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Abstract: In order to obtain high-quality images, it is very important to remove noise effectively and
retain image details reasonably. In this paper, we propose a residual UNet denoising network that
adds the attention-guided filter and multi-scale feature extraction blocks. We design a multi-scale
feature extraction block as the input block to expand the receiving domain and extract more useful
features. We also develop the attention-guided filter block to hold the edge information. Further,
we use the global residual network strategy to model residual noise instead of directly modeling
clean images. Experimental results show our proposed network performs favorably against several
state-of-the-art models. Our proposed model can not only suppress the noise more effectively, but
also improve the sharpness of the image.
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1. Introduction

As a typical problem in the field of low-level image processing, image denoising aims
to recover the clean image from the observed image that is corrupted by some noise. Since
both the clean image and the noise are unknown, it is critical to remove the noise while
preserving the details of the image.

Traditional image denoising approaches, including filtering-based methods and model-
based methods, have always been the main image denoising methods. For example, non-
local mean (NLM) [1], block matching and three-dimensional filtering (BM3D) [2], wavelet
transform [3–5], have become the most advanced image denoising methods. However,
these traditional denoising methods tend to blur the image texture and reduce the image
visual quality.

Compared with traditional denoising methods, convolutional neural networks (CNNs)
have achieved state-of-the-art performances in some representative image denoising tasks.
The popularity of CNNs in image denoising can be explained from two aspects. On the one
hand, CNN has the advantages of speed, performance, and generalization ability compared
with traditional noise removal devices [6,7]. On the other hand, recent research has shown
that CNN-based methods can be inserted into model-based optimization methods to solve
more complex image restoration tasks [8,9], which can promote the application ability of
the CNN models.

By constructing a learnable deep neural network, deep learning denoising methods
learn the mapping from damaged images to clean images. Moreover, some classical module
methods were inserted to CNNs in order to improve the efficiency of the denoising task
efficiently. Feng et al. developed a trainable nonlinear reaction diffusion (TNRD) model
to remove the Poisson noise quickly and accurately [10]. The feed-forward denoising
convolutional neural networks (DnCNNs) [7] focused on the complementary role of the
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residual learning and batch normalization in image restoration. Memory blocks were
introduced in a persistent memory network (MemNet) for image recovery [11]. The popular
attention mechanism was used in an attention-guided denoising convolutional neural
network (ADNet) [12]. A convolutional blind denoising network (CBDNet) [13] contains a
noise estimation subnet with asymmetric learning to realize the noise level estimation.

Although deep learning-based denoising methods have achieved an excellent denois-
ing effect, it is very difficult to further improve the performance of deep learning-based
denoising methods, because they need to increase the depth or width of the network, which
will encounter a sharp increase in training parameters. Most deep denoising networks
lack the adaptability since these models need to be trained for each noise level, which
may induce a poor performance for other noise levels. Therefore, it is worth investigating
how to explore and utilize the existing denoising networks, so as to achieve more effective
denoising. Multi-scale features are very useful in the field of image quality and visual
saliency in computer vision. For example, Varge [14] introduced a no-reference image
quality assessment with multi-scale orderless pooling of deep features and Li et al. [15]
proposed a visual saliency approach based on multiscale deep features. Beyond that, some
enhancement techniques are feasible to improve the recovery quality of deep learning-based
denoising methods, such as Tukey’s shrinking strategy [16] and the multi-level wavelet
transform [17].

In this paper, we propose a residual-dense neural network (MAGUNet) that incor-
porates multi-scale feature extraction blocks and attention-guided filter blocks for image
denoising. Our proposed model has the ability to compete with the latest denoising meth-
ods. Based on the UNet architecture, our model consists of a shrunk subnet and an extended
subnet. In the shrink subnetwork, the input block is constructed by the void convolution
and multi-scale feature extraction block to extract more useful features from the input noise
image. An attention-guided filter block is introduced to restore the image information after
each down-sampling operation. Although our model has a larger number of parameters
than the conventional methods, our model allows for a smaller number of multiplication
operations compared with the models with similar or even higher complexity. Massive
experiments have shown that our MAGUNet model outperforms the most advanced de-
noising methods such as BM3D, FFDNet, RDUNet, and MSAUNet. The contributions of
this paper are summarized as follows:

• This paper proposes the MAGUNet model, which extracts more useful features by
expanding the acceptance domain, so that our model can achieve a better balance
between efficiency and performance.

• The attention-guided filter block is designed to retain the details of the image informa-
tion after each down-sampling operation.

• The experiment results demonstrate the superiority of the MAGUNet model against
the competing methods.

The remainder of this paper is organized as follows. The related work is reviewed in
Section 2. Section 3 provides our proposed MAGUNet model. The experimental results are
provided in Section 4. Section 5 presents some related discussion. The conclusion is given
in Section 6.

2. Related Work
2.1. CNNs for Image Denoising

At present, there are many methods based on the neural networks to deal with the
image denoising problem. Jain and Seung [18] proposed the earliest CNN model for natural
image denoising. Burger et al. [19] proposed a multi-layer perceptron (MLP) block that
allows the neural network to achieve better results than the BM3D [2] method. Zhang
et al. [7] proposed a deep convolutional neural network (DnCNN) for image denoising,
which improves the denoising performance by stacking multiple convolution layer blocks.

It is effective to use skip connection operation to enhance the expressiveness of
CNN denoising models. By integrating the short-term memory and long-term memory,
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Tai et al. [11] proposed a deep end-to-end persistent memory network for image restoration,
which enhances the influence of the shallow layer through recursion. The fast and flexible
denoising CNN(FFDNet) [20] introduced noise feature graphs that deal with non-uniform
noise levels to reduce the sampled subimages. A generative adversarial neural network
(GAN) is proposed to estimate noise distribution and generate noise samples [21].

Recent models, such as DHDN [22], DIDN [23], and RDN [24], have improved the
baseline results established by DnCNN and FFDNet models. However, these models sig-
nificantly increase the number of parameters to achieve the improvement. Presently, UNet
model [25] is one of the most widely used in the autoencoder architectures. Liu et al. [17]
proposed the MWCNN model, which combines the wavelet transform and convolu-
tional layer in the UNet model instead of simple convolution and maximum polarization.
Wang et al. [26] extended the MWCNN model by adding residual-dense blocks to each
layer of the model. The DIDN model proposed by Yu et al. [22] utilized several U-Net-
based blocks, which may change the image size many times. He et al. [27] proposed the
residual U-Net network (ResNets) to solve the problem about network degradation with
the increase of the network depth. Dense networks [23] reuse each generated feature map
to subsequent convolution within the same convolution block. Additionally, several image
denoising methods based on residual learning and dense connectivity have been proposed.
Zhang et al. [28] proposed a depth residual network with a linear element layer of paramet-
ric rectification for image recovery tasks. A residual dense neural network (RDUNet) for
image denoising [29] combines dense concatenated convolutional blocks by feature graphs
in the encoding and decoding parts.

2.2. Multi-Scale Feature Extraction

To capture more contextual information in CNNs, increasing the acceptance field
size is a common technique. However, this usually requires expanding the depth and
width of the network, which produces more parameters in the model. An alternative
approach is to use dilated convolution, which can extract multi-scale information while
keeping the feature map size constant. The dilated convolution is particularly useful for
detection and segmentation tasks, as it can detect large targets and accurately locate them.
Shallow layers of neural networks tend to have smaller acceptance domains, but they can
learn and transmit image details to deeper layers for feature integration. As the network
deepens, there may be a lack of long-term dependencies between features, which can
be addressed by broadening the network and extracting richer features [30]. Different
networks, such as GoogleNet [31] and CFBI+ [32], have used multi-scale approaches to
enhance the expression ability and robustness of the neural network framework. The multi-
scale adaptive network proposed by Gou et al. [33] integrates the intra-scale features and
cross-scale complementarity into the network design at the same time. Zou et al. designed
a dual attention to adaptively reinforce important channels and spatial regions [34]. Li
et al. proposed a multi-scale feature fusion network for CT image denoising by combining
multiple feature extraction modules [35]. In the multi-scale feature extraction blocks of
our proposed MAGUNet model, the residual dilated convolution blocks were utilized to
balance the number of parameters and the performance of feature extraction.

2.3. Attentional Mechanisms

As we all know, it is a great challenge to extract suitable features from a given complex
background image. Zhu et al. [36] proposed an attention mechanism that combines the
training flow and tracking task in a deep learning framework. Karri et al. [37] presented
an interpretable multi-module semantically guided attention network including the loca-
tion attention, channel-wise attention, and edge attention modules, so as to extract the
most important spatial-, channel-, and boundary-related features. Fan et al. [38] proposed
a new attention ConvNeXt model by introducing a parametrically free attention block.
Yan et al. [39] proposed an attention-guided dynamic multi-branch neural network to ob-
tain high-quality underwater images. Wang et al. [40] introduced an attention mechanism
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into the discriminator to reduce excessive attention and retain more detailed feature infor-
mation. As an anisotropic filter, a guided filter [41] can preserve edge details efficiently.
Wu et al. [42] proposed deep guided filter networks to deal with the problem about limited
joint up-sampling capability. In light of the structure of the guide image, Ying et al. [43]
generated a set of guide filters to preserve the edge smoothing. By exploring the fusion of
the attention mechanism and guided filter, we propose the attention-guided filter block
based on the ability of learning important features.

