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Abstract: Reference evapotranspiration (ET0) is the first step in calculating crop irrigation demand,
and numerous methods have been proposed to estimate this parameter. FAO-56 Penman–Monteith
(PM) is the only standard method for defining and calculating ET0. However, it requires radiation, air
temperature, atmospheric humidity, and wind speed data, limiting its application in regions where
these data are unavailable; therefore, new alternatives are required. This study compared the accuracy
of ET0 calculated with the Blaney–Criddle (BC) and Hargreaves–Samani (HS) methods versus PM
using information from an automated weather station (AWS) and the NASA-POWER platform (NP)
for different periods. The information collected corresponds to Module XII of the Lagunera Region
Irrigation District 017, a semi-arid region in the North of Mexico. The HS method underestimated the
reference evapotranspiration (ET0) by 5.5% compared to the PM method considering the total ET0 of
the study period (26 February to 9 August 2021) and yielded the best fit in the different evaluation
periods (daily, 5-day mean, and 5-day cumulative); the latter showed the best values of inferential
parameters. The information about maximum and minimum temperatures from the NP platform
was suitable for estimating ET0 using the HS equation. This data source is a suitable alternative,
particularly in semi-arid regions with limited climatological data from weather stations.

Keywords: NASA-POWER platform; empirical equations; reanalysis data; meteorological data

1. Introduction

Evapotranspiration (ET) is the sum of transpiration through the plant canopy and
evaporation from the soil, plant, and free surface water [1,2]. ET is the most significant
component of the hydrological cycle [1,3], due to which its estimation is of common interest
in climatological, hydrological, forestry, and agricultural studies [4]. This last area ET
is a fundamental variable for calculating water requirements, making efficient use of
water in crop production [5]. ET can be measured directly using weighing lysimeters
or by measuring the net flux of water vapor between the surface and the surrounding
atmosphere using micrometeorological methods [6], which depend on the energy balance
of the canopy and include the energy balance of Bowen’s relation, eddy covariance, and
the use of scintillometers [7].

Crop evapotranspiration (ETC) is a crucial aspect of the water balance in agricultural
areas. To estimate it, the most accessible method is to estimate reference evapotranspiration
(ET0) and then pair it with crop and soil coefficients [8]. Reference evapotranspiration
(ET0) is the evapotranspiration rate of a hypothetical reference crop (grass or alfalfa) with a
height of 0.12 m, a fixed surface resistance of 70 s m−1, and an albedo of 0.23, homogeneous,
well-watered, free from diseases and pests, growing vigorously, and providing complete
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shade to the soil [9–11]. ET0 measures atmospheric evaporation demand regardless of crop
type, development, and management practices [12,13]. This variable is affected only by
climatic factors [14] and can be calculated from meteorological data [10].

Estimating ET0 is the first step in designing, planning, and managing different ir-
rigation systems [15,16]. In addition, it is relevant for calculating crop water require-
ments [17,18]. This parameter is the backbone of the agronomic design of any irrigation
system, facilitates its operation (irrigation schedule and shifts), and allows the planning of
water resource management in a basin [19] or an irrigation district. Therefore, its accurate
estimation is essential in water management, particularly in arid and semi-arid areas where
water is scarce [20].

Given its importance, and the climate’s temporal and spatial variability, many models
to estimate ET0 have been proposed. In general, the models available in the published
literature can be broadly classified as follows: (1) fully physically based models on a
combination of energy balance and mass transfer; (2) semi-physical models based on
temperature, radiation, and evaporation data; and (3) black-box models based on artificial
neural networks, empirical relationships, and genetic and fuzzy algorithms [21,22].

Due to its practicality, many empirical equations have been developed from field
experiments and those based on theoretical approaches [19]. These methods include the
evaporimeter tank and empirical equations, including the complete physical model (FAO-
56 Penman–Monteith), the equation based on temperature (Blaney–Criddle, Thornthwaite,
and Turc), and the one based on temperature and radiation (Hargreaves, Jensen–Haise,
Priestley–Taylor, and FAO Radiation), among others [21].

