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Supplementary Materials:
Triangle-Mesh-Rasterization-Projection (TMRP): An algorithm
to project a point cloud into a dense accurate 2D raster image

1. Experiments #1—Process and mathematics

To obtain the source information (rx, ry), the point cloud PVelo = (X, Y, Z) must be
transformed from the Cartesian coordinate system into spherical coordinates, see Eq. (1).

R =
√

X2 + Y2 + Z2, α =
atan2(−Y, X)

hres · (π/180°)
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atan2(Z, R)
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Result of vertical FOV (- 24.9 °, 2.0 °) & horizontal FOV (- 45 °, 45 °)

Figure S1. LiDAR skizze [1] (left)). 2D range image from 3D point cloud PVelo = (X, Y, Z) (of frame
20, KITTI 2011_09_26_drive_0064 [2]).

2. Experiments #3—Process and mathematics
2.1. Overview

A 3D reconstruction of a three-dimensional object can be implemented using two
cameras (cam1, cam3) and stereoscopic image processing algorithms (Figure S2b, orange
colored pipeline). The quality of the predicted disparity map (output of deep stereo
matching framework) and thus the point cloud depends strongly on the stereo matching
method used. Deep stereo approaches have shown to be preferable to traditional methods
in some areas1 [3,4]. The big disadvantage of deep stereo matching frameworks (highly
data-driven), is the need for training datasets. [5–7] Since there are no large benchmark
datasets for industrial applications (Sec. 1 in main paper), we generate our own dataset.
Our stereo dataset consists of lens undistorted and rectified image pairs (left and right) and
associated ground truth disparity maps.

1 Despite decades of research, estimating the disparity of a stereo pair for uncooperative objects in the visible
range is still an open problem[5]
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(a) Measurement setup: (left-to-right)
right stereo camera cam3, RGB camera
(not used), time of flight (ToF) sensor
sensor2 (Basler blaze-101, as our refer-
ent system for ground truth dispari-
ties), left stereo camera cam1.
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(b) Three-dimensional acquisition of a 3D object (left) via a passive stereo system consisting
of cam1, cam3 and a stereo image processing pipeline (coloured orange). The quality of the
generated point cloud (right) is strongly dependent on the stereo matching framework that
predicts the disparity map. Due to the highly data-driven method of deep stereo, a training
dataset is required. A stereo training dataset consists of left and right rectified images with
corresponding ground truth disparity maps (bottom-right), which should be as dense as
possible. To create this, the system is expanded with a single-view depth sensor sensor2. The
processing chain for creating the ground truth disparity map is shown in red dashed boxes
and includes our TMRP algorithm.

Figure S2. Application example for our TMRP algorithm: Create real stereo training dataset consisting
of rectified left and right image and ground truth disparity map for deep stereo matching frameworks,
e.g. FD-Fusion [8], AANet+ [9].

Figure S2a shows our measurement system. We use a passive stereo system (cam1 and
cam3) and a time of flight (ToF) sensor sensor2 (Basler blaze-101) as reference system for our
(pseudo-real) ground truth disparity maps. The ToF sensor can also be replaced by any 3D
sensor. Figure S2b shows the processing steps for generating a own training dataset. The
six sub-steps are:
• (1) Camera calibration for estimating the calibration and rectification parameters for

sub-step (3) (see Sec. 3 in main paper);
• (2) synchronous data acquisition;
• (3.1) coordinate transformation: see Eqs. (3) and (4);

(3.2) disparity calculation P(X, Y, dx, rx, ry) according to Eq. (6).
• (4) projection of disparity points P(X, Y, dx, rx, ry) onto dense 2D target image using

TMRP algorithm (Sec. 4 in main paper);
• (5) data augmentation [7] to increase dataset and thus increase process stability;
• (6) training: Creation of pre-trained model for deep stereo matching framework.