3. Methods
3.1. Network Structure

The architecture of our proposed network is shown in Figure 1, which is mainly
composed of a multi-scale feature extraction block (MFE), an attention-guided filter block
(AGB), and a residual denoising block (RDB).
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Figure 1. The structures of the encoder and decoder are the main body of the proposed MAGUNet,
which contains four main blocks, namely, MFE block, AGF block, denoising block, and output block.
The encoder and decoder parts are connected by a multi-scale feature extraction block, attention-
guided filter blocks, and residual modules. The main task of the encoder part is to extract the
low-level features of the image. The decoder part is responsible for recovering the high-level features
of the image while removing the noise.

In this paper, we deal with the noisy image y destroyed by the additive white Gaus-
sian noise n. The image denoising problem can be formulated as finding the argument
function F(·, θ) on the trainable parameter vector θ such that the estimated clean image x̂ is
computed by

x̂ = F(y, θ) (1)

Since the damaged image contains most of the structure of the clean image, it is
reasonable to retain the structure information by estimating the noise. To that end, we
assume that there exists a parameter mapping H(·, θ) such that H(y, θ) ≈ −n. Therefore,
the denoising parameter model based on residual learning can be written as follows:

F(y, θ) = H(y, θ) + y (2)

Let {xi, yi}N
i=1 be the training dataset, where yi is a noisy image and xi is the cor-

responding clean image. For a given balancing factor λ, the parameter is computed by
solving the following optimization problem:

θ∗ = argmin
θ

1
N

N

∑
i=1
‖F(yi; θ)− xi‖1 +

λ

2
‖θ‖2 (3)

where the first and second terms are, respectively, the fidelity term and the regularization
term.
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From Figure 1, we can find that the main architecture of the mapping F(·, θ) is asso-
ciated with the MAGUNet model of mapping H(·, θ). The main body of MAGUNet is
composed of the encoder and decoder structures. The encoder part is responsible for ex-
tracting the low-level features of the image. The decoder part is responsible for recovering
high-level features of the image while removing noise. The encoder and decode parts are
connected by a series of residual modules. On the basis of the UNet, our MAGUNet model
introduces the multi-scale feature extraction blocks as input blocks and attention-guided
filter blocks after down-sampling.

In the encoding phase, there is one denoising block and one attention-guided filter
block in each layer, and there are two denoising blocks in the decoding phase. The output of
each coding layer adopts the down-sampling by means of a convolution kernel of size 2× 2
and a step of size 2. Each step of down-sampling will double the number of feature maps to
reduce the loss of information from one level to another. The up-sampling of the decoding
layer is performed by the transposing convolution. The feature fusion between the coding
layer and decoding layer is carried out by a skip connection. After each operation of
up-sampling and with the skip connection, our model executes the 3 × 3 convolution to
reduce the number of features and smooth the up-sampled features, while preserving the
most important information of the source image. Our MAGUNet model mostly uses the
PReLU activation functions. When the PReLU function is adopted, the number of trainable
parameters is the same as the number of feature maps in the corresponding layer, which
implies the PReLU function can improve the flexibility of the model without introducing
a large number of additional parameters. The sigmoid and GELU activation functions
are used only in the attention-guided filter layer. Because the nonlinearity and dropout
jointly determine the output of neurons, the use of GELU activation function can make
the probability of neuron output higher and reduce over-fitting. The input block used for
multi-scale feature extraction is shown in Figure 2. Spatial information can be reasonably
used to predict the actual values of the given pixels for the denoising task. In the local area,
the current pixel of the predicted image and its adjacent pixels have similar pixel values. A
high noise level usually requires a larger patch size to capture the contextual information.
One way to obtain more spatial information is to select the convolution kernel of size larger
than 3 × 3, which may increase the number of parameters in the spatial dimension. Our
MAGUNet model generates 64 feature maps by 3 × 3 and 7 × 7 convolution kernels, so as
to increase the receptive field and connect different features. The output block reduces the
number of feature maps through two Conv 3 × 3 + PReLU operations to match the size
of the input noise image and produce an estimate of residual noise. The corresponding
output is used for global residual learning, which adds the corresponding result to the
input image, so as to attain the denoised image.
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3.2. Main Structure Module
3.2.1. Multi-Scale Feature Extraction Block

Although the down-sampling can increase the receptive field, the spatial resolution
is reduced. The dilated convolution can be used to enlarge the receptive field without
decreasing resolution. The dilated convolution has a parameter called the dilation rate,
which controls the accepted area of the convolution core. Hence, when the different dilation
rates are set, the receptive fields will be different and multi-scale information will be
acquired. Indeed, the dilated convolution can arbitrarily expand the receptive field without
introducing additional parameters.

Moreover, in order to skip some layers that do not increase the overall accuracy value,
the skip connection is added to every two layers. The corresponding architecture is shown
in Figure 2a. The specific steps of residual dilated convolution block are as follows. First,
we perform the 3 × 3 dilated convolution and PReLU operations on the input image,
where the corresponding parameters are padding = 1, dilation = 1. After concatenating
the input image, we perform the 3 × 3 dilated convolution and PReLU operations on the
concatenated image, where padding = 2 and dilation = 2. Next, we perform convolution
and PReLU operations to recover the channel number of the input image. Finally, we add
the original input image to attain the final image.

In order to overcome the problem that deep layers may be weakened by shallow
layers as the depth increases, we introduce a multi-scale feature extraction (MFE) block
in our proposed model. The MFE block increases the field of view by conducting two
convolutions of kernel sizes 3 × 3 and 7 × 7, so as to generate 64-deep feature maps which
can capture as much information as possible. Then, two residual dilated convolution blocks
are used to enlarge the receptive field. The resulting output is merged by the concatenation
operation. The architecture of the MFE block is shown in Figure 2b, where RDC denotes the
residual dilated convolution function; PR,Cat, and CPR, respectively, denote the functions
of PreLU, concatenation operation, and Conv + PreLU; and C3 and C7, respectively, denote
convolutions with kernel sizes of 3 × 3 and 7 × 7. The description of the MFE block can be
represented as follows:

yMFE = C3PR(Cat(RDC(RDC(C3PR(y))), RDC(RDC(C7PR(y))))) (4)

3.2.2. Attention-Guided Filter Block

The down-sampling operation of UNet may result in the loss of spatial information.
Moreover, this problem cannot be well recovered by skipping connections or up-sampling
operations. Therefore, we propose an attention-guided filter block. Specifically, we add
a trainable guide filter module after each down-sampling operation to better recover the
spatial information loss.

The basic principle of the guided filter is as follows. For input image P and the guided
image I, the guided filter is to compute local coefficients (ak, bk), which computes the
output image Qi by

Qi = ak Ii + bk, ∀i ∈ ωk (5)

where ωk is a local window.
When the input image is the same as the guided image, the guided filter becomes

edge-preserving filter. Hence, we choose the case I = P in our model. The specific process
is shown in Figure 3. We operate the attention mechanism on the image I to improve
the sensitivity of the channel features. The coefficient ak is obtained by performing the
AdaptiveAvgPool, Linear + ReLU, and Linear + Sigmoid operations. The coefficient bk is
obtained by performing the Cov + GELU and Cov + PReLU operations on the image I.
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Figure 3. Attention-guided filter block. The coefficients ak are computed by performing the channel
attention mechanism on the input image P, and the coefficient bk is computed by convolving the
guided image I. Separately, the output image Q is obtained from the residual structure.

3.2.3. Residual Denoising Block

The residual denoising block is shown in Figure 4, which is composed of the bottleneck
blocks and the feature maps on the basis of ResNet50 and the DenseNet model. We first
use the 3 × 3 convolution to reduce the number of the feature maps by half. Then, we
use two 3 × 3 convolutions to take all the previous feature maps as inputs. Finally, the
3 × 3 convolution is utilized to aggregate all the previous feature maps with the denoising
block input. Finally, the last convolution generates the same number of feature maps as the
inputs of the denoising block.
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obtained by performing the Cov + GELU and Cov + PReLU operations on the image I . 
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Figure 3. Attention-guided filter block. The coefficients ka  are computed by performing the chan-
nel attention mechanism on the input image P, and the coefficient kb  is computed by convolving 
the guided image I. Separately, the output image Q is obtained from the residual structure. 

3.2.3. Residual Denoising Block 
The residual denoising block is shown in Figure 4, which is composed of the bottle-

neck blocks and the feature maps on the basis of ResNet50 and the DenseNet model. We 
first use the 3 × 3 convolution to reduce the number of the feature maps by half. Then, we 
use two 3 × 3 convolutions to take all the previous feature maps as inputs. Finally, the 3 × 
3 convolution is utilized to aggregate all the previous feature maps with the denoising 
block input. Finally, the last convolution generates the same number of feature maps as 
the inputs of the denoising block. 
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Figure 4. Residual denoising block. Reuse of feature maps by using densely connected denoising 
blocks. 
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4. Results and Discussion
4.1. Experimental Setup

In our experiments, we use the DIV2K dataset [44] and the AID dataset [45] to verify
the performance of MAGUNet, respectively. The DIV2K dataset consists of 800 images for
training, 100 images for validation, and 100 images for testing. The AID dataset consists
of 8000 images for training, 1000 images for validation, and 1000 images for testing. Our
model was implemented in Python 3.8 on the basis of PyTorch framework.

To train our proposed model, we split the original training dataset into input and
output blocks of size 64 × 64. We trained our model for color images and gray images,
respectively. When training our model for grayscale images, we first convert color images
to grayscale images, then add Gaussian white noise to clean image block xi, in order to
generate noisy image block yi. The noise intensity for the training set is in the range
σ ∈ [5, 50]. In addition, we apply augmentation techniques, including random vertical,
horizontal flips, and 90◦ rotation, in order to extend the dataset.

We employ Adam optimizer to optimize the network parameters. The regularization pa-
rameter appearing in the problem (3) is λ = 10−5 and the initial learning rate is α0 = 1.2× 10−4,
which is halved every two iterations throughout the training of the dataset until its value is
α f = 10−6. The MAGUNet model was trained with a batch size of 16 for 14 epochs.

We first report the loss curves and PSNR curves during training. The results show
that MAGUNet is well trained and achieves good denoising results on the validation data.
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It is worth noting that, as shown in Figure 5, here we train for a certain range of noise
rather than a specific noise level, and the weight σ = 50 of the noise level increases during
training, while the proportion of the noise level remains the same during validation, so it
looks like the training results are lower than the validation results.
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We first report the Loss curves and PSNR curves during training, and the results show
that MAGUNet is well trained and achieves good denoising results on the validation data.
It is worth noting that, as shown in Figure 5, here we trained on a certain range of noise
rather than a specific noise level, and the weight of 50 noise level was added in the training,
but the proportion of 10, 30, and 50 noise levels is the same in the validation, so it seems
that the training results are lower than the validation results.

We use Set12 [7], BSD68 [46], Kodak24 [47] datasets for the evaluation of grayscale
images, and Set5 [48], LIVE1 [49], McMaster [50] datasets for the evaluation of color images.
We compared the MAGUNet model and the enhanced model MAGUNet+ with BM3D [2],
IRCNN [9], DnCNN [7], FFDNet [20], ADNet [12], RDUNet [29], and MSANet [33]. The
experiment results of all the comparative models are obtained using the respective pre-
trained models and the source code tests of the corresponding authors. We select PSNR and
SSIM indexes to measure the image denoising effect of different algorithms. We present the
results for the noise levels of variance σ = 10, 30, 50. The best PSNR and SSIM results for
each noise level are highlighted in red, and the second-best results are highlighted in blue.

4.2. Grayscale Common Image Denoising

As shown in Table 1, our model achieves satisfactory results. Specifically, our proposed
model achieved the best results in the Set12 dataset, outperforming the BM3D algorithm by
an average of 1.29 dB, outperforming DnCNN, IRCNN, FFDNet, and ADNet by more than
0.4 dB, and outperforming RDUNet and MSAUNet by an average of 0.04 dB. Additionally,
our model has significant advantages over the BSD68 dataset and the Kodak24 dataset.
Moreover, the results obtained in the training noise level range of σ ∈ [5, 50] are slightly
higher than those obtained by MSAUNet’s separate training of each noise level.

The visual denoising effect of different methods is shown in Figures 6–9. The image
denoising results of BSD68 dataset 3096 are shown in Figure 6. Our model can recover
more detail of the tail letter and reduce artifacts in the letter A. From Figure 7, we can
see that the BM3D, DnCNN, IRCNN, FFDNet, ADNet algorithms form a large number of
artifacts, and for RDUNet, MSAUNet, our method performs well in detail preservation and
smoothing. Furthermore, from Figures 8 and 9, our model outperforms the other models on
the tablecloth texture, clearly recovering the detailed texture without excessive smoothing.
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Table 1. PSNR (dB) and SSIM results of different denoising methods on Set12, BSD86 and Kodak24
grayscale datasets with different noise levels.

Method\
Gray

Set12 BSD68 Kodak24

10.00 30.00 50.00 10.00 30.00 50.00 10.00 30.00 50.00

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BM3D 34.08 0.9204 28.69 0.8199 26.18 0.7411 33.16 0.9160 27.59 0.7671 25.41 0.6722 34.07 0.9113 28.68 0.7779 26.42 0.6918
DnCNN 34.52 0.9241 29.52 0.8422 27.18 0.7816 33.73 0.9241 28.35 0.7982 26.23 0.7164 34.68 0.9207 29.52 0.8082 27.39 0.7364
IRCNN 34.71 0.9272 29.45 0.8393 27.12 0.7804 33.75 0.9263 28.27 0.7993 26.19 0.7169 34.67 0.9212 29.42 0.8064 27.33 0.7354
FFDnet 34.64 0.9270 29.60 0.8464 27.30 0.7899 33.77 0.9266 28.39 0.8031 26.29 0.7239 34.72 0.9223 29.58 0.8122 27.49 0.7434
ADNet 34.63 0.9247 29.62 0.8449 27.29 0.7874 33.65 0.9216 28.32 0.7949 26.22 0.7148 34.67 0.9200 29.51 0.8066 27.4 0.7367

RDUNet 34.99 0.9315 29.96 0.8552 27.72 0.8044 33.97 0.9297 28.58 0.8099 26.48 0.7346 35.00 0.9262 29.86 0.8228 27.78 0.7577
MSANet \ \ 30.00 0.8366 27.72 0.7864 \ \ 28.62 0.7939 26.52 0.7229 \ \ 29.91 0.8112 27.82 0.7516

Ours 35.03 0.9320 29.96 0.8548 27.70 0.8044 33.99 0.9298 28.56 0.8081 26.45 0.7318 35.04 0.9263 29.86 0.8222 27.75 0.7559
Ours+ 35.07 0.9324 30.01 0.8556 27.76 0.8057 34.02 0.9301 28.59 0.8090 26.48 0.7329 35.08 0.9267 29.91 0.8233 27.81 0.7574

Sensors 2023, 23, x FOR PEER REVIEW 10 of 18 
 

 

     
Clean Noisy (14.37/0.0504) BM3D (31.66/0.8683) DnCNN (34.72/0.9414) IRCNN (34.65/0.9424) 

     
FFDNet (35.07/0.9577) ADNet (34.69/0.9446) RDUNet (35.37/0.9605) MSAUNet (35.40/0.9585) Our+ (35.42/0.9621) 

Figure 6. Comparison of the visual quality of different algorithms for a 3096 image from the BSD68 
dataset with Gaussian noise of variance 50. 

     
Clean Noisy (15.86/0.1673) BM3D (28.34/0.7970) DnCNN (30.50/0.9009) IRCNN (30.48/0.8954) 

     
FFDNet (30.89/0.9105)  ADNet (30.64/0.9000) RDUNet (31.35/0.9154) MSAUNet (31.49/0.9089) Our+ (31.49/0.9165) 

Figure 7. Comparison of the visual quality of different algorithms for a 302008 image from the 
BSD68 dataset with Gaussian noise of variance 50. 

  

Figure 6. Comparison of the visual quality of different algorithms for a 3096 image from the BSD68
dataset with Gaussian noise of variance 50.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 18 
 

 

     
Clean Noisy (14.37/0.0504) BM3D (31.66/0.8683) DnCNN (34.72/0.9414) IRCNN (34.65/0.9424) 

     
FFDNet (35.07/0.9577) ADNet (34.69/0.9446) RDUNet (35.37/0.9605) MSAUNet (35.40/0.9585) Our+ (35.42/0.9621) 

Figure 6. Comparison of the visual quality of different algorithms for a 3096 image from the BSD68 
dataset with Gaussian noise of variance 50. 

     
Clean Noisy (15.86/0.1673) BM3D (28.34/0.7970) DnCNN (30.50/0.9009) IRCNN (30.48/0.8954) 

     
FFDNet (30.89/0.9105)  ADNet (30.64/0.9000) RDUNet (31.35/0.9154) MSAUNet (31.49/0.9089) Our+ (31.49/0.9165) 

Figure 7. Comparison of the visual quality of different algorithms for a 302008 image from the 
BSD68 dataset with Gaussian noise of variance 50. 

  

Figure 7. Comparison of the visual quality of different algorithms for a 302008 image from the BSD68
dataset with Gaussian noise of variance 50.



Sensors 2023, 23, 7044 10 of 17Sensors 2023, 23, x FOR PEER REVIEW 11 of 18 
 

 

     
Clean Noisy (14.86/0.2482) BM3D (24.82/0.7364) DnCNN (25.60/0.7715) IRCNN (25.48/0.7675) 

     
FFDNet (25.68/0.7750) ADNet (25.61/0.7773) RDUNet (26.10/0.7886) MSAUNet (26.16/0.7795) Our+ (26.16/0.7911) 

Figure 8. Comparison of the visual quality of different algorithms for a starfish image from the Set12 
dataset with Gaussian noise of variance 50. 

     
Clean Noisy (14.75/0.2054) BM3D (25.98/0.7484) DnCNN (26.32/0.7744) IRCNN (26.16/0.7704) 

     
FFDNet (26.41/0.7792) ADNet (26.45/0.7808) RDUNet (27.75/0.8251) MSAUNet (27.93/0.8069) Our+ (27.97/0.8326) 

Figure 9. Comparison of the visual quality of different algorithms for a Barbara image from the Set12 
dataset with Gaussian noise of variance 50. 

4.3. Color Common Image Denoising 

Table 2 presents the denoising results of color images with different methods on Set5, 
LIVE1, and McMaster datasets with Gaussian white noise of variances of 10, 30, and 50. 
We can see that our model also greatly outperforms other competing methods on color 
images, having a slightly higher effect than MSAUNet. It should be noticed that 
MSAUNet is trained separately at each noise level. From Figures 10–13, we compared our 
model with the visual denoising effects of CBM3D, DnCNN, IRCNN, FFDNet, ADNet, 
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Figure 9. Comparison of the visual quality of different algorithms for a Barbara image from the Set12
dataset with Gaussian noise of variance 50.

4.3. Color Common Image Denoising

Table 2 presents the denoising results of color images with different methods on
Set5, LIVE1, and McMaster datasets with Gaussian white noise of variances of 10, 30, and
50. We can see that our model also greatly outperforms other competing methods on
color images, having a slightly higher effect than MSAUNet. It should be noticed that
MSAUNet is trained separately at each noise level. From Figures 10–13, we compared our
model with the visual denoising effects of CBM3D, DnCNN, IRCNN, FFDNet, ADNet,
RDUNet, and MSAUNet. From Figure 10, our method has no artifacts on the lamp post,
unlike other methods. Consequently, our model has an advantage in detail retention. As
shown in Figure 11, the image obtained by our method is smoother in the uniform region
and the edge region compared with other methods. Additionally, it can be seen from
Figures 12 and 13 that our method is richer in color and details.
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Table 2. PSNR (dB) and SSIM results of different denoising methods on Set5, LIVE1, and McMaster
color datasets with different noise levels.

Method\
Color

Set5 LIVE1 McMaster

10 30 50 10 30 50 10 30 50

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BM3D 36.02 0.9392 30.93 0.8592 28.69 0.8092 35.82 0.9484 30.08 0.8542 27.66 0.7816 35.91 0.9336 30.84 0.8512 28.54 0.79
DnCNN 35.74 0.9321 31.15 0.864 28.96 0.8146 35.69 0.9485 30.35 0.864 27.95 0.7951 34.79 0.9226 30.79 0.854 28.62 0.7986
IRCNN 36.13 0.9392 31.17 0.8655 29.00 0.8172 36.00 0.9497 30.36 0.8648 27.97 0.7979 36.45 0.9406 31.31 0.8642 28.93 0.8069
FFDNet 36.16 0.9397 31.35 0.8689 29.24 0.8252 36.07 0.9508 30.49 0.8663 28.10 0.7988 36.45 0.9414 31.53 0.8701 29.19 0.8149
ADNet 35.97 0.9355 31.21 0.8664 28.99 0.8158 35.97 0.9501 30.37 0.8639 27.93 0.792 36.27 0.939 31.33 0.8658 29.03 0.936

RDUNet 36.54 0.9422 31.83 0.8797 29.69 0.8398 36.51 0.9546 31.00 0.8789 28.64 0.8195 36.95 0.9469 32.09 0.885 29.79 0.8378
MSANet \ \ 31.83 0.8865 29.69 0.8437 \ \ 30.96 0.8816 28.64 0.8224 \ \ 32.10 0.8884 29.82 0.8409

Ours 36.57 0.9426 31.84 0.8786 29.72 0.8387 36.54 0.9546 31.01 0.8782 28.64 0.8181 37.05 0.9477 32.13 0.8851 29.82 0.8373
Ours+ 36.61 0.9429 31.89 0.8795 29.76 0.8396 36.58 0.9549 31.06 0.8790 28.70 0.8192 37.11 0.9483 32.20 0.8864 29.90 0.8393
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4.4. Remote Sensing Image Denoising

Table 3 lists the color image denoising results of different methods on selected test
datasets with noise levels of 10, 30, and 50. It can be seen that our model outperforms
the other competing methods. Figures 14 and 15 show the denoising results of different
methods for images with a noise level of 50. Our model is compared with BM3D, DnCNN,
IRCNN, FFDNet, ADNet, and RDUNet for image denoising. Figure 14 shows that the
denoised image obtained by the proposed method is smoother in the uniform region
and sharper in the edge region, as compared to other methods. In Figure 15, the image
handled by our method has richer and clearer color and detail content compared to the
state-of-the-art denoising methods DnCNN, ADNet, and BM3D.
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Table 3. PSNR (dB) and SSIM results of different denoising methods on testing datasets with different
noise levels.

Method
10 30 50

PSNR SSIM PSNR SSIM PSNR SSIM

BM3D 36.81 0.9416 31.51 0.8349 29.30 0.7579
DnCNN 36.71 0.9401 31.49 0.8336 29.32 0.7588
IRCNN 36.75 0.9408 31.43 0.8333 29.31 0.7607
FFDNet 36.81 0.9415 31.58 0.8348 29.43 0.7600
ADNet 36.76 0.9408 31.49 0.8325 29.31 0.7553

RDUNet 37.06 0.9446 31.96 0.8482 29.87 0.7814
Ours 37.25 0.9462 32.04 0.8500 29.90 0.7822

Ours+ 37.28 0.9466 32.07 0.8509 29.95 0.7838
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4.5. Ablation Study

To further verify the effectiveness of our proposed model, we conducted the following
ablation experiments to show the effects of the denoising block, guided filter layer, as well
as the MFE block. Case 0 denotes our proposed model. Case 1 represents our MAGUNet
without the MFE block. Case 2 represents MAGUNet without the attention-guided block.
Case 3 indicates MAGUNet model with only RDB blocks. Case 4 represents adding a
normal guided filter for training to the MAGUNet model with RDB blocks. Table 4 shows
the denoising results for different cases on the McMaster dataset with a Gaussian noise of
the variance 50.

Table 4. Ablation investigation for MAGUNet. Average PSNR (dB) and SSIM values on McMaster
for a noise of level 50.

Case 0 Case 1 Case 2 Case 3 Case 4

MFE
√

×
√

× ×
RDB

√ √ √ √ √

AGF
√ √

× × ×
PSNR 29.8235 29.8107 29.7970 29.7907 29.7895
SSIM 0.8373 0.8360 0.8347 0.8328 0.8327

Complexity 2.61 GMac 2.26 GMac 2.55 GMac 2.20 GMac 2.48 GMac

For the effectiveness of multi-scale feature extraction blocks, the results about Case
0, 2, and 3 show that the multi-scale features extracted by adding extra MFE blocks can
improve the network performance.

For the effectiveness of attention-guided filter blocks, by comparing Cases 0, 1, and 3,
the effectiveness of the attention-guided filter can be observed. In the absence of attention
guidance in the denoising network, learning the global average directly yields that Case
3 cannot fully focus on structural information during the denoising process. Attention
guidance can supplement the down-sampled feature information and provide guidance for
the extraction of structural information. In addition, Cases 3 and 4 have similar network
structures, but Case 4 adds trainable guided filters. Experimental results show that the
performance of attention-guided filter blocks is better than that of traditional guided filters.

Note that as the model complexity increases, so does its computational cost and
performance.

5. Discussion

Deep learning-based image denoising methods are becoming increasingly popular
among researchers due to their ease of implementation and fast processing. In this paper,
we analyzed the limitations of down-sampling in U-shaped networks and propose an
attention-directed filtering to overcome these limitations. We conducted comparative
experiments between the proposed method and other methods. The experiment results
showed that our model significantly improves the denoising performance. Also, we foresee
the potential of combining traditional denoising techniques with deep learning models for
more effective noise reduction strategies.

The MFE and AGF blocks in MAGUNet are designed to address the limitations of the
down-sampling problem. Specifically, the MFE block is trained to increase the receptive
domain and connect different features for extracting more image information, while the
AGF block can preserve the information of image edges after each down-sampling opera-
tion, relying on its edge retention capabilities. We performed the corresponding ablation
experiments to elucidate the function of the MFE and AGF blocks. Indeed, removing either
MFE or AGF leads to the reduction of PSNR and SSIM, which proves the importance of
these two blocks in the process of image denoising.

However, our work still has some limitations. It lacks the disadvantage of real-time
applications due to its high computational complexity. In this paper, we have only used
Gaussian noise to train the dataset and failed to train on various types of noise. And failing
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to be tested and evaluated in the real world, the proposed model may only be generally
applicable to certain image denoising tasks, which may require additional optimization for
specific use cases. In addition, while the model performs well in terms of PSNR and SSIM,
there are other metrics that may help optimize and evaluate the model. These issues will
also be further explored in future research.

6. Conclusions

In this paper, we propose a residual UNet model that introduces an attention-guided
filter and multi-scale feature extraction. Instead of using a standard input block, we use
a multi-scale feature extraction block as the input block. Our MFE blocks placed in the
shallow layer of the network are designed to increase the acceptance domain and connect
different features. In addition, we develop the attention-guided filter to keep the edge,
which has good detail retention ability after each down-sampling operation. We use a
global residual network strategy to model residual noise, which does not require the
information about the noise level in the noisy image. Experiment results show that our
proposed method is competitive with the state-of-the-art methods.
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