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Abstract: The projection of a point cloud onto a 2D camera image is relevant in the case of various
image analysis and enhancement tasks, e.g., (i) in multimodal image processing for data fusion, (ii) in
robotic applications and in scene analysis, and (iii) for deep neural networks to generate real datasets
with ground truth. The challenges of the current single-shot projection methods, such as simple
state-of-the-art projection, conventional, polygon, and deep learning-based upsampling methods
or closed source SDK functions of low-cost depth cameras, have been identified. We developed
a new way to project point clouds onto a dense, accurate 2D raster image, called Triangle-Mesh-
Rasterization-Projection (TMRP). The only gaps that the 2D image still contains with our method
are valid gaps that result from the physical limits of the capturing cameras. Dense accuracy is
achieved by simultaneously using the 2D neighborhood information (rx, ry) of the 3D coordinates
in addition to the points P(X, Y, V). In this way, a fast triangulation interpolation can be performed.
The interpolation weights are determined using sub-triangles. Compared to single-shot methods,
our algorithm is able to solve the following challenges. This means that: (1) no false gaps or false
neighborhoods are generated, (2) the density is XYZ independent, and (3) ambiguities are eliminated.
Our TMRP method is also open source, freely available on GitHub, and can be applied to almost any
sensor or modality. We also demonstrate the usefulness of our method with four use cases by using the
KITTI-2012 dataset or sensors with different modalities. Our goal is to improve recognition tasks and
processing optimization in the perception of transparent objects for robotic manufacturing processes.

Keywords: computer vision; single-shot projection; upsampling; interpolation; registration; data
fusion; depth completion; depth image enhancement; sparse data; transparent object

1. Introduction
1.1. Challenges in Single-Shot Projection Methods

In various tasks of image analysis and enhancement (Section 1.2), points P(X, Y, V)
(the value V stands for any modality, e.g., for depth or disparity) must be projected onto a
2D raster image. Unfortunately, the state-of-the-art (SOTA) single-shot projection methods
(Section 2) still have challenges that need to be solved, particularly when a low-resolution
point cloud is to be projected onto a high-resolution 2D raster image. Figure 1 shows
these challenges (A–D). Since the 3D coordinates X and Y are usually not integers, in
the 2D image, the V value must be distributed among the surrounding four 2D pixels
(Figure 1). Real gaps that exist due to physical limitations of the camera technology [1,2]
used may not be fully considered (A). If neighboring 3D X/Y coordinates are further
than one pixel apart, then false gaps between these pixels in the 2D image are created (B).
With common single-shot projection methods, error (B) only occurs when using different
hardware due to different resolution and viewing angle (see Section 6.1.4). If neighboring
3D X/Y coordinates are less than one pixel apart, then false neighborhoods between these
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pixels in the 2D image are created (C). This challenge occurs in SOTA projection methods
as a fattening problem near depth discontinuities [3–6]. Additionally, the foreground and
background are not cleanly separated (D).
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Figure 1. Challenges in common single-shot projection methods. Projecting points P(X, Y, V) onto a
2D raster image, called target image. Measurement setup, e.g., consisting of a first camera cam1 (with
target coordinate system) and a second sensor cam2 (source: low resolution point cloud). (1) The
captured raw points of cam2 are transformed into the target coord. system. (2) These transformed
points are projected onto a 2D raster image (target image) using state-of-the-art (SOTA) projection
methods (Section 2). The target image is not densely accurate due to errors (A,B) [3], (C), [3–6]
and (D) [7]. Challenge (D) is due to perspective view of the technology, e.g., LiDAR, [7] or (ii) due
to different viewing angles of the two cameras resp. sensors (cam1 6= cam2). Depending on the
hardware used (equal/unequal), some challenges occur more strongly/weakly or not at all.

To increase the processing stability of the various image analyses and enhancements
(Section 1.2) in the future, we have developed a new way to project points onto a dense, ac-
curate 2D raster image, called Triangle-Mesh-Rasterization-Projection (TMRP). Our method
solves the above challenges (A–D). Figure 2 shows a direct comparison of the differences
between the simple SOTA projection and our TMRP. Section 2 describes and compares
other SOTA approaches.

1.2. Use Cases of Single-Shot Projection Methods

The projection of points onto a 2D raster image is relevant for various image analysis
and enhancement tasks, especially when low-resolution point clouds need to be merged into
a high-resolution image (or point cloud). Figure 3 shows generalized possible measurement
arrangements: (left) in multimodal image processing, (mid) in robotic applications or in
scene analysis, and (right) for deep neural networks.

1.2.1. General: Data Fusion of Multimodal Image Processing

The relevance of multimodal systems is also increasing nowadays. This enables a
more comprehensive understanding of the real environment [8], e.g., for autonomous
navigation [9], medical applications [10,11], for quality control [12], for interactive robot
teaching [13], for safe robot–human cooperation [14], or in scene analysis [15–17]. The
projection of transformed points onto a 2D raster image is often used in multimodal image
systems for data fusion resp. registration [9,18,19] (Figure 3, left). The challenges that arise
in image data fusion [20] are: non-commensurability, different resolutions (challenge (B)),
number of dimensions, noise, missing data, and conflicting, contradicting, or inconsistent
data (challenge (D)).
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Figure 2. Comparison of state-of-the-art (SOTA) projection (top) and our Triangle-Mesh-Rasterization-
Projection (TMRP) method (bottom). For the SOTA projection method, the transformed points
P(X, Y, V) are used as input (left). TMRP requires transformed points with an additional property
of the points (left): the raw 2D raster information of the points P(X, Y, V, rx, ry). rx and ry can be
used to perform a dense, accurate interpolation between the 2D pixels that were adjacent in 3D. Both
generated target images are shown on the right. Challenges (A–D) are described in Figure 1. In
the target image (bottom-right), there are only valid gaps (A), which are also present in the original
measurement of the 3D data. Input data: transformed point cloud with 54.9 % valid points; Time-of-
Flight (ToF) sensor (DepthSense™ IMX556; ≈0.3 Mpx); target image resolution: 1280 px × 864 px.
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Figure 3. Three generalized measurement systems for different use cases (Section 1.2) of single-shot
projection methods in which the challenges occur (Figure 1). In general, for multimodal image
processing (left): for data fusion/registration. For robotic applications or scene analysis (mid): to
generate dense depth maps or point clouds when using a low-resolution depth sensor, e.g., Basler
blaze-101. For deep neural networks (right): to create a real (stereo) training dataset with ground
truth disparity maps.
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1.2.2. Robotics Applications or Scene Analysis—The Need for Dense, Accurate Depth
Maps or Point Clouds

Depth sensors are widely used in robotics applications in terms of robot teaching [13],
navigation, grasp planning, object recognition, and perception [14,15,21,22]. Sensors such
as Orbbec3D Astra Pro or Azure Kinect provide color point clouds at 30 fps, which is of
particular interest for human–robot collaboration [22,23]. The fusion of camera data and
modern 3D Light Detection and Ranging (LiDAR) data has many applications, including
autonomous and safe control of mobile robots [18], object detection [8], and simultane-
ous localization and mapping (SLAM) [24]. Depth sensors are also widely used in scene
analysis and human–computer interaction, e.g., object detection [8,17,25], (semantic) seg-
mentation, [15–17] or markerless motion capture applications [26].

Depending on the application, the acquired point clouds are processed in 2D [8,15,16,18,27]
or in 3D [13,14,26]. A projection of the (low-resolution) points onto a (high-resolution) 2D
raster image or point cloud is required (Figure 3, mid). Different current single-shot projection
methods can be used for this purpose (Section 2). For consumer depth/RGB-D sensors, the
projection of point clouds is done via the software development kit (SDK) provided by the
manufacturer, whereby a closed source function is available. However, current single-shot
projection methods cannot fully solve the challenges (see Section 6).

1.2.3. Deep Neural Network—The Need for a Large Amount of Dense, Accurate
Correspondence Data

Deep learning networks have gained enormous importance in recent years, e.g., in
monocular [15,28] and deep stereo [29–36] frameworks. The main reasons for the limitations
of deep frameworks—highly data-driven methods—are: (i) challenging handling of sparse
input data [37], (ii) the lack of suitable datasets for their own application (e.g., existing
outdoor driving [27,38] instead of industrial scenarios, or differences in camera arrangement
(parallel instead of convergent) [39]), and (iii) the high effort required to create real datasets
with dense, accurate correspondence, also called ground truth (Figure 3, right) [28,34,36].
The density of the correspondence depends on the reference system and method used (cf.
KITTI-2012 [27] and Booster, the first stereo benchmark dataset for several specular and
transparent surfaces [36]). Depending on the measurement system and setup used, the
single-shot projection method also has an impact on the density of the generated data (cf.
experiments #1–#4 in Section 6).

In the field of deep stereo, for example, the generation of real training data with
dense ground truth disparities is very complex (costly and time-consuming), especially
for visually uncooperative objects in the visible spectral range [1,36,40,41], e.g., specular,
non-reflective, or non-textured surfaces. Here, the painting of uncooperative objects is
SOTA [36,40,41]. However, in collaboration with the Fraunhofer Institute IOF, we have
developed a new method without object painting based on a novel 3D thermal infrared
sensing technique by Landmann et al. [42]. In experiment #4 in Section 6, a sample
frame from this dataset is used. Here, the advantage of our TMRP algorithm can be
clearly seen. Due to reasons (i)–(iii) above, synthetic datasets [43–45] are mostly used,
which provide numerous and dense datasets with less effort. Another possibility is the
use of semi-synthetic datasets [34]. Despite the fact that synthetic data offer enormous
possibilities, the big challenge is to close (performance) differences between real and
synthetic. There are several differences, such as differences in distribution [34,35], labeling,
and photorealism [46].
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1.3. The Main Contributions of Our Paper

The main contributions of our paper are:

• We propose a novel algorithm, called Triangle-Mesh-Rasterization-Projection (TMRP),
that projects points (single-shot) onto a camera target sensor, producing dense, ac-
curate 2D raster images (Figure 2). Our TMRP (v1.0) software is available at http:
//github.com/QBV-tu-ilmenau/Triangle-Mesh-Rasterization-Projection (accessed on
1 July 2023).
To fully understand the components of TMRP (Algorithm 1), we have written down
the process and mathematics as pseudocode (see Appendix A). In addition, there
is Supplementary Material for the mathematical background of some experiments
(Section 6).

• Other single-shot projection methods are discussed, evaluated, and compared.
• We believe that our TMRP method will be highly useful in image analysis and en-

hancement (Section 1.2). To show the potential of TMRP, we also present several use
cases (cf. measurement setup in Figure 3) using qualitative and quantitative exper-
iments (Section 6). We define performance in terms of computation time, memory
consumption, accuracy, and density.

2. Related Work

There are projection methods based on single-shot and multiple-shots per camera/sensor,
including RGB-D Simultaneous Localization and Mapping (SLAM) [47,48], SDF field [49],
and Iterative Closest Point (ICP) technique [50]; see also Point Cloud Registrations in [51].

We focus on single-shot projection methods. The representatives are listed below:

(i) Simple SOTA projection (Algorithm 1).
(ii) Upsampling methods—see also depth image enhancement [5,52]:

1. Conventional methods: The most commonly used interpolation approaches are
nearest-neighbor, bilinear [7], bicubic, and Lanczos [53] schemes.
Pros: Simple and present a low computational overhead.
Con: Achieved visual quality is low due to strong smoothing of edges. Cause:
linear interpolation filters have a smooth surface from the start [3,6].
Further methods are: Joint bilateral upsampling (JBU) [6], which achieves better
results. This method works through a parameter self-adaptive framework [19],
Gaussian process regression (GPR), or covariance matrix-based method [18].

2. Polygon-based method—a research area with very little scientific literature [7].
The Delaunay triangles and nearest neighbor (DTnea) [7,8] based on LiDAR data
alone, i.e., color/texture information from the camera, is not used (see Section 5).
Pros: Inference from real measured data; the interpolation of all points is done
regardless of the distance between the points of a triangle. This approach uses
only data from LiDAR. The extra monocular camera is only considered for
calibration and visualization purposes.
Cons: Complexity of the algorithm is very high; dependence of results on data
quality; noise or outliers in the input data can be amplified or generated; too
high upsampling rates can distort the result and make it inaccurate.

3. Deep learning-based upsampling: Also known as depth completion (where a
distinction is made between methods for non-guided depth upsampling and
image guided depth completion [37]). Here, highly non-linear kernels are used to
provide better upsampling performance for complex scenarios [3]. Other representa-
tives: [5,30,32,54,55].
Pros: Better object delimitation, less noise, high overall accuracy.
Cons: Difficult generalization to unseen data; boundary bleeding; training
dataset with ground truth is required.

(iii) Closed sourced SDK functions from (consumer) depth sensor manufacturers.

http://github.com/QBV-tu-ilmenau/Triangle-Mesh-Rasterization-Projection
http://github.com/QBV-tu-ilmenau/Triangle-Mesh-Rasterization-Projection
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In all the above methods, the resulting projected 2D raster image has gaps or false
neighbors. The error rate depends on the projection method used. On the one hand, true
gaps caused by physical limitations of the camera technology (A) are not considered. On the
other hand, false gaps (B) or false neighborhoods (C) are created. In addition, the density is
XYZ-dependent (resp. XYV), with the exception of the polygon-based upsampling method.
Moreover, some methods cannot resolve ambiguities (D). This includes the simple SOTA
projection (Algorithm 1). Challenge (B) occurs for cameras with different resolutions. For
example, the spatial resolution of common depth technologies is much lower than that
of cameras. To match the resolution of these two sensors and thus obtain a dense depth
map, the false gaps in the depth map need to be interpolated [7,18]. The deviation of these
estimated values from the corresponding actual values depends on the projection method
used. Joint bilateral upsampling (JBU) [6] tries to increase density by down- and upsampling.
Challenges (A) and (C) occur even more frequently than with simple SOTA projection.
Joint bilateral propagation upsampling (JBPU) is a way to accelerate and densify unstructured
multi-view stereo, which builds on a JBU and depth propagation strategy [56]. Compared
to JBU [6] and bilateral guided upsampling (BGU) [57], denser depth maps are achieved
here. However, the aforementioned challenges exist here as well. Deep learning methods
are another alternative to increase density, e.g., [28,32,54], which aim to solve this problem
based on a large amount of data. However, the challenges described above also arise
with this method [36,39,58]. Another example is the CNN SparseConvNet developed by
Uhrig et al. [37] that can be used to complete depth from sparse laser scan data. For more
details on how to handle sparse input data resp. invalid pixels and their limitations, see
Uhrig et al. [37]. The deep learning methods are the least accurate compared to SOTA
projection and JBU. Point clouds from (low-cost) depth sensors, such as Basler blaze-101,
Orbbec3D Astra Pro, or Azure Kinect, are usually projected onto a depth image using closed
sourced SDK functions provided by the manufacturer. The initial problems are solved in
the modern RGB-D sensors [21,59]. However, there are still challenges that have not been
solved [60], such as the incomplete consideration of gaps in projection, challenge (A). This
method is more accurate compared to the simple SOTA projection.

3. Processing Pipeline When Using TMRP

The cameras or sensors used are calibrated, e.g., according to Zhang [61] and synchro-
nized beforehand so that the data from the source camera/sensor match the corresponding
image from the target camera/sensor. The fusion of different camera/sensor data requires
the extrinsic calibration of the cameras/sensors [18], which are needed for the first step (the
coordinate transformation). Depending on the camera technologies used, calibration targets
with multimodal illumination [14] can be used to obtain more robust calibration results.

The input of our TMRP is a PLY point cloud with transformed points P(X, Y, V, rx, ry).
Figure 4 shows the necessary steps to generate transformed points using a measurement
camera system based on a camera and a depth sensor.

1. Coordinate transformation: The source point cloud Psource(X, Y, V) is transformed
into the coordinate system of the target camera using the calibration parameter and
then into the image plane. (In the Supplementary Material, the mathematical context
is described for experiments #1 and #3. Another example is described for the KITTI
dataset by Geiger et al. in [27,62].) In addition, the point cloud is extended by the
raster information rx, ry of the source camera. The result is a planar set of points
P(X, Y, V, rx, ry).
Optional extension: E.g., conversion of depth to disparity (see experiments #3 and #4).

2. TMRP: The points P(X, Y, V, rx, ry) can now be projected onto a dense accurate 2D
raster image, called the target image, using TMRP (Section 4.2).

3. Image to point cloud (optional): For applications based on 3D point clouds (Section 1.2),
the dense, accurate (high-resolution) image must be converted to a point cloud P(X, Y, V)
(Figure 4).
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Figure 4. Embedding the TMRP method in the process pipeline. Data acquisition from raw points
(source sensor); (1) coordinate transformation into target coordinate system (cam); (2) project trans-
formed point cloud P(X, Y, V, rx, ry) onto a dense, accurate target image via TMRP; (3) create a
high-quality 3D model (optional): target image to point cloud Ptarget(X, Y, Z).

4. Explanation of TMRP and Simple SOTA Projection Algorithms
4.1. Overview

With almost all 3D measurement methods, 2D neighborhood information of the
3D coordinates can simultaneously be acquired. (The 2D raster rx and ry must contain
integer values only.) If this information is available in the x and y directions as a property
of the transformed points P(X, Y, V, rx, ry), it can be used to perform a dense, accurate
interpolation between the 2D pixels that were adjacent in 3D. Figure 2 shows the comparison
between naive SOTA projections and our TMRP. Our TMRP solves the SOTA challenges (A)
to (D) described in Section 1.1. In addition, the density is XYZ independent. We present
the individual components of our TMRP and SOTA projections in the following. Figure 2
shows the two methods and their resulting target images. Algorithm 1 defines some
important parameters and provides an overview of our software (TMRP and SOTA proj.).
Appendix A describes more detailed information, including the mathematical description,
as pseudocode (Algorithms A1–A11).
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Algorithm 1 User definitions and procedure for the Triangle-Mesh-Rasterization-Projection
(TMRP) and state-of-the-art (SOTA) projection. For more details, see Appendix A.

Input/output:
point(X, Y, value) ∨ point(X, Y, value, rx, ry) ← 3D point of point cloud (Algorithm A1,
point)
width← width of target image ∈ N
height← height of target image ∈ N
raster_filter←max/min/none
target_image(target_value)[0 : width− 1, 0 : height− 1]← target image

Permissible value range:
X, Y, value← x- and y-position of 3D points ∈ R
rx, ry← raster x- and y-position ∈ Z
min←∈ 0∨ 1
max←∈ 0∨ 1

(prefix): Raster (rx, ry) must be unique

procedure TRIANGLE-MESH-RASTERIZATION-PROJECTION(point, width, height,
raster_filter)

source_raster_image = createSourceRasterImage(point)→ Algorithm A1, Figure 5a
vector_image = createVectorImageTMRP(source_raster_image, width, height) →

Algorithm A2, Figure 6
vector_image = separationForegroundAndBackground(vector_image, raster_filter) →

Algorithm A9, Figure 7
target_image = calculateTargetImage(vector_image, width, height)→Algorithm A10,

Figure 2
return target_image

end procedure

procedure SOTA-PROJECTION(point, width, height)
vector_image = createVectorImageSOTA(point, width, height) → Algorithm A11,

Figure 5b
target_image = calculateTargetImage(vector_image, width, height)→Algorithm A10,

Figure 2 (top)
return target_image

end procedure
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Figure 5. Create source raster image (using TMRP) and vector_image (using SOTA projection). (a) Part
of TMRP: Create source raster image based on transformed points P(X, Y, V, rx, ry) (Algorithm A1). (b)
Part of SOTA proj.: Create vector_image based on transformed points P(X, Y, V) (Algorithm A11).
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Figure 7. Separation of foreground and background—to solve challenge (D), see Figure 1. The choice
of filter (a–c) depends on value V of the points. Used input points with the V as disparity in (a–c).

4.2. Triangle-Mesh-Rasterization-Projection

Our TMRP algorithm is divided into two parts (Figure 2, bottom): Part (I), creation
of the vector image vector_image (Section 4.2.1), and part (II), the calculation of the target
image target_image (Section 4.2.2).

4.2.1. Part (I): Create Vector Image

This part consists of three sub-steps (Figure 2, bottom). For simplicity, we describe our
algorithm using a transformed point cloud based on the measurement setup in Figure 4.
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cam2 is assumed to be the source camera, and cam1 is the target camera. If only one camera
cam1 is to be used, it is considered as both source and target camera.

(1) Create source raster image

The source raster of cam2 is placed in the transformed point cloud using rx and ry
(Figure 5a). To save memory, the 2D image is constrained to rx_range, ry_range. Algorithm A1
describes the creation of source_raster_image in detail.

(2) Create vector image

This part describes the triangular interpolation between the 2D pixels that were
adjacent in 3D. The goal is to find the 3D point that has the smallest distance to a grid
point. The determined 3D points raw_pixel are appended with determined weight and
interpolated value in vector_image(ix, iy) in lists. The mathematics for the generation of the
vector_image are described in Algorithm A2.

Figure 6 shows the flow graphically for a better understanding of the process. The
starting point is the previously created raster_image. For each raster point, a check is made
to see if there are three or four 2D neighborhoods. If a neighborhood relationship exists,
triangles are then drawn between the 3D points. A neighborhood of three results in one
triangle, and a neighborhood of four results in four triangles (Figure 6). Bounding boxes are
generated for each triangle. If a triangle is partially or completely out of the allowed range
(outside of vector image), the inadmissible range

(
fx, tx /∈ [0, w− 1] or fy, ty /∈ [0, h− 1]

)
is ignored. However, the three points that span the triangle remain ∆(jp, t1, t2). For all
grid points jp in the bounding box that lie in the triangle, the total triangle is decomposed
into three sub-triangles: ∆(jp, t0, t1), ∆(jp, t1, t2), and ∆(jp, t2, t0). Afterwards, their areas
are calculated according to Heron’s formula. In Algorithm A8, the total triangular area
area_sum of the triangle ∆(t0, t1, t2) is calculated. However, due to numerical instabilities,
in the software, the total area is calculated as the sum of the three partial triangle areas
(area0, area1, area2). After that, the weights weightk of the triangle points are calculated for
jp. The weights correspond to the area of the unconnected opposite triangle. Using the
calculated weights and V-values of the 3D points, an interpolated value interpolated_value
is calculated. The point tk that has the smallest distance to the point jp(jx, jy) (smallest
distance means largest weight) is appended in the vector_image(ix, iy). A list in vector_image
can consist of none/one/four entries (raw_points).

(3) Separation of Foreground and Background

The raster information (rx, ry) can also be used to cleanly separate foreground and back-
ground, as in challenge (D), Figure 2. This is especially useful for point clouds that
have been transformed, as overlaps are very likely to occur. In marginal areas, however,
this may already be the case without transformation. Depending on the application, a
max/min/none filtering can be done. Figure 7 shows an example for V as disparity; here,
a foreground selection is correct, as high disparity value is in the foreground and smaller
disparity is in the background. For filtering, the maximum disparity value is determined as
a reference value in the target pixel. Only values that are adjacent to this reference value in
the raster are included in the target pixel. For more details, see Algorithm A9.

4.2.2. Part (II): Calculate Target Image

Algorithm A10 describes the calculation of the target_image based on the vector_image
(from TMRP (Section 4.2.1) or SOTA projection (Section 4.3)), the target image width, and
the target image height (Figure 8). To calculate the pixel value in target_image(i, j), value
⊂ vector_image(i, j) and weight ⊂ vector_image(i, j) from the respective list entries are used;
see Equation (1). sum_weight_value and sum_weights of Equation (1) are described in Algo-
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rithm A10 (2) and (3). As a by-product, we generate a confidence map that can be used for
challenging applications that require masking treatment.

target_image(i, j) =


NaN List entry = 0
NaN sum_weight = 0
sum_weight_value

sum_weights else
(1)

based on
Sec. 4.2

based on
Sec. 4.3

(Sec. 4.2.2)

calculate
target image

SOTA projection

TMRP 

near

far

near

far

vector image

zero or infinite (Sec. 4.3)

non / one / four (Sec. 4.2)

j

vector_image(i,j).size() = 

i

Figure 8. Create target_image (right) based on input vector_image (left) calculated from the SOTA
projection (Section 4.3) or TMRP (Section 4.2.1).

Our example target_image in Figure 8 is a pseudo-real disparity map (16-bit grayscale
image with alpha channel). The alpha channel encodes the validity of each pixel. This
channel can be used, for example, for convolutional neural networks (CNNs) to distinguish
between observed and invalid input [37].

4.3. SOTA Projection

The SOTA projection is divided into two parts (Figure 2, top): Part (I), creating the
vector image vector_image, and part (II), the calculation of the target image target_image.
Part (I) is different from TMRP part (I) and is described below. Part (II) is described in
Section 4.2.2.

Part (I): Create vector image SOTA—Algorithm A11 describes the SOTA process with-
out considering the raster information rx, ry (Figure 5b). Figure 1 shows the interpolation
procedure and the resulting errors: (A) no consideration of true gaps if they are very small,
(B) false gaps, (C) false neighborhoods, and (D) mixed foregrounds and backgrounds; see
Section 1.1. In SOFT projection, a list in vector_image can consist of zero to ∞ entries (see
Figure 8).

5. Comparison with Polygon-Based Method

The polygon-based method using Delaunay triangles and nearest neighbor (DTnea),
used in [7], has similarities to our TMRP method. Both methods have the advantage that
the density of the target image is not XYV-dependent. This is achieved because all points
are interpolated independently of the distance between the points of a triangle.

The main differences with our TMRP method are: (1) the different input data, i.e., we
use the 2D neighborhood information (rx, ry) in addition to the 3D points P(X, Y, V) (cf.
Figure 5a with Figure 9). In the TMRP method, the triangles are spanned based on the 2D
neighborhoods of the 3D points; see Figure 6. (2) Moreover, the interpolation method we
present is more accurate.
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near
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interpolation (nea)

no point
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Figure 9. Schematic representation of the polygon-based method using Delaunay triangles and
nearest neighbor (DTnea), described in [7]. To increase the computing power, the points (finite real
numbers) can be rounded to integer values in the vector_image.

6. Qualitative and Quantitative Experiments
6.1. Density and Accuracy

We evaluate our algorithm based on density and accuracy using four different mea-
surement setups and application areas (cf. Figure 3).

6.1.1. Experiment #1 —Qualitative Comparison of Simple SOTA Proj., DTnea, and TMRP

In this experiment, we demonstrate the advantages of our TMRP method for fusing
Velodyne Light Detection and Ranging (LiDAR) and monocular camera data for depth
maps using the established benchmark stereo dataset KITTI-2012 [27]. Figure 10 shows the
measurement setup consisting of Velodyne HDL-54E LiDAR and two monocular cameras.
For data fusion, the sparse Velodyne point cloud Psource(X, Y, Z) must be constrained to
the corresponding camera section Psource−in−FOV(X, Y, Z). Then, the transformation to the
image coordinate system of the target camera cam0 is performed. The mathematical details
of the transformation [62], as well as the generation of the raster information rx and ry,
are described in the Supplementary Material. The transformed points P(X, Y, Z) resp.
P(X, Y, Z, rx, ry) are the input data for the projection methods.

Figure 11 shows the comparison of the simple SOTA projection and our TMRP method.
The depth map based on the simple SOTA projection method results in a sparse disparity
map. Our TMRP enables the generation of a dense, accurate depth map.

Figure 12 shows the qualitative comparison of another method, the polygon-based
method using Delaunay triangulation and nearest-neighbor interpolation (DTnea) [7,8].
Although the DTnea method can produce dense maps with almost 100 % density, these
maps contain errors. For example, valid gaps, such as car windows, are not considered (see
challenge (A), Figure 1). (Transparent objects are a challenge for conventional sensors in the
visible spectrum [2]. Transparency-conscious consideration is imperative and a corner case
in the stereo image [1,36].) In contrast to DTnea, our TMRP never creates false neighbors
(C). Moreover, our TMRP keeps all valid gaps (A) caused by the physical limitations of the
capturing cameras.

The TMRP method interpolates based on the 2D neighborhood of the source point
cloud. For line scanners, this 2D neighborhood is obtained from the spherical coordinates
(see Supplementary Material). Figure 12 (right) shows the effect of different horizontal
angular resolutions. With different horizontal angular resolutions, the density of the output
source raster image is different (Figure 5a). At 0.09°, the points are mostly on every second
grid point, so there are no neighbors (see Figure 6). At 0.18°, almost every grid point has a
value, so there are neighbors between which interpolation is possible.
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Figure 10. Measurement setup of experiment #1. (left) The established KITTI-2012 dataset [27]
was generated using a Velodyne LiDAR and a passive stereo camera system (cam0 and cam1; 2×
Point Gray FL2-14S3M-C), among others. (right) For the data fusion of the low-resolution LiDAR
point cloud Psource(X, Y, Z) into the left camera cam0, the point cloud must be limited to the desired
section Psource−in−FOV(X, Y, Z). This is achieved through a vertical FOV [−24.9°, 2.0°] and a horizontal
FOV [−45°, 45°]. Afterwards, these points have to be transformed into the coordinate system of
cam0. Input data: Frame 89, KITTI 2011_09_26_drive_0005 [27]. Raster information rx based on 0.18°
horizontal angular resolution. Target img. res: 1242 px × 375 px.

TMRP simple SOTA proj. horizon line

Figure 11. Qualitative comparison of depth maps based on simple SOTA proj. (left) and TMRP (right)
method using KITTI-2012 dataset. The drawn horizon line results from the vertical FOV [−24.9°,
2.0°]. Input data: see Figure 10.

TMRP 

TMRP 

simple SOTA proj. 

DTnea [6]

rx based on  0.09 ° angular resolution 

rx based on 0.18 ° angular resolution 

cam2

P(X,Y,Z)

Figure 12. Qualitative comparison of different projection methods. (left) RGB image (cam3) and
corresponding transformed points P(X, Y, Z) (Velodyne HDL-64E, with vertical FOV [−24.9°, 2.0°]
and horizontal FOV [−45°, 45°]) of frame 20, KITTI 2011_09_26_drive_0064 [27] (cf. Figure 10).
(mid-right) Different projection methods: (top) simple SOTA projection; (bottom) polygon-based
method using Delaunay triangulation and nearest-neighbor interpolation (DTnea) [8]. (right) Our
TMRP method based on 0.09° and 0.18° horizontal angular resolution. For better visualization, the
focus of the false color display was placed on the closer depth values.

6.1.2. Experiment #2—Focus on Challenge (A) Resp. (C) Using a Test Specimen

In some applications, it is very important that gaps in the point cloud caused by
physical limitations of the camera technology or by cutouts in the surface are taken into
account as completely as possible in the projection method. To minimize challenge (B), we
use transformed points based on transformation into equal resolution. Figure 13 shows
the results of three projection methods using a special test specimen. The simple SOTA
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projection gives the worst results. The closed source algorithm of the blaze SDK achieves
better results. Our algorithm, on the other hand, performs best.

Consideration of valid gaps

r1 r2 r3
thgray = 0.4

mask

SOTA proj.

TMRP bg

blaze SDK bg

not separated

excl. bg:

100 % 100 %
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49.3 % 62.3 %
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gap
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bg
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th....threshold
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Figure 13. Comparison of TMRP, closed source algorithms of blaze SDK (v4.2.0), and SOTA proj.
regarding challenge (A) resp. (C) (see Figure 1). (left) Measuring setup. (mid) ToF intensity image
with region of interest (ROI) of the test specimen. (right, top) Binary mask and (right, bottom) depth
maps. Test specimen: White matte plane with cutouts (r1/2/3 = 3/4/5 mm; made with a laser
cutter). Input data: Transformed points: 91.0 % valid points of≈0.3 Mpx ToF camera (Basler blaze-101
ToF sensor with DepthSense™ IMX556PLR sensor); target img. res.: 640 px × 480 px. Consideration
of: valid gaps, incl. background (bg). Result: Our TMRP algorithm considers 83.9 % of cutouts
(r1/2/3). The closed source blaze SDK algorithm also separates the bg correctly. TMRP considers
21.6 % more valid pixels (in relation to cutouts) compared to the blaze SDK algorithm. Why not
100%? Depends significantly on the entered point cloud and on the selected threshold (binary mask).

6.1.3. Experiment #3—Focus on Challenge (B) Using a Test Specimen

Figure 14 shows the results based on the TMRP and the SOTA projection in terms of
density and accuracy using a transformed, low-resolution point cloud. In this experiment,
the resolution of the target image is higher than the resolution of the source image by a
factor of 3.6. To quantitatively compare the methods, we consider in each case both the
entire target image and a region of interest (ROI) that includes the captured area of our
test specimen, a white matte plane. We show the influence of the individual challenges
with difference images (pixel-by-pixel calculation). The SOTA-based target image does not
consider 0.9 % of the total pixels as a valid gap—challenge (A) resp. (C). In addition, 24.7 %
false gaps were generated—challenge (B). This reduces the density of the entire image by a
factor of 1.57 compared to the TMRP-based image. If you look at the defined ROI, a section
without valid gaps, the density decreases by a factor of 1.61.

6.1.4. Experiment #4—Focus on Influence of Points with Transformation into
Equal/Unequal Resolution

Data-driven methods [15,36] require datasets with (dense) ground truth. To create a
real (non-synthetic) ground truth, the optical measurement setup consists of at least the
actual sensor (target coord. system) and a reference sensor (source). Our TMRP is a suitable
method to produce dense, accurate ground truth images. We demonstrate the utility of our
method using an image from our TranSpec3D (created in cooperation with Fraunhofer IOF
and Technische Universität Ilmenau, publication still pending) stereo dataset of transparent
and specular objects. Figure 15 shows the measurement setup and input data. Figure 16
shows the results of TMRP and SOTA proj. based on transformed points to equal resolution
(top) and to higher resolution (bottom). In the case of “transformation to equal resolution”
(top), the target sensor corresponds to the source sensor. Thus, the challenge (B) does
not occur. However, 3.9% of the total pixels are not considered as gaps. In the case
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“transformation to a higher resolution” (bottom), the target sensor does not match the
source sensor. In our experiment, the resolution of the target image is higher than the
resolution of the source points by a factor of 5.39. Thus, on the one hand, only 1.0% of the
total pixels are not considered as gaps (cf. to equal resolution). On the other hand, there are
29.6% false gaps in the target image based on the SOTA projection. This reduces the density
of the SOTA-based target image (16.2%) by more than half compared to the TMRP-based
target image (34.8%).

TMRP SOTA projection

0 % false gaps (B) 38 % false gaps (B)
62 % density

100 % dense accurate

100 % density

m
ea

su
rin

g
sy

st
em

xy

z

cam1 sensor2 cam3

passive stereo system

depth sensor (ToF)

x

SOTA-based target-image:

(A) resp. (C):  
0.9 % gaps not considered

(B): 
24.7 % false gaps

34.3 % valid gaps
65.7 % density

58.1 % valid and false gaps
41.9 % density

Figure 14. Comparison of TMRP and SOTA proj. regarding challenge (B) (see Figure 1). Test specimen:
White matte plane. Input data: Transformed points: 54.9% valid points of ≈0.3 Mpx ToF sensor
(DepthSense™ IMX556); target img. res.: 1280 px × 864 px. TMRP: 100 % dense, accurate due to
the use of the raw 2D raster information of the input points never creates false gaps/neighbors in
raster—Algorithm A2).
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Figure 15. Measurement setup of experiment #4: (left) We use our novel measurement principle
† to create a real transparent and specular stereo dataset without SOTA object painting (cf. [36]).
sensor1: 3D thermal infrared sensor technology of Landmann et al. [42] (a.o. 2 × FLIR A6753sc).
sensor2: 3D sensor [63] (a.o. 2 × Blackfly® S USB3). Input data: (mid) Sample #0157 of TranSpec3D
dataset †; sensor1: point cloud with ≈0.2 Mpx; source img. res.: 696 px × 534 px. sensor2: target img.
res.: 1616 px × 1240 px (≈2.0 Mpx). Object: (mid, top-down) Transparent waterproof case for action
camera, Petri dish (glass), and polymethyl methacrylate (PMMA) discs with different radii. † Stereo
dataset (real, laboratory) created in cooperation with Fraunhofer IOF and Technische Universität
Ilmenau (publication still pending).
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Figure 16. Results of projection methods based on transformed points with equal (top) and higher
resolution (bottom). Input data: TranSpec3D dataset†. Result: (top) In the target image based on the
SOTA proj., 3.9% of the total pixels are not considered gaps. (bottom) In the target image based on the
SOTA proj., 1.0% of the total pixels are not considered gaps. Due to the different sensor resolutions
of sensor1 and sensor2, there are 29.6% false gaps in the target image based on the SOTA projection.
This reduces the density of the SOTA-based target image (16.2%) by more than half compared to the
TMRP-based target image (34.8%). † Stereo dataset (real, laboratory) created in cooperation with
Fraunhofer IOF and Technische Universität Ilmenau (publication still pending).

6.2. Computation Time, Memory Usage and Complexity Class

Our TMRP algorithm is versatile (Section 1.2) and takes into account all four challenges.
Currently, the TMRP algorithm is programmed in such a way that the pixels are calculated
sequentially. However, the TMRP algorithm is highly parallelizable—all pixels can be
calculated in parallel (see Algorithms A1–A11). Table 1 shows the performance of the SOTA
proj. and our TMRP algorithm based on computation time and memory usage.

We determine the complexity of the TMRP algorithm using the O notation (upper
bound of the complexity of an algorithm). Table A1 shows theO notation for the individual
Algorithms A1–A11. Equation (2) shows the resulting total running time of the TMRP
algorithm. In this notation: widthsrc/target and heightsrc/target stand for the width and height
of the source_raster_image/target_image; n stands for the number of points in point_list in
Algorithm A1; n stands for the size of the vector_image and m stands for the size of the
raw_pixel_list in Algorithm A9; and n stands for the number of elements in raw_pixel_list in
Algorithm A10. The O notation in Equation (2) as well as the direct measurement of the
runtime [64] shows that the algorithm has a linear time complexity in relation to the source
and target image resolution (in px).

O( n2︸︷︷︸
A1

+widthsrc · heightsrc︸ ︷︷ ︸
A2

+ n ·m︸︷︷︸
A9

+widthtarget · heighttarget · n︸ ︷︷ ︸
A10

) (2)
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Table 1. Quantitative comparison of computation time and memory usage. Avg. computation time
and max. resident set size (RSS) on processing unit (i9): Intel Core i9-7960X CPU @ 2.80 GHz and
(i7): Intel Core i7-6700X CPU @ 4.00 GHz. Input data: transformed points (see Figure 2): 54.9 % valid
points of ≈0.3 Mpx ToF sensor (Basler blaze-101); target img. res.: 1280 px × 864 px (≈1.1 Mpx).

Algorithm (Sequential)
Computation Time Max. RSS Density

Dense, Accurate
Unit (i9) Unit (i7) Unit (i9)/(i7) ("visual")

SOTA proj. 0.183 s 0.254 s 58.2 MiB 41.9 % 63.8 %
TMRP 0.454 s 0.405 s 106.8 MiB 65.7 %† 100 %

† Why not 100 %? This value depends on the density of the input data. The remaining 34.3 % are valid gaps (A).

7. Conclusions, Limitations, and Future Work
7.1. Conclusions

Our presented Triangle-Mesh-Rasterization-Projection (TMRP) algorithm allows the
projection of transformed points onto a dense, accurate 2D raster image. To achieve dense
accuracy, points with original raster information P(X, Y, V, rx, ry) are required. The original
2D neighborhood information (rx, ry) can be acquired simultaneously with almost all
3D measurement methods. Since the 2D neighborhood of the 3D points are known, the
triangular interpolation can be performed quickly. Valid gaps that exist in the original
3D survey due to the physical limitations of the camera technology used (Figure 1, (A))
are fully considered. Furthermore, false gaps (B) or false neighborhoods (C) are never
generated. However, there is a physical limitation to challenge (C), the generation of false
neighbors. If the Nyquist–Shannon sampling theorem is not observed, then of course
there will be false neighbors. Additionally, ambiguities (D) are taken into account, and
foreground or background are clearly separated depending on the application (Figure 7).
This method can also be used to build a high-quality 3D model (see Figure 4). Table 2 shows
the advantages and disadvantages of our TMRP compared to state-of-the-art single-shot
projection methods. In contrast to common single-shot methods (Section 2), the TMRP
algorithm solves challenges (A–D), and the density is independent of XZY. However,
the 2D neighborhood raster information of the source points (rx, ry) is necessary here.
Our software TMRP is available at http://github.com/QBV-tu-ilmenau/Triangle-Mesh-
Rasterization-Projection (accessed on 1 July 2023). Compared to cloud-source methods from
sensor manufacturers, the TMRP method is applicable independently of the sensor and
modality. Moreover, it is freely available and open source (To verify the performance of the
TMRP method, we compared it with the closed source method of Microsoft’s Azure Kinect
RGB-D sensor. “The qualitative comparison shows that both methods produce almost
identical results. Minimal differences at the edges indicate that our TMRP interpolation
is more accurate.” [64]). This aspect of the different modalities is becoming increasingly
important, for example, in the detection of optically uncooperative objects in the visual
spectral range [2,42] or in trusted human–robot interactions [13,14].

We believe that our TMRP method will be highly useful for various image analysis and
enhancement tasks (Figure 3). To show the potential of the TMRP algorithm, we applied it
to input data for various use cases (see Section 6): (1) Data fusion of sparse LiDAR points
and monocular camera data using the established KITTI-2012 dataset [27]. (2) Comparison
to a closed source SDK function of a low-cost depth sensor. (3) Applications to create a real
(stereo) training dataset for deep neural networks using our new TranSpec3D dataset of
transparent and specular objects without object painting (cf. [36,40,41]).

http://github.com/QBV-tu-ilmenau/Triangle-Mesh-Rasterization-Projection
http://github.com/QBV-tu-ilmenau/Triangle-Mesh-Rasterization-Projection
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Table 2. Qualitative comparison of single-shot projection methods (Section 2). (left-to-right) State-
of-the-art projection (SOTA proj., Section 4), Joint bilateral upsampling (JBU) [6], Closed source
blaze SDK projection (v4.2.0), Polygon-based method using Delaunay triangles and nearest neighbor
(DTnea) [7], and our TMRP algorithm (Section 4).

Properties SOTA Proj. JBU [6] Blaze SDK DTnea [7] TMRP (Ours)

Creates false neighbors in raster; Figure 2A,C low often less often never §

Creates false gaps in raster; Figure 2B often low low never never

Resolution of ambiguities; Figure 2D no no yes yes yes

Density is independent of XYZ no no closed source yes ∗ yes ∗

Required input w/o rx, ry w/o rx, ry closed source w/o rx, ry w/ rx, ry

Computing effort low middle middle–high ‡ high high †

For almost any sensor & modality yes yes no yes yes

Code available (open source & free) yes yes no yes yes
§ TMRP method based on interpolation considering the source 2D neighborhood (see Section 4.2.1)→ physical
limitation: If the Nyquist–Shannon sampling theorem is not observed, i.e., the valid gaps are below the Nyquist
frequency, then of course false neighbors are present. † However, highly parallelizable. ‡ Image processing is
performed on a very powerful NXP processor on the ToF camera. ∗ This method interpolates all points regardless
of the distance between the points of a triangle.

7.2. Limitations for Online Applications

Currently, TMRP is implemented as a sequential algorithm (Table 1). However, the
TMRP is highly parallelizable, which will result in shorter calculation times in the future.

7.3. Future Work

The algorithm has the potential—due to overcoming the limitations of existing single-
shot projection methods, the independence from the sensor manufacturer, as well as the
high parallelizability—to increase the processing stability of various image analysis and
enhancement tasks (Section 1.2). In the future, however, the benefit of TMRP must be
proven. On the one hand, we want to show the utility for robotics applications in terms
of grasp planning and object recognition using different low-cost RDB-D sensors. On the
other hand, we want to show the benefit of TMRP for deep learning approaches. For this
use case, in the long term, our TMRP algorithm should help to provide more real datasets
without object painting that fully represent reality, thus reducing the differences seen with
synthetic data.
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Abbreviations
The following abbreviations are used in this manuscript:

a.o. among others
CNN Convolutional neural network
coord. coordinate
2D/3D two-/three-dimensional
DT Delaunay triangles
FOV Field of view
ICP Iterative closest point
JBU Joint bilateral upsampling
LiDAR Light Detection and Ranging
nea nearest neighbor
TMRP Triangle-Mesh-Rasterization-Projection
PMMA polymethyl methacrylate
proj. projection
res. resolution
resp. respektive
RGB-D Image with four channels: red, blue, green, depth
ROI Region of interest
SDF Signed distance function
SDK Software development kit
SLAM Simultaneous localization and mapping
SOTA state-of-the-art
suppl. supplementary
ToF Time of flight

Appendix A. Pseudocode of TMRP Algorithm

Appendix A.1. Overview

The Triangle-Mesh-Rasterization-Projection (TMRP) algorithm is a new way to project
transformed points onto a dense, accurate 2D raster image. To fully understand the compo-
nents of our TMRP (Algorithm 1), we have written down the process and mathematics as
pseudocode (Algorithms A1–A11).

Appendix A.2. Definition of Data Types

Listing A1 shows the relevant data type and variable definitions used in the algorithms.
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Listing A1. Definition of data types

X, Y, V, value, weight ∈ R
rx, ry, n ∈ Z
exists one of true, false
pointSOTA ∈ (X, Y, V)
pointTMRP ∈ (X, Y, V, rx, ry)
raw_pixelSOTA ∈ (value, weight)
raw_pixelTMRP ∈ (value, weight, rx, ry)
optional_point ∈ (exists, point)
source_raster_image ∈ optional_point[width, height]
point_list ∈ point[n]
triangle ∈ point[3]
bounding_box ∈ (rx_min, rx_max, ry_min, ry_max)
triangle_list ∈ triangle[n]
raw_pixel_list ∈ raw_pixel[n]
vector_image ∈ raw_pixel_list[width, height]
target_image ∈ V[width, height]
raster_ f ilter one of min, max, none

Appendix A.3. Pseudocode

Table A1 shows an overview of the algorithms. These algorithms describe sub-
processes for our TMRP (top) and the state-of-the-art (SOTA) projection (bottom) procedure;
see Algorithm 1.

Table A1. Overview of algorithms—(top) TMRP, (bottom) SOTA projection. The variables of the O
notation are defined in Listing A1.

Procedure/Function Algorithm No. O Notation

sourceRasterImage() Algorithm A1 O(n2) §

createVectorImageTMRP() Algorithm A2 O(width · height)
createNeighborPointList() Algorithm A3 O(1)
toTriangleList() Algorithm A4 O(1)
triangleBoundingBox() Algorithm A5 O(1)

clamp() Algorithm A6 O(1)
interpolate-pixel() Algorithm A7 O(1)

distance() Algorithm A8 O(1)
separationForegroundAndBackground() Algorithm A9 O(n ·m) ∗

createTargetImage() Algorithm A10 O(width · height · n) †

createVectorImageSOTA() Algorithm A11 O(width · height · n) ‡

createTargetImage() Algorithm A10 O(width · height · n) †

§ n...number of points in point_list. ∗ n...size of the vector_image, m...size of the raw_pixel_list;
Certain implementations or data structures can optimize the runtime. † n...number of
elements in raw_pixel_list. ‡ n...number of points in source_raster_image.
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Algorithm A1 Create source raster image.
function CREATESOURCERASTERIMAGE(point_list)

(1): Derive original raster image width and height from points
rx_min = minn−1

i=0 point_list[i].rx
rx_max = maxn−1

i=0 point_list[i].rx
ry_min = minn−1

i=0 point_list[i].ry
ry_max = maxn−1

i=0 point_list[i].ry
rw = rx_max− rx_min
rh = ry_max− ry_min

(2): Create optional point image with all pixels empty
source_raster_image = new false[rw, rh]

(3): Map list points to the image by their raster information
for each p in point_list do

source_raster_image[p.rx− rx_min, p.ry− ry_min] = (true, p)
end for

return source_raster_image
end function

Algorithm A2 Create vector image TMRP.
function CREATEVECTORIMAGETMRP(source_raster_image, width, height)

vector_image← new raw_pixel[width, height][0]

for y← 0 to height− 2 do
for x ← 0 to width− 2 do

(1): Get triangles from 2×2 neighborhood
point_list← createNeighborPointList(source_raster_image, x, y)→ Algorithm A3
triangle_list← toTriangleList(point_list)→ Algorithm A4

for each triangle in triangle_list do
(2): Raster rect around the triangle where rect is always inside the image
rect← triangleBoundingBox(triangle)→ Algorithm A5
if rect.x_min = rect.x_max ∨ rect.y_min = rect.y_max then

continue
end if

(3): Iterate over all raster points in bounding box
for jy← rect.y_min to rect.y_max do

for jx ← rect.x_min to rect.x_max do
(3.1): Skip raster points outside the triangle
if (jx, jy) /∈ triangle then

continue
end if

raw_pixel = interpolatePixel(triangle, jx, jy)→ Algorithm A7
vector_image(ix, iy) append raw_pixel

end for
end for

end for
end for

end for

return vector_image
end function
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Algorithm A3 Create neighbor point list. A function of Algorithm A2, (1).

function CREATENEIGHBORPOINTLIST(source_raster_image, x, y)
point_list← new point[0]

for dy← 0 to 1 do
for dx ← 0 to 1 do

optional_point← source_raster_image[x + dx, y + dy]

if optional_point.exist = true then
point_list append optional_point.point

end if
end for

end for

return point_list
end function

Algorithm A4 Add to triangle list. A function of Algorithm A2, (1).

function TOTRIANGLELIST(point_list)
triangle_list← new triangle[0]

if point_list.length > 2 then
triangle_list append (point_list[0], point_list[1], point_list[2])

end if
if point_list.length = 4 then

triangle_list append (point_list[1], point_list[2], point_list[3])
triangle_list append (point_list[2], point_list[3], point_list[0])
triangle_list append (point_list[3], point_list[0], point_list[1])

end if

return triangle_list
end function

Algorithm A5 Create triangle bounding box. A function of Algorithm A2, (2).

function TRIANGLEBOUNDINGBOX(triangle, width, height)
f x = clamp(floor(min2

i=0triangle[i].x), 0, width− 1)→ Algorithm A6
tx = clamp(floor(max2

i=0triangle[i].x), 0, width− 1)
f y = clamp(floor(min2

i=0triangle[i].y), 0, height− 1)
ty = clamp(floor(max2

i=0triangle[i].y), 0, height− 1)
return ( f x, tx, f y, tx)

end function

Algorithm A6 Clamp function. A function of Algorithm A5.

function CLAMP(x,min,max)
if (x < min) then

return min
else if (x > max) then

return max
else

return x
end if

end function
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Algorithm A7 Interpolate pixel. A function of Algorithm A2, (3).

function INTERPOLATEPIXEL(triangle, x, y)
(1): Split triangle into three sub-triangles and calculate their area, Algorithm A8
point = (x, y)
area[0] = calculateTriangularArea(point, triangle[1], triangle[2])
area[1] = calculateTriangularArea(point, triangle[2], triangle[0])
area[2] = calculateTriangularArea(point, triangle[0], triangle[1])

(2): Calculate total area of the triangle
area_sum = calculateTriangularArea(triangle[0], triangle[1], triangle[2])

(3): Weight value of the triangle points according to the area of the opposite sub-
triangle

for i← 0 to 2 do

weight[i] =
area[i]

area_sum
end for

(4): Interpolated value of the given point
interpolated_value = ∑2

i=0 triangle[i].value · weight[i]

(5): Index of the closest triangle point
index = i of max2

i=0weight[i]

return (weight[index], interpolated_value, triangle[index].rx, triangle[index].ry)
end function

Algorithm A8 Calculation of the distance between two points distance() and calculation
of a triangular area area according to Heron’s formula calculateTriangularArea(). A
function of Algorithm A7.

function DISTANCE(point[0], point[1])

return
√
(point[0].x− point[1].x)2 + (point[0].y− point[1].y)2

end function

function CALCULATETRIANGULARAREA(point[0], point[1], point[2])
a = distance(point[0], point[1])
b = distance(point[1], point[2])
c = distance(point[2], point[0])

s =
a + b + c

2
return

√(
s · (s− a) · (s− b) · (s− a)

)
end function
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Algorithm A9 Clean separation of foreground and background.
function SEPARATIONFOREGROUNDANDBACKGROUND(vector_image, raster_ f ilter)

if raster_ f ilter 6= min∧ raster_ f ilter 6= max then
return vector_image

end if

for each raw_pixel_list in vector_image do
if raw_pixel_list.length = 0 then

continue
end if

(1): Find reference pixel re f _pixel
re f _pixel ← find kp entry with raster_ f ilterkp ∈ value
re f _rx = re f _pixel.rx
re f _ry = re f _pixel.ry

(2): Erase neighboring points that are more than 1 raster pixel away from re f _pixel
for raw_pixel in raw_pixel_list do

di f f _x = |re f _pixel.rx− raw_pixel.rx|
di f f _y = |re f _pixel.ry− raw_pixel.ry|
if (di f f _x > 1∧ di f f _y > 1) then

raw_pixel_list erase raw_pixel
end if

end for
end for

return vector_image
end function

Algorithm A10 Calculate target image.
function CALCULATETARGETIMAGE(vector_image, width, height)

target_image← new V[width, height]
for y← 0 to height− 1 do

for x ← 0 to width− 1 do
raw_pixel_list← vector_image[x, y]
n← raw_pixel_list.length

(1): Skip empty vectors
if n = 0 then

target_image[x, y]← NaN
continue

end if

(2): Skip vectors without weight
sum_weight← ∑n−1

i=0 raw_pixel_list[i].weight
if sum_weight = 0 then

target_image[x, y]← NaN
continue

end if

(3): Interpolate value based on vector
sum_weight_value← ∑n−1

i=0 raw_pixel_list[i].value · raw_pixel_list[i].weight

target_image[x, y]← sum_weight_value
sum_weight

end for
end for

return target_image
end function
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Algorithm A11 Create vector image state-of-the-art (SOTA) projection.

function CREATEVECTORIMAGESOTA(source_raster_image, width, height)
vector_image← new raw_pixel[width, height][0]

for point in source_raster_image do
X = point.X
Y = point.Y
ix = floor(X)
iy = floor(Y)
xr = X− ix
yr = Y− iy

if ix < width ∧ iy < height then
vector_image[ix, iy] = ((1− xr) ∗ (1− yr), point.V)

end if
if ix + 1 < width ∧ iy < height then

vector_image[ix + 1, iy] = (xr ∗ (1− yr), point.V)
end if
if ix < width ∧ iy + 1 < height then

vector_image[ix, iy + 1] = ((1− xr) ∗ yr, point.V)
end if
if ix + 1 < width ∧ iy + 1 < height then

vector_image[x + 1, iy + 1] = (xr ∗ yr, point.V)
end if

end for

return vector_image
end function
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