The UN Food and Agriculture Organization (FAO) recommends the Penman–Monteith
standard method described in the FAO-56 Manual because it can be used in arid, temperate,
and tropical areas [23]. Furthermore, this standardized method is more accurate than
the standard proposed by the American Society of Civil Engineers (ASCE), ASCE-PM,
when estimating daily ET0; both ways were compared with lysimetric measurements [24].
However, this method requires various meteorological input variables (temperature, solar
radiation, relative humidity, and wind speed), which restrains its widespread use [25].
Therefore, its usefulness is limited in regions with no meteorological stations or a shortage of
input data [26], which are usually unavailable with the required frequency and quality [27].
The other equations can be used in regions with very little climatological information, such
as the case of Hargreaves–Samani (HS) and Blaney–Criddle (BC) equations, which are the
most common ones [28–30] and only require temperature as an input variable [31].

The accuracy of the HS and BC equations has been evaluated by several authors,
comparing their results with the FAO-56 Penman–Monteith (PM) reference method; HS
was the equation that attained the best fit in semi-arid regions [32,33]. Other authors state
that the HS method works well in most climatic regions, except for wet areas where it tends
to overestimate ET0 [16,34–36]. Since HS was developed empirically based on data from
arid to subhumid environments, it may not fit well to conditions markedly different from
those considered for its calibration, as is the case of wet climates [16]. On the other hand,
the HS method underestimates ET0 for dry and windy areas because it does not include
wind and is seemingly more accurate when applied for 5- to 7-day averages than for daily
time scales [37,38]. However, despite a reasonably good performance of the HS equation in
most applications, particularly irrigation planning, several authors have attempted to either
recalibrate the HS coefficients or parameters [36,39] or modify the equation itself [40,41],
aiming to improve its performance.

Reanalysis data or gridded meteorological data are an alternate source of information
that can be used to estimate ET0 [42–44]. It is available on different platforms: National
Aeronautics and Space Administration—Prediction of Worldwide Energy Resource (NASA-
POWER) [27,45], Global Land Data Assimilation System (GLDAS) [46], Climate Forecast
System ver. 2 (CFSv2) [47], North American Land Data Assimilation System (NLDAS) [48],
and National Digital Forecast Database (NDFD) [49]. These global or regional platforms
provide data with higher spatial and temporal resolution [27]. However, it should be noted
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that higher spatial resolution does not necessarily imply higher precision [50]. The NASA-
POWER platform (NP) is the most widely used to estimate ET0 [51–53]. NP provides daily
information on air temperature, precipitation, relative humidity, radiation, wind direction,
and speed; it is free and easily accessible. This information is grouped into three different
spatial conditions: for a single point, with time series data available based on registered
geographic coordinates chosen by the user; at the regional level, in a time series dataset
based on a bounding box of user-determined geographic coordinates; and globally, with
climate averages worldwide [54]. Despite the wide availability of information and ease of
access, evaluating and validating said NP climate information with in situ weather stations
in the area of interest is essential for local bias correction and to improve accuracy [45].

This study aims to compare the accuracy of ET0 calculated with the BC and HS
methods relative to the FAO-56 Penman–Monteith (PM) reference method, with data
recorded by an automated weather station (AWS) and temperature data (maximum and
minimum) from the NASA–POWER platform (NP), for different calculation periods.

2. Materials and Methods
2.1. Study Area and Data Collection

The climatic variables to calculate ET0 with empirical equations were recorded with a
wireless Davis Vantage Pro 2 Plus AWS (Davis Instruments Company, Hayward, CA, USA);
it has a console that allows viewing of all meteorological variables simultaneously [55],
with a 30-min update frequency.

The AWS belongs to Centro Nacional de Investigación Disciplinaria en Relación
Agua, Suelo, Planta, Atmósfera (National Center for Disciplinary Research on Water, Soil,
Plant, Atmosphere; CENID RASPA) of Instituto Nacional de Investigaciones Forestales,
Agrícolas y Pecuarias (National Institute of Forestry, Agricultural, and Livestock Research;
INIFAP), within the facilities of an agricultural production unit located at Module XII of
the Lagunera Region Irrigation District 017, at 1110 m a.s.l. and coordinates 25◦47′00.32′′ N,
103◦18′46.54′′ W (Figure 1).
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Module XII covers an area of 14,276.7 hectares with an elevation range of 1102 to
1114 m [56]. The slope of the area is gentle, at around 0.06%. It is oriented from south to
north, with the southern part being the highest, as shown in Figure 2.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. Altitude map of Module XII. 

Based on data gathered from Series VII of INEGI (2018) [57], it is estimated that the 
study area is primarily used for irrigated agriculture, with 89.3% of its surface area dedi-
cated to this use. Human settlements make up 8.7% of the area, while the remaining 2% is 
used for other purposes (Table 1). 

Table 1. Land use and vegetation of the study area INEGI-Series VII (2018). 

Land Use Code Surface (ha) Coverage 
(%) 

Human Settlements  AH 1240.1 8.69 
Barren Land DV 15.6 0.11 
Annual and Semi-permanent Irrigated Agriculture RAS 10,166.6 71.21 
Permanent Irrigated Agriculture RP 63.0 0.44 
Semi-permanent Irrigated Agriculture RS 2521.3 17.66 
Microphyllous Desert Scrub with Secondary 
Shrub Vegetation 

Vsa/MDM 237.1 1.66 

Halophilous Xerophytic Vegetation with Second-
ary Shrub Vegetation  

Vsa/VH 32.9 0.23 

Total  14,276.7 100.00 

The meteorological information used was daily averages for the period between 26 
February (Julian day 57) and 9 August (Julian day 221) 2021 (n = 165). In the Lagunera 
Region Irrigation District 017, the main crops of the spring–summer cycle are grown in 
this period, including forage corn.  

In addition, the meteorological variables were downloaded from the NP climate web-
site (National Aeronautics and Space Administration—Prediction of Worldwide Energy 
Resource; https://power.larc.nasa.gov, accessed on 5 October 2022). This website collects 

Figure 2. Altitude map of Module XII.

Based on data gathered from Series VII of INEGI (2018) [57], it is estimated that
the study area is primarily used for irrigated agriculture, with 89.3% of its surface area
dedicated to this use. Human settlements make up 8.7% of the area, while the remaining
2% is used for other purposes (Table 1).

Table 1. Land use and vegetation of the study area INEGI-Series VII (2018).

Land Use Code Surface (ha) Coverage (%)

Human Settlements AH 1240.1 8.69
Barren Land DV 15.6 0.11
Annual and Semi-permanent Irrigated Agriculture RAS 10,166.6 71.21
Permanent Irrigated Agriculture RP 63.0 0.44
Semi-permanent Irrigated Agriculture RS 2521.3 17.66
Microphyllous Desert Scrub with Secondary Shrub Vegetation Vsa/MDM 237.1 1.66
Halophilous Xerophytic Vegetation with Secondary Shrub Vegetation Vsa/VH 32.9 0.23
Total 14,276.7 100.00

The meteorological information used was daily averages for the period between 26
February (Julian day 57) and 9 August (Julian day 221) 2021 (n = 165). In the Lagunera
Region Irrigation District 017, the main crops of the spring–summer cycle are grown in this
period, including forage corn.
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In addition, the meteorological variables were downloaded from the NP climate
website (National Aeronautics and Space Administration—Prediction of Worldwide Energy
Resource; https://power.larc.nasa.gov, accessed on 5 October 2022). This website collects
information from various sources: data recorded on-site, satellite data, wind probes, and
assimilated data systems [27].

The NNP weather data are based on a single assimilation model named GMAO
(Global Modeling and Assimilation Office), starting from the MERRA-2 (Modern Era
Retrospective-Analysis for Research and Applications) reanalysis dataset and the GEOS
(Goddard Earth Observation System) data processing system [58,59]. Solar radiation
is derived from the GEWEX SRB (Global Energy and Water Exchanges Project Surface
Radiation Budget) project [60,61].

The horizontal resolution of the NP meteorological data source corresponds to a
1
2
◦ × 5/8◦ latitude/longitude grid, and the solar data sources come from a 1◦ × 1◦ lati-

tude/longitude grid. The current version no longer reassigns data to a common grid; once
the data are processed and filed, they are available through the NP service package. The
meteorological data is derived from NASA’s GMAO MERRA-2 and GEOS 5.12.4 FP-IT. The
NP platform team processes GEOS data daily and combines them with MERRA-2 data,
producing daily time series that yield low-latency products usually available in approx-
imately two days (real-time). Energy flow data (solar irradiance, thermal IR, and cloud
properties) derive from NASA’s GEWEX SRB Release 4-Integrated Product (R4-IP) file and
CERES SYNIdeg and FLASHFlux projects. These data are processed daily and added to
the daily time series, issuing products after approximately 4 days, almost in real-time [62].

The main features of the NP system database are shown in Table 2. The AWS is situated
near the center of Module XII (Figure 2) and aligns with the center of the NP platform cell.
This suggests that one cell encompasses the entire study area’s surface.

Table 2. Features of the NASA-POWER (NP) system information.

Parameter Feature

Data period 1981 to date
Geographic range Global
Download format ASCII, CSV, GeoJSON, and NetCDF
Temporal resolution Daily

Spatial resolution
0.5◦ × 0.5◦ (55.56 km × 55.56 km cell) for temperature (T),

relative humidity (RH), and wind speed (u2). 1.0◦ × 1.0◦ for solar
radiation and extraterrestrial solar radiation data.

Delayed data availability Approximately two days for temperature, relative humidity, and
wind speed, and five days for solar radiation data.

2.2. ET0 Estimation with Empirical Equations

ET0 was estimated through three empirical equations with different information re-
quirements: an equation based on a complete physical model (PM); another on temperature
and solar radiation (HS); and the last one on temperature, relative humidity, and wind
speed (BC).

2.2.1. FAO-56 Penman–Monteith Method (ET0-PM)

ET0 was estimated daily with the FAO-56 Penman–Monteith method using Equa-
tion (1) [22,63]; this method is useful for arid, temperate, and tropical zones [19,22].

ET0−PM =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
, (1)

where Rn is the net radiation at the reference crop surface (MJ m−2 d−1); G is the soil
heat flux density (MJ m−2 d−1); u2 is the wind speed at 2 m height (m s−1); es is the
saturation vapor pressure (kPa); ea is the actual vapor pressure (kPa); es − ea is the vapor

https://power.larc.nasa.gov
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pressure deficit (kPa); ∆ is the slope of the vapor saturation pressure curve (kPa ◦C−1); T
is the mean daily air temperature at 2 m height (◦C); and γ is the psychrometric constant
(kPa ◦C−1). For daily time intervals, G values are relatively small, and therefore, this term
was not included [22].

2.2.2. Hargreaves–Samani Method (ET0-HS)

The Hargreaves–Samani method estimates ET0 based on temperature data only (Equa-
tion (2)) [64]. This equation was developed for semi-arid zones and is useful when solar
radiation data are not available; however, as it is based on a few variables, its accuracy
should be evaluated at the regional and local levels [65].

ET0−HS = KH(T + KT)R0 × (Tmax − Tmin)
AH , (2)

where T is the mean daily air temperature (◦C); R0 is the extraterrestrial solar radiation
(from tables, mm d−1); Tmax is the maximum daily air temperature (◦C); Tmin is the mini-
mum daily air temperature (◦C); KH and KT are the empirical calibration parameters; and
AH is a Hargreaves’ empirical exponent. This study used the original values proposed by
Hargreaves and Samani [64]: KH = 0.0023, KT = 17.78, and AH = 0.5.

2.2.3. Blaney–Criddle Method (ET0-BC)

The meteorological variables required to apply the Blaney–Criddle method are air
temperature, relative humidity, and daytime wind speed (Equation (3) [66].

ET0−BC = a + b[p(0.46× T + 8.13)], (3)

where a and b are climatic calibration coefficients calculated with Equations (4) and (5),
respectively; p is the mean annual percentage of daytime hours (value from tables, decimal);
and T is the mean air temperature at 2 m height (◦C).

a = 0.0043× RHmin −
n
N
− 1.41, (4)

where RHMIN is the minimum relative humidity (%); n
N is the ratio between theoretical

and actual sunlit hours (value from tables, decimal).

b = 0.082− 0.0041(RHmin) + 1.07
( n

N

)
+ 0.066(u2)− 0.006(RHmin)

( n
N

)
− 0.0006(RHmin)(u2), (5)

where u2 is the mean daily wind speed at 2 m height (m s−1).

2.3. Inferential Evaluation Parameters

Table 3 shows the inferential parameters used for evaluating the empirical equations
that estimate ET0 (HS and BC), considering the PM method as a reference. Likewise, the
climatic information of the NP platform was evaluated when calculating ET0 through the
reference method (PMNP).

In the above equations, Ei is the estimated value using the empirical equation; Oi is the
value obtained with the reference method; E is the average of estimated values obtained
with the empirical equation; O is the average of the values obtained with the reference
method; and n is the number of observations. The criteria for interpreting the reliability
coefficient are cited in [67].

ET0 was estimated in three different ways with empirical equations (daily, mean, and
cumulative) using a total of 165 observations. The mean ET0 was determined over the
5-day period, as was the cumulative.
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Table 3. Equations and optimal values of inferential parameters.

Parameter Equation Optimal Value

Coefficient of Determination (R2) R2 =
[∑n

i=1(Ei−E)(Oi−O)]
2

∑n
i=1 (Ei−E)

2
∑n

i=1(Oi−O)
2

(6) 1

Root Mean Error (RMSE) RMSE =

√
∑n

i=1(Ei−Oi)
2

n
(7) 0

Estimate Error Percentage (PE) PE =
∣∣∣ E−O

O

∣∣∣ ∗ 100 (8) 0

Mean Error Bias (MBE) MBE = ∑n
i=1(Ei−Oi)

n (9) 0

Concordance Index (d) d = 1−
[

∑n
i=1(Ei−Oi)

2

∑n
i=1(|Ei−O|+|Oi−O|)2

]
(10) 1

Correlation coefficient (r) r = ∑n
i=1 (|Oi−O|)(|Ei−E|)√

∑n
i=1(Oi−O)

2
√

∑n
i=1(Ei−E)

2
(11) 1

Reliability coefficient (c) c = r ∗ d (12) 1
Regression coefficient (b) b = ∑n

i=1 Oi Ei

∑n
i=1 Oi

2 (13) 1

3. Results and Discussion

The daily ET0 calculated by the PM method and with AWS meteorological data
(Figure 3) had the peak value (8.8 mm d−1) on Julian day 126 (6 May 2021)—on the same
day, a wind speed of 5.0 m s−1 was recorded, which was higher than the average recorded
over the study period (2.2 m s−1). On the other hand, the minimum ET0 (2.2 mm day−1)
was recorded on Julian day 192 (11 July 2021)—the day that recorded a solar radiation
value of 107.0 W m−2, lower than the average for the study period (282.8 W m−2). This low
radiation was due to atypical conditions: high cloudiness (rainfall of 7.6 mm recorded) and
high relative humidity (84.5%). Some authors mention that wind speed and solar radiation
are the climatic variables with the most significant influence on ET0 estimates in the study
area [27]. Other authors reach the same conclusion when performing a sensitivity analysis
in other regions [68–70].
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AWS meteorological data (blue points) and rainfall recorded in the study period (red bars).

3.1. Comparison of ET0 Estimated by Empirical Equations versus the Reference Method

Table 4 shows the monthly and total ET0 estimated using the empirical equations and
the reference method (PM). Considering the month with the maximum ET0 (May, with
the HS and PM_NP equations and June with the BC method) and the reference method
(PM), HS yielded an ET0 value that was 6.6% lower vs. PM; BC, 12.5% lower; and PM_NP,
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13.2% higher. However, considering the month with the minimum ET0 (February) and the
PM method, HS yielded an ET0 12.8% higher vs. PM; BC, 6.8% higher; and PM_NP, 14.2%
higher. It is observed that HS and BC underestimate ET0 over most of the study period,
consistent with the findings reported by some authors for an agroclimatic region similar to
the study area [71].

Table 4. Monthly and total ET0 estimated by empirical equations and the reference method (FAO-56
Penman–Monteith) during the study period.

Variable

Evaluation Period: 26 February to 9 August 2021

February March April May June July August Total

(n = 3) (n = 31) (n = 30) (n = 31) (n = 30) (n = 31) (n = 9) (n = 165)

ET0-PM (mm) 11.7 179.0 191.3 214.4 196.7 187.8 49.1 1030.0
ET0-HS (mm) 13.2 154.8 180.8 200.3 195.5 179.6 48.7 972.9
ET0-BC (mm) 12.5 141.3 152.1 171.7 172.2 170.9 48.8 869.5
ET0-PM_NP (mm) 13.4 183.7 204.8 242.7 238.5 203.5 52.3 1138.9

However, when considering total ET0 (whole study period) and the PM method, HS
recorded an ET0 value 5.5% lower vs. PM; BC, a value 15.6% lower; and PM_NP, 10.6%
higher; therefore, HS was the equation that yielded values closest to the PM method.
This is because HS considers temperature and radiation as the main energy sources that
promote evapotranspiration [9,27].

The results in Table 4 indicate an overestimation of ET0 relative to the value obtained
with the PM_NP method during the study period. The magnitude of this overestimation
is related to the accuracy of each variable and has been reported only when using NP
(NASA-POWER) data and the PM method [52,53,72].

Table 5 summarizes the relationship between the climatic variables recorded by the
AWS and those obtained from the NP platform during the study period, where wind
speed (WS) and solar radiation (SR) showed a low and moderate relationship, respectively.
This same behavior has been reported by some authors for WS [27,45,73] and SR [74]. By
contrast, Tmax and RH recorded a high ratio, and Tmin recorded a very high ratio. Some
authors reported similar R2 values for Tmin, Tmax [58], and RH [27] to those obtained
in the present study. WS was the variable that yielded the lowest R2. This highlights
the multiple challenges in determining this variable; these include quality control of the
measured data since improving this aspect may return more accurate estimates [75].

Table 5. Relationship between the meteorological variables recorded by the automated weather
station (AWS) and obtained from the NP platform during the study period.

Climatic Variables
Coefficient of Determination (R2)

Tmax_NP Tmin_NP RH_NP WS_NP SR_NP

Tmax_AWS 0.76
Tmin_AWS 0.81
RH_AWS 0.80
WS_AWS 0.27
SR_AWS 0.45

Tmax, maximum temperature; Tmin, minimum temperature; RH, relative humidity; WS, wind speed; SR,
solar radiation.

Figure 4 depicts the bias in the data recorded by the automated weather station (AWS)
relative to NP platform data for the following meteorological variables: temperature (maxi-
mum and minimum), relative humidity, solar radiation, and wind speed. It is observed
that 44% of the maximum temperature data evaluated (n = 165) were virtually unbiased,
while 39% of NP data overestimated Tmax by 2.1 ◦C to 7.5 ◦C, and the rest of the data (17%)
underestimated Tmax by 1.2 ◦C to 5.5 ◦C (Figure 4a). Regarding the minimum temperature,
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39% of the data evaluated showed bias values close to zero, while 46% of the NP data
overestimated Tmin by 1.6 ◦C to 5.1 ◦C and the rest (15%) underestimated Tmin by 1.8 ◦C
to 5.3 ◦C (Figure 4b).
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The less biased RH values (values close to zero) were observed in 16% of the evaluated
data; the NP platform underestimated RH by 3.0% to 38.8% in 76% of the data, and the
rest of the data (7%) overestimated RH by 5.9% to 14.9% (Figure 4c). On the other hand,
45% of the evaluated data showed the minimum differences in solar radiation bias (values
between 0 MJ m−2 d−1 and 1.5 MJ m−2 d−1), while 36% of the data overestimated radiation
by 3.7 MJ m−2 d−1 to 17.2 MJ m−2 d−1, and the rest of the data (19%) underestimated
radiation by 2.9 MJ m−2 d−1 to 9.7 MJ m−2 d−1 (Figure 4d).

Finally, 50% of the WS data showed bias values close to zero. It is also observed that
most data (41%) overestimated WS by 1.4 m s−1 to 2.9 m s−1, and the rest of the data (9%)
underestimated WS by 1.2 m s−1 to 3.3 m s−1 (Figure 4e).

Based on the above, the NP platform tends to overestimate Tmax, Tmin, SR, and WS
while it underestimates RH. This same behavior was reported by Jiménez et al., in the study
area for Tmin, WS, and RH [27].

Estimating the 5-day cumulative ET0 improved the values of R2, r, and c relative
to daily ET0 and 5-day mean ET0. This behavior is consistent with the one reported by
Jiménez et al. [27], who obtained better R2 and RMSE values when estimating 10-day mean
ET0 versus daily data. Also, this way of estimating ET0 yielded reliability coefficients (c)
rated as “very good” for BC and PM_NP and “good” for HS. However, PM_NP showed
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the best R2, r, and c values, while HS yielded the best RMSE, PE, MBE, and b (Table 6).
The latter parameter returned values close to 1, indicating that the estimated values are
statistically similar to observed or reference values [16]. Some authors reported similar
RMSE values (1.1 mm d−1) when comparing ET0 estimated by the HS equation and the PM
method on a daily basis [71,76]. However, some authors recorded an RMSE (0.7 mm d−1)
for 10-day mean data, which is similar to the RMSE value obtained in the present study for
5-day cumulative ET0 [27].

Table 6. Comparison and inferential parameters to determine the ET0 equation that best fits the
study area.

Parameter

Methods

HS BC PM_NP HS BC PM_NP HS BC PM_NP

Daily ET0 (n = 165) 5-Day Mean ET0 (n = 33) 5-Day Cumulative ET0 (n = 33)

R2 (Dimensionless) 0.29 0.43 0.53 0.44 0.47 0.73 0.69 0.76 0.84
RMSE (mm d−1) 1.1 1.3 1.2 0.7 1.1 0.9 3.8 5.8 4.6
PE (%) 5.5 15.6 10.6 5.2 15.3 10.6 5.5 15.6 10.6
MBE (mm d−1) −0.35 −0.97 0.66 −0.32 −0.95 0.66 −1.73 −4.86 3.30
d (Dimensionless) 0.94 0.99 0.98 0.85 1.00 0.94 0.86 1.00 0.94
r (Dimensionless) 0.54 0.65 0.73 0.66 0.69 0.85 0.83 0.87 0.91
c (Dimensionless) 0.51 0.65 0.72 0.56 0.66 0.81 0.71 0.83 0.86
b (Dimensionless) 0.9270 0.8257 1.0994 0.9416 0.8399 1.1073 0.9362 0.8349 1.1075

When graphically comparing the empirical equations versus the reference method
(PM), daily ET0 and 5-day mean ET0 show a greater variability (Figure 5a,b); the 5-day
cumulative ET0 returned the best fit, with a lower variability of ET0 values between the
empirical equations and the PM method (Figure 5c).
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In addition, HS yielded a better fit than the reference method (PM) in the three ways of
estimating ET0. Other authors have also reported a better fit with the HS equation relative
to other methods and have taken PM as a reference for arid and semi-arid regions [16,35,76].
This equation underestimates ET0 over most of the study period because the methods
based on solar temperature and radiation do not include wind speed [19].

3.2. Comparison of Estimated ET0 with Observed (AWS) versus Estimated (NP) Data

Table 7 shows the results of the goodness-of-fit tests between ET0 calculated by the
PM, HS, and BC methods, using maximum and minimum temperature data from the NP
platform for the different calculation periods (daily, 5-day mean, and 5-day cumulative).
The analyses of variance, with a 95% confidence interval (p-value < 0.0001), indicate a
significant linear relationship between the PM method and the HS_NP and BC_NP equations
for the three calculation periods. HS_NP yielded the best values of inferential parameters
versus BC_NP, except for R2 and r, in the daily ET0 estimate. This indicates that HS with
NP temperature data is a suitable option for estimating ET0 for different periods. In
addition, we found that the estimation percent error (PE) is lower than 5% with HS_NP
for the three ET0 calculation periods. In addition, MBE is negative in the three periods,
pointing to an underestimation with the HS_NP method. Some authors report this same
ET0 underestimation effect in semi-arid regions during the winter–summer period [27,71].

Table 7. Comparison and linear regression coefficients between ET0 calculated with the reference
method (FAO-56 Penman–Monteith) and HS and BC methods with temperature data from the
NP platform.

Parameter

Methods

HS_NP BC_NP HS_NP BC_NP HS_NP BC_NP

Daily ET0 (n = 165) 5-Day Mean ET0 (n = 33) 5-Day Cumulative ET0 (n = 33)

R2 (Dimensionless) 0.29 0.38 0.55 0.45 0.75 0.74
RMSE (mm d−1) 1.1 1.3 0.6 1.1 3.3 5.7
PE (%) 4.4 15.0 4.1 14.6 4.4 15.0
MBE (mm d−1) −0.28 −0.93 −0.26 −0.91 −1.38 −4.67
r (Dimensionless) 0.54 0.61 0.74 0.67 0.87 0.86
a (Dimensionless) 2.435 −0.359 1.623 0.732 2.647 −1.700
b (Dimensionless) 0.638 1.244 0.770 1.033 0.957 1.240

The 5-day mean ET0 estimate recorded the best values in most statistical parameters
relative to the mean daily ET0. However, the 5-day cumulative ET0 estimate recorded the
best r and R2 values compared with the other two estimates (daily ET0 and 5-day mean ET0).
These good results are obtained because grouping ET0 over five days mitigates the variation
in daily temperature associated with precipitation, wind speed, and cloudiness [77].

Figure 6 shows the dispersion of the calibrated HS method (HS_cal) relative to PM
for the different ET0 calculation periods, depicting the best data fit obtained using data
accumulated over five days.

The comparison of ET0 estimates with the HS equation using temperature data
recorded by the AWS (HSAWS) and from the NP platform (HSNP) yielded a high cor-
relation for the three estimates (Figure 7); the 5-day cumulative ET0 recorded the highest
R2. These R2 values indicate the feasibility of estimating ET0 using the NP platform’s
temperature data and the HS formula [27,71,76].

The accuracy of ET0 calculated with methods BC and HS was compared versus the
FAO-56 Penman–Monteith (PM) reference method using data from an automated weather
station (AWS) and the NASA-POWER platform (NP). In this comparison, the HS equation
returned the best fit in the different ways of estimating ET0: daily, 5-day mean, and 5-day
cumulative, with the latter yielding the best fit.
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4. Conclusions

The Hargreaves–Samani (HS) method underestimated by 5.5% the reference evapo-
transpiration (ET0) compared to the FAO-56 Penman–Monteith (PM) method considering
the total ET0 of the study period (26 February to 9 August 2021). This was because the
calculation of ET0 with the HS equation does not consider wind speed, which influences
the evapotranspiration rate sometimes during the year in the study area. Nonetheless, this
method is an alternative for calculating ET0 in semi-arid regions for which only temperature
records are available.

The HS equation yielded the best estimate relative to the reference method (PM) in
the different ways of estimating ET0 during the spring–summer crop cycle; the 5-day
cumulative ET0 showed the best fit. Therefore, this method is suitable for use with remote-
sensing data to determine crop evapotranspiration (ETc) with 5-day temporal resolution
images. It is necessary to conduct testing of HS in various agroclimatic conditions and
perform a regional spatial evaluation using data from additional automated weather
stations, such as those located within the entire 017 irrigation district.

The maximum and minimum temperature data from the NASA–POWER (NP) plat-
form was suitable for estimating ET0 with the HS equation. This data source is a timely
alternative, particularly in semi-arid regions without data from weather stations.

The results showed that NP is a reliable data source for programming medium- and
low-frequency irrigation (sprinkler and surface irrigation), which are common in the study
area. In addition, they provide spatially comprehensive data, unlike the point values
recorded by weather stations, which could be an enormous advantage when studying large
regions, such as irrigation districts.
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