Multi-autonomous underwater vehicle formation control and cluster search using a fusion

control strategy at complex underwater environment. Ocean Eng. 2020, 216, 108048. [CrossRef]
24. Wang, Y.; Dong, L.; Sun, C. Cooperative Control for Multi-Player Pursuit-Evasion Games with Reinforcement Learning. Neuro-

computing 2020, 412, 101–114. [CrossRef]
25. Cai, L.; Sun, Q. Multiautonomous underwater vehicle consistent collaborative hunting method based on generative adversarial

network. Int. J. Adv. Robot. Syst. 2020, 17, 663–678. [CrossRef]
26. Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput.

Commun. 2019, 149, 270–299. [CrossRef]
27. Wang, Q.; Li, J.; Yang, L.; Yang, Z.; Li, P.; Xia, G. Distributed Multi-Mobile Robot Path Planning and Obstacle Avoidance Based on

ACO–DWA in Unknown Complex Terrain. Electronics 2022, 11, 2144. [CrossRef]
28. Guo, J.; Qi, J.; Wang, M.; Wu, C.; Xu, S. A cooperative search and encirclement algorithm for quadrotors in unknown areas. J.

Beijing Univ. Aeronaut. Astronaut. 2022. [CrossRef]
29. Souza, C.; Newbury, R.; Cosgun, A.; Castillo, P.; Vidolov, B.; Kulic, D. Decentralized Multi-Agent Pursuit Using Deep Reinforce-

ment Learning. IEEE Robot. Autom. Lett. 2021, 6, 4552–4559. [CrossRef]

https://doi.org/10.3390/s22072429
https://www.ncbi.nlm.nih.gov/pubmed/35408049
https://doi.org/10.1109/ACCESS.2019.2925894
https://doi.org/10.3390/drones7020145
https://doi.org/10.3233/ICA-150498
https://doi.org/10.1088/1361-6560/ab4af4
https://doi.org/10.1016/j.cviu.2018.11.002
https://doi.org/10.1049/iet-its.2015.0168
https://doi.org/10.1080/01691864.2012.729559
https://doi.org/10.1155/2017/9269742
https://doi.org/10.3390/en12122342
https://doi.org/10.1109/TCYB.2017.2763682
https://doi.org/10.3966/160792642020112106012
https://doi.org/10.1080/01691864.2016.1240627
https://doi.org/10.1016/j.asoc.2017.05.012
https://doi.org/10.1177/17298814211042730
https://doi.org/10.1109/JSEN.2020.3039275
https://doi.org/10.1109/ACCESS.2021.3055231
https://doi.org/10.3390/ijgi10110785
https://doi.org/10.1177/09544100211007381
https://doi.org/10.3390/jmse10091266
https://doi.org/10.1016/j.oceaneng.2020.108048
https://doi.org/10.1016/j.neucom.2020.06.031
https://doi.org/10.1177/1729881420925233
https://doi.org/10.1016/j.comcom.2019.10.014
https://doi.org/10.3390/electronics11142144
https://doi.org/10.13700/j.bh.1001-5965.2021.0606
https://doi.org/10.1109/LRA.2021.3068952

Sensors 2023, 23, 7058 23 of 23

30. Sun, Z.; Sun, H.; Li, P.; Zou, J. Self-Organizing Cooperative Pursuit Strategy for Multi-USV with Dynamic Obstacle Ships. J. Mar.
Sci. Eng. 2022, 10, 562. [CrossRef]

31. Lv, J.; Xu, X.; Du, S.; Ma, Q. Research on the Method of Capturing Task Allocation Based on Energy Balance. In Proceedings
of the 2nd International Conference on Artificial Intelligence, Network and Information Technology, Shanghai, China, 14–15
October 2021.

32. Ammar, A.; Bennaceur, H.; Chari, I.; Koubâa, A.; Alajlan, M. Relaxed Dijkstra and A* with linear complexity for robot path
planning problems in large-scale grid environments. Soft Comput. 2016, 20, 4149–4171. [CrossRef]

33. Liu, L.; Han, G.; Xu, Z.; Jiang, J.; Martinez-Garcia, M. Boundary Tracking of Continuous Objects Based on Binary Tree Structured
SVM for Industrial Wireless Sensor Networks. IEEE Trans Mob. Comput. 2020, 21, 849–861. [CrossRef]

34. Yu, J.; Chen, Z.; Zhao, Z.; Yao, P.; Xu, J. A traversal multi-target path planning method for multi-unmanned surface vessels in
space-varying ocean current. Ocean. Eng. 2023, 278, 114423. [CrossRef]

35. Xie, Y.; Liang, X.; Lou, L.; Guo, X. Self-organization Method of USV Swarm Target Strike Task Based on Ant Colony Algorithm. In
Proceedings of the International Symposium on Autonomous Systems Systems Engineering Research Institute, CSSC, Beijing,
China, 29–31 May 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/jmse10050562
https://doi.org/10.1007/s00500-015-1750-1
https://doi.org/10.1109/TMC.2020.3019393
https://doi.org/10.1016/j.oceaneng.2023.114423

	Introduction
	Preliminaries
	A* Algorithm
	Binary Tree Method

	Modeling
	USV Modeling
	Obstacle Modeling
	Target Modeling

	Proposed Algorithm
	Improved A* Algorithm
	A Biomimetic Multi USV Swarm Collaborative Hunting Method

	Simulation Experiment and Discussion
	Simulation Experiment of Path Planning in Scene 1
	Simulation Experiment of Path Planning in Scene 2
	Simulation Experiment of Target Hunting

	Conclusions
	References