2.2. Calculate of (pseudo-real) disparities—mathematical description and definitions
2.2.1. Definition of the used parameters

Table S1 describes all relevant parameter for the calculations of ground-truth disparity
maps. Eq. (2) shows the two projection matrices for a horizontal stereo camera arrangement.
They include information like focal length f , horizontal base length Tx and optical centers
(cx, cy) of cam1/cam3 stereo camera.
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Table S1. Relevant calibration and rectification parameter using openCV. The names of the cameras
cam1, sensor2 (or Re f 3D) and cam3 refer to Figure S2b. The tuple of Rcam1→Ref3D and Tcam1→Ref3D
performs a change of base from the coordinate system of the first camera cam1 to the coordinate
system of the second sensor sensor2 resp. Ref3D. Rrect1 performs a change of basis from the unrectified
first camera’s coordinate system to the rectified first camera’s coordinate system (our world coordinte
system, see Eqs. (3) and (4). Prect1/3 projects points given in the rectified camera coordinate system
cam1/cam3 into the rectified camera’s image cam1/cam3.

Parameter Definition

image size ∈ N2 weight and height of image
distCoeffs ∈ R5 vector of distortion coefficients

K1, K2, K3 ∈ R3×3 camera intrinsic matrix of cam1,
cam2, cam3

Rcam1→Ref3D ∈ R3×3 rotation matrix
tcam1→Ref3D ∈ R1×3 translation matrix
Rrect1 ∈ R3×3 rotation matrix

Prect1/3 ∈ R3×4 projection matrix (of stereo camera
system cam1/cam3)

Q ∈ R4×4 disparity-to-depth mapping
matrix or reprojection matrix

source point cloud of sensor2
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Figure S3. Sub-pipeline of block "transformation & disparity calculation" in Figure S2b. The captured
raw point cloud from sensor2 (single view depth sensor) (left) are transformed into the world coor-
dinate system using the camera parameters from the calibration and rectification (Table S1). These
transformed points are then projected into two point clouds (left and right raster) using the projection
matrix Prect1 and Prect3 (Eqs. (2), (3) and (4)). The pseudo-real disparity points P(X, Y, d, rx, ry) (right)
are calculated according to Eq. (6).

Prect1 =

f 0 cx1 0
0 f cy1 0
0 0 1 0

, Prect3 =

f 0 cx3 Tx · f
0 f cy1 0
0 0 1 0

 (2)

2.2.2. Calculation of ground truth disparity points

Figure S3 shows the sub-pipeline "transformation (3.1) & disparity calculation (3.2)" of
Figure S2b. Eq. (6) describes the calculation of the horizontal disparity values dx.
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XPl
YPl
ZPl

 =
(left homogeneous)

Prect1 ·
[

Rrect1 03×1
01×3 1

]
·
[

R−1
Ref3D→cam1 −R−1

Ref3D→cam1TRef3D→cam1

01×3 1

]
·


XRef3D
YRef3D
ZRef3D

1


︸ ︷︷ ︸

transformation to stereo coordinate (cam1)︸ ︷︷ ︸
transformation to world coordinate (rectified cam1)︸ ︷︷ ︸

transformation to world coordinate and projection to rectified left stereo image raster

(3)

XPr
YPr
ZPr

 =
(right homogeneous)

Prect3 ·
[

Rrect1 03×1
01×3 1

]
·
[

R−1
Ref3D→cam1 −R−1

Ref3D→cam1TRef3D→cam1

01×3 1

]
·


XRef3D
YRef3D
ZRef3D

1


︸ ︷︷ ︸

transformation to stereo coordinate (cam1)︸ ︷︷ ︸
transformation to world coordinate (rectified cam1)︸ ︷︷ ︸

transformation to world coordinate and projection to rectified right stereo image raster

(4)

(
xPl
yPl

)
=

(
XPl/ZPl
YPl/ZPl

)
︸ ︷︷ ︸

STEP 2.3

,
(

xPr
yPr

)
=

(
XPr/ZPr
YPr/ZPr

)
︸ ︷︷ ︸

STEP 2.3

(5)


X
Y
dx
rx
ry

 pseudo-real ground truth←−−−−−−−−−−−−−−
(result)

dx(XPl, YPl) =

{
XPl(YPl)−XPr(YPl) (dx ≥ 0)
NaN (dx < 0)

, for (YPl == YPr)︸ ︷︷ ︸
calculate pseudo-real disparitie dx based on two point clouds (pointsPl and pointsPr)

(6)
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