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Abstract: Solving the problem of the transmission of mechanical equipment is complicated, and the
interconnection between equipment components in a complex industrial environment can easily lead
to faults. A multi-scale-sensor information fusion method is proposed, overcoming the shortcomings
of fault diagnosis methods based on the analysis of one signal, in terms of diagnosis accuracy and
efficiency. First, different sizes of convolution kernels are applied to extract multi-scale features from
original signals using a multi-scale one-dimensional convolutional neural network (1DCNN); this
not only improves the learning ability of the features but also enables the fine characterization of the
features. Then, using Dempster–Shafer (DS) evidence theory, improved by multi-sensor information
fusion strategy, the feature signals extracted by the multi-scale 1DCNN are fused to realize the fault
detection and location. Finally, the experimental results of fault detection on a flash furnace show
that the accuracy of the proposed method is more than 99.65% and has better fault diagnosis, which
proves the feasibility and effectiveness of the proposed method.

Keywords: multi-sensor information fusion; fault diagnosis; theory of DS evidence fusion; 1DCNN

1. Introduction

As science and technology advance, intelligent systems are becoming increasingly de-
pendent on multi-sensor information fusion technology; in the field of industrial machinery
and equipment fault diagnosis, it plays a steadily more important role. In most complex
industrial environments, a single sensor is used to acquire a specific piece of functional
information from the mechanical equipment. However, the information obtained from a
single sensor is limited by its own accuracy and performance and often cannot accurately
describe the characteristics of the target fault, resulting in the observation signal being
insufficient to reflect the operating condition of the equipment. Information fusion with
multiple sensors increases the information transmission between sensors, improves the
stability and accuracy of the system, and overcomes the influence of uncertain factors,
such as interference. These are the key points in researching fault diagnosis in complex
industrial equipment. The intelligent diagnosis and health maintenance of industrial equip-
ment can increase equipment efficiency and reduce the operating and maintenance costs
of enterprises, which have an important effect on carrying out real-time systematic and
intelligent monitoring of industrial equipment.

A multi-source information fusion system for industrial fault diagnosis [1,2] can obtain
valuable information which cannot be obtained from a single source of information. This
is achieved through monitoring sensor information from multiple sources, comprehen-
sively analyzing and processing it according to certain criteria, and completing diagnosis
objectives. In recent years, research in the field of multi-source information fusion has
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focused on the complementarity of information from multiple sources. Fusion methods
of feature-level and decision-level are applied to obtain valuable information for fault
decisions and to obtain the most complete description of the objects observed by different
sensors, which makes accurate fault analysis more effective [3]. Therefore, this paper pro-
poses that mechanical devices can be fault-diagnosed using a multi-sensor fusion method,
which combines multi-scale CNN and improved DS theory of evidence. Through the
development of a multi-scale convolutional network, features of different fineness are
extracted, and then the DS evidence theory integrates features from different scales, which
enables the effective identification of faults and simplifies the diagnostic process. Through
experimental comparison and analysis, by the superiority of this method, the efficiency
and accuracy of fault diagnosis are improved.

As an intelligent and efficient fault diagnosis method, in the field of fault diagnosis,
the fusion of information from multiple sources is applied more and more extensively. Its
level of application is constantly improving. In the fault diagnosis field, it has become
an important development direction. The rapid development of digital signal processing,
production equipment, and systems are becoming increasingly complex. When mechanical
equipment fails, it becomes increasingly difficult to analyze the reason for the fault and its
location. In some cases, a single intelligent fault diagnosis technology cannot accurately
assess the cause of the fault and may even result in the fault not being detected or not being
detected correctly. If the operating condition of the system cannot be properly estimated, it
will be difficult to make accurate decisions [4]. However, the perception performance is
significantly increased by a multi-sensor system which has reliable diagnosis results [5].

In recent years, researchers have proposed many effective methods for processing
the fault signals of mechanical device components. Lee proposed a joint transmission and
detection scheme for IoT devices based on deep learning, which improved the detection
capability of devices through joint detection using a multi-sensor fusion method [6]. Saxena
proposed an analysis of the characteristics of fault data by continuous wavelet transform
and performed the visual classification and identification of faults [7]. An integrated
method comprising fuzzy entropy at multiple scales, selection of mode, and decomposition
of empirical modes was proposed by Zhao for the extraction of fault features and realizing
the diagnosis of faults in motor bearings [8]. An improved method for the decomposition
of empirical modes for feature extraction, based on time-varying filtering, was proposed.
In noise, it improves the robustness of analysis results and the ability to extract fault
features [9]. Jiang proposed an adaptive rotating machine system for diagnosing faults
under the influence of noise, which reduced the influence of noise and effectively extracted
fault features [10]. However, the results of these methods of analysis are usually limited
by prior knowledge, which is empirical to achieve a better extraction of fault features and
better identification of fault types.

Artificial Intelligence (AI) technology is continuously developing, and research in
the field of anomaly detection and decision making in sensor systems is gradually devel-
oping in this way also, enabling automatic error detection. An effective fault diagnosis
method for a variable frequency-driven asynchronous motor based on machine learning
was proposed by Gawde [11], which realized the fault diagnosis of the motor running
state. Ali proposed a fault classification framework method for rotating machinery gears
based on automatic data fusion, which solves the previous problem based on manual
classification, realizes automatic fault classification through a machine learning algorithm,
and improves robustness [12]. A rotating machine fault detection method using deep
learning was proposed in [13], and this achieved a high diagnosis rate with fewer original
training datasets. A method for fusing data from multiple sources for network attack
and intrusion detection was proposed in [14] to obtain a larger amount of unique data to
improve anomaly detection and system decision-making capabilities. In addition, there
are other detection methods, including support vector machine [15], artificial neural net-
works [16,17], and random forest [18], which can also detect abnormal conditions and make
appropriate decisions. Because of the various uncertainties influencing complex industrial
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environments, anomaly detection and decision making in multi-sensor systems usually
depend on the accuracy of the data acquired. Once the measurement quality of the sensors
decreases or faults occur, the overall diagnostic performance of the multi-sensor system is
severely affected.

At present, combining multi-source information fusion technology with deep learn-
ing has become increasingly popular for fault diagnosis. Arellano-Espitia proposed a
diagnosis method on the basis of multiple information source extraction and fusion in
electromechanical systems, which can adaptively learn complex relationships in signals
to characterize different fault states [19]. Huang proposed an information fusion method
combining uncertain evidence and reinforcement learning, which improves the accuracy of
fusion and solves the decision problem with low information, ignoring the decision imple-
mentation under the condition of a large amount of information [20]. Among the methods
of real-time fault diagnosis and surveillance, a DS evidence theory combined with the
principal component analysis fusion method was proposed by Yao for diagnosing rolling
bearing faults and solving the low accuracy problem of fault classification [21]. Teng used
1DCNN to train signals from each sensing point and then improved the structural accuracy
of damage detection by decision-level fusion [22]. Data fusion using improved DS evidence
theory, which solved the incompleteness of measurement data from a single sensor and
realized the information fusion of multiple measurement devices, was described in [23,24].
A diagnostic method for faults using a CNN, combined with sensor fusion, was proposed
in [25], and it avoids manual feature extraction. A diagnostic method for faults using a
one-dimensional long- and short-term convolutional network, combined with multi-sensor
vibration signals, was proposed by [26,27]; this extracts the spatial–temporal characteristics
of multi-sensor measurement signals and provides better fault diagnosis. Chen proposed
the combination of Sparse Autoencoder Neural Network and Deep Belief Network for fault
feature extraction and to identify the operating condition of the plant well [28]. In early
fault diagnosis and recognition, Kiranyaz proposed adaptive one-dimensional CNN [29].
Li and Wang [30,31] proposed the combination of a multi-sensor and a CNN for fault
diagnosis. In addition, fault diagnosis based on deep learning under different working
conditions can effectively improve diagnostic accuracy. Such a deep CNN was used to diag-
nose bearing faults in a noisy environment and under different working loads in [32]. CNN
is also used for data-driven fault diagnosis [33], etc. Analysis has shown that, although
the deep learning method combined with the fusion of information from multiple sources
can provide better diagnostic accuracy, the theory and system for fusing information from
multiple sensors are not yet mature. There are still many problems with monitoring and
diagnosing faults in applications, such as limited scenarios of sensor usage, low efficiency
of multi-dimensional feature optimization and dimensionality reduction, and low model
accuracy or generalization ability.

With the development of modern industry, there are many kinds of equipment and
complex gears. The performance changes caused by faults in different devices, components,
and locations are different, so it is necessary for multiple sensors to detect different data
for decision making. Because of the incompatibility of data, traditional methods cannot
be combined at data level and classifiers are not suitable for all data types. Therefore,
data must be classified individually, combined with the classification results, to obtain
accurate decision results. In view of this, a CNN combined with the DS evidence theory, this
paper researches the fault diagnosis method with operable multi-sensor fusion. By using
1DCNN to classify data from different sensors in parallel and combining DS combination
rules for optimization, fault information is obtained from mechanical devices. The main
contributions of the proposed method include the following: methods of fault diagnosis
based on 1DCNN network are adopted, and the multi-scale parallel processing of different
sensor data is used to solve the task requirements under different working conditions.
Compared with other methods, there is faster detection efficiency. Moreover, improved DS
evidence theory is combined with the 1DCNN network so that the detection efficiency in
fault isolation is higher and the accuracy of fault classification is improved.
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The rest of the paper is organized as follows: Section 2 describes the theoretical knowl-
edge on convolutional neural networks. Section 3 depicts the multi-sensor information
fusion’s fault diagnosis method based on the DS evidence theory. Section 4 is about experi-
mental verification and analysis, which is an overview of the experimental details. Finally,
Section 5 is the conclusion.

2. Convolutional Neural Network

A CNN is an important part of a deep neural network, which consists of trainable
multilevel architecture and is widely used for its good feature extraction ability. A CNN
generally consists of five modules: input layer, convolutional layer, pooling layer, fully
connected layer, and output layer. The 1DCNN can process and retain the original data
characteristics. Each stage of the 1DCNN contains a pooling layer and a convolutional layer.
As shown in Figure 1, the fault features are extracted by multi-stage alternating operations,
and faults are classified by the fully connected layer and classifier.
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2.1. One-Dimensional Convolutional Neural Network

The input layer of the 1DCNN processes the raw multidimensional data in a stan-
dardized form and standardizes the input data before importing the raw data into the
1DCNN. An algorithm’s operational efficiency and learning performance can be improved
by standardizing the input features.

The convolutional layer of the 1DCNN realizes local connections and weight sharing
through the convolution kernel. The convolution kernel along the horizontal and longitudi-
nal sliding of the input time series in the convolution layer. One-dimensional data, such as
vibration, acoustics, and temperature, can be processed then the size of the convolution
kernel is set to 1× k, which must be within the limit of the length of the input samples.
The output features are constructed using nonlinear activation functions. Multiple input
features are convoluted into each layer’s output. The process of extracting features through
a convolution kernel is described as follows:

xl+1
i = ∑

i∈Mj

wl
ij × xl

i + bl
j

yl+1
i = f (xl+1

i )
(1)

where xl+1
i represents the i-th output of layer l; (*) represents a convolutional operation;

Mj represents the j-th convolutional region in the l layer; xl
i represents the i-th feature; bl

j

represents the j-th offset of l layer; wl
ij represents, in the l layer, the j-th weight value of the

i-th convolutional kernel; and f is the activation function.
After the convolutional operation, the corresponding output features can be obtained

by the nonlinear transformation processing of the operation result by activating the func-
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tion. The choice of network activation function affects the training time, especially the
performance of large datasets. The specific expression is

f (x) = max(0, x) (2)

where f (x) denotes the value of the output obtained after activating the function; x denotes
the value of the input.

Using a pooling layer reduces the feature’s data dimension, behind the convolu-
tional layer, and preserves the important feature information whilst reducing the feature
dimension. This paper uses maximum pooling, which can be expressed as follows:

yl+1
j = max

k∈M
(yl

j) (3)

where M represents the pooled area of neurons; yl
i denotes, in the l layer, the value of the

j-th feature; and yl+1
i represents the maximum value after pooling.

Behind the pooling layer is the fully connected layer, which integrates the extracted
local features. The output can be expressed as follows:

zl
j = f (

M

∑
i=1

xl−1
i wl

j,i + bl
j) (4)

where f is the activation function; w represents the weight value; xl−1
i represents the length

M of a one-dimensional input; j represents that there are N neurons in the fully connected
layer; zl

j represents the output of each neuron; and wl
j,i denotes bias.

The Softmax classifier is used as the output layer and uses the category or probability
form as the recognition result of the output model. Softmax converts the extracted features
into a probability distribution and uses the value of the probability distribution to estimate
the possibility of sample xi belonging to category yi. The Softmax classification process can
be expressed as follows:

ỹj = softmax(zl
j) =

exp(zl
j)

ΣC
k=1 exp(zl

j)
(5)

where zl
j represents the node value of the j-th neuron; C represents the total number of

categories; and ỹj represents the value of classification.
Batch normalization (BN) uses the computation of the mean and variance estimate

on small training sets to adjust the scale of the input features, improving the generaliza-
tion ability of the network, speeding up the training process of the model, and reduc-
ing the transfer of internal covariates. The specific steps of the BN layer are shown in
Equations (6)–(9):

µB =
1
n

n

∑
i=1

xi (6)

σ2
B =

1
n

n

∑
i=1

(xi − µB)
2 (7)

x
′
i =

xi − µB√
σ2

B + ε
(8)

yi = γi × x
′
i + βi (9)

In input data distribution, γ represents the variance and β represents the offset.
The output results are obtained by forward propagation during the training process of

1DCNN. The model output and sample labels are used to construct a cross entropy loss
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function. The back propagation algorithm is used for layer-by-layer feedback, and each
network layer is updated using the gradient descent algorithm. By repeating the two steps
of forward and backward propagation, the weighting parameters and the optimization
loss function are continuously updated until the recognition result reaches a satisfactory
recognition rate or the iteration number reaches a maximum.

2.2. Multi-Scale One-Dimensional Convolutional Neural Network

The 1DCNN can identify the faults of industrial machinery and equipment by ex-
tracting fault features using a convolution kernel of a single size. However, when only
a one-dimensional convolutional kernel is used in a single-layer convolutional network,
the local subtleties may not be considered, resulting in low model accuracy and poor
generalization performance; the extracted information is incomplete, and the learning
effect is affected. The multi-scale 1DCNN possesses stronger feature learning ability. It can
extract different degrees of features from complex signals and perform fine characterization
of signal features, so that the feature expression is more adequate, which enables more
accurate identification and classification of faults in mechanical devices.

Therefore, based on the basic principle of a CNN, a multi-scale 1DCNN is proposed in
this paper. The structure of the multi-scale 1DCNN is shown in Figure 2. Using the original
time-domain signal as input, data abstracted from their original source can be effectively
learned, while the original characteristic signal detected by the sensor is preserved. The
sensor signal is preprocessed by the input layer and then input into the multi-scale 1DCNN.
To obtain larger features, the first layer uses a large convolution kernel in the model.
After the first convolutional layer, three scale branches are set and different sizes of three
convolution kernels are used to convolute the signal in parallel. Each branch includes a
multi-level pooling layer and convolutional layer to achieve signal feature extraction with
different scales of fineness, thus improving the accuracy of the diagnostic. Finally, the
features extracted from the three scales were flattened, then input into the fully connected
layer for classification.
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3. Multi-Sensor Information Fusion Based on Dempster–Shafer Evidence Theory
3.1. Dempster–Shafer Evidence Theory

The DS evidence theory is a kind of imprecise reasoning theory, which should be the
first used in expert systems to deal with uncertain information. Dempster first proposed
this theory in the field of statistical reasoning, which was later improved by Shafer as the
main framework for modeling cognitive uncertainty theory. This theory allows for the
combination of evidence from different sources [34,35]. In the absence of prior information,
the uncertain information can be fused to arrive at a decision outcome. Researchers have
conducted a large number of studies on DS, solving the paradoxical problem of synthesizing
multiple conflict pieces of evidence during evidence theory synthesis [36–40].

The DS evidence theory gives an initial value for assigning the degree of confidence
for each body of evidence, i.e., basic probability assignment (BPA), and finds the degree
of support through mathematical operations. The basic probability distribution function
is denoted as m. It completes the mapping from 2Θ to [0, 1] for any subset A in frame
Θ = (θ1, θ2, · · · , θn) and satisfies Equation (10):

m(∅) = 0
∑

A⊂Θ
m(A) = 1

m(A) ∈ [0, 1]

(10)

In the identification framework, the degree of confidence of the empty set is 0, and the
sum of the degrees of confidence of all subsets A is 1. A may contain only one element or it
may contain many elements, and m(A) is determined by these elements (they are the body
of evidence E of subset A).

In the DS theory, plausibility function (Pl) and belief function (Bel) are the two main
functions. For any proposition, there is doubt, as well as true and false.

The plausibility function is used to describe the degree that the proposition is not
necessarily false, i.e., the maximum possibility that it can be true. On Θ, the plausibility
function Pl : 2Θ → [0, 1] describes the proposition where A satisfies ∀A ∈ 2Θ and the sum
of the mass functions of the intersection subset of proposition A and proposition C ∈ 2Θ.
Pl is described by (11):

Pl(A) = ∑
C∩A 6=∅

m(C) (11)

The belief function is used to describe the degree to which the proposition must be
true. On Θ, the belief function Bel(A) : 2Θ → [0, 1] describes the proposition where A
satisfies ∀A ∈ 2Θ and the sum of the mass functions of all subsets in the proposition A. Bel
is described by (12):

Bel(A) = ∑
C⊆A

m(C) (12)

Bel(A) is the lower bounds of the uncertainty of proposition A; Pl(A) is the upper
bounds of the uncertainty of proposition A (namely Bel(A) < P(A) < Pl(A)).

The DS synthesis rule performs orthogonal operations on the evidence obtained from
different data sources to maintain confidence in the proposition through the accurate fusion
of the bodies of evidence.

For the traditional DS evidence theory, when there is evidence from n different sources,
the DS synthesis rule is shown by (13), and the normalization constant K is shown in (14):

(m1 ⊕m2 ⊕ · · · ⊕mn)(A) =
1
K ∑

A1∩···∩An=A
m1(A1)m2(A2) · · ·mn(An) (13)

K = 1− k = ∑
A1∩···∩An 6=∅

m1(A1)m2(A2) · · ·mn(An)

= 1− ∑
A1∩···∩An=∅

m1(A1)m2(A2) · · ·mn(An)
(14)
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Here, k = 1− K is defined as a conflict factor whose range of values [0, 1] represents
the degree of conflict between different evidence. When k is relatively large, the conflict
between the different evidence is more serious. When k is lesser, there is a good consistency
between the evidence.

3.2. Improved Dempster–Shafer Evidence Theory

In the traditional DS theory, when multiple bodies of evidence are synthesized, contra-
dictory evidence leads to the phenomenon that the actual result of the synthesis contradicts
intuition. With the aim of correcting the shortcomings of the traditional DS theory of
evidence, domestic and foreign experts have conducted a large amount of research into
improvement methods in recent decades. There are three main categories: the modification
of the combination rules, the modification of the model, and the modification of both the
model and the composition rules. Since the combination rules of the traditional DS evi-
dence theory have a clear mathematical meaning, calculating the mutual support between
the cosine similar bodies of evidence was chosen to modify the model in this paper. The
cosine similarity is accumulated and normalized to obtain evidence credibility. Credibility
is a weighted coefficient of the weighted average, which replaces the original evidence.
Finally, the DS rules for combining evidence were used for synthesis. Using the method of
weighted average to process evidence, not only are the shortcomings of the traditional DS
theory of evidence effectively eliminated but the credibility to distribute the weight of the
body of evidence is also fully used, so that the improved model is more reasonable and the
improvement effect is more ideal.

It is assumed that there are n independent evidence bodies and k unrecognized states
{X1, X2, · · · , Xk} which are monad sets. Vector

→
mi is used to represent the i-th evidence

body, and miw is used to represent the BPA of the w-th unrecognized state in the evidence
body

→
mi. The improvement method steps are as follows:

Step 1: Find the cosine similarity between the evidence bodies.
The cosine similarity between any two bodies of evidence

→
mi and

→
mj is

Sim(
→
mi,
→
mj) =

→
mi ·

→
mj

‖→mi‖ × ‖
→
mj‖

=

k
∑

w=1
miwmjw√

k
∑

w=1
m2

iw

√
k
∑

w=1
m2

jw

(15)

The similarity matrix is obtained by traversing the three evidence bodies and calculat-
ing the similarity between any two evidence bodies: 1 S12 S13

S21 1 S23
S31 S32 1

 (16)

Step 2: Find the mutual support between each evidence body.
The support degree analyzes the support degree of other evidence bodies to

→
mi except

→
mi itself:

Sup(
→
mi) =

n

∑
j = 1
j 6= i

Sim(
→
mi,
→
mj) (17)

Step 3: Find the weight coefficient.
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The reliability (Crd(
→
mi)) is obtained by normalization Sup(

→
mi). Crd(

→
mi) is the weight

coefficient and the calculation is

Crd(
→
mi) =

Sup(
→
mi)

n
∑

i=1
Sup(

→
mi)

=

n
∑

j = 1
j 6= i

Sim(
→
mi,
→
mj)

n
∑

i=1

n
∑

j = 1
j 6= i

Sim(
→
mi,
→
mj)

(18)

Step 4: Find the weighted average evidence.

m′(Xw) =
n

∑
i=1

miwCrd(
→
mi), w= 1, 2, · · · , k (19)

where m′ is the weighted average evidence; m′(Xw) is the BPA of the w-th unidentified
state in the weighted average evidence m′.

Step 5: The DS combination evidence rule was adopted to perform n − 1 self-
combinations of n weighted average evidence m′ and to obtain the final synthesis result:

m′(X) = m′ ⊕m′ ⊕ · · · ⊕m′ =


∑

∩Xw=X

n
∏

i=1
m′ i(Xw)

1− ∑
∩Xw=Φ

n
∏

i=1
m′ i(Xw)

, X 6= Φ

0, A = Φ

(20)

where m′ i(Xw) represents BPA, which is w-th unidentified state in the i-weighted
average evidence.

3.3. Multi-Sensor Information Fusion

Different sensors acquired information, which is integrated by the DS evidence theory
for comprehensive analysis and to achieve more accurate statistical recognition. Compared
to a single sensor, the accuracy and fault tolerance of a multi-sensor system is much better.
In this paper, the structure of the multi-sensor fusion decision method is proposed. Firstly,
the feature is extracted by the one-dimensional convolution module; the obtained feature
data are then flattened and aggregated in the fully connected layer. Then, from the 1DCNN
model obtained, the features are classified by Softmax and the DS synthesis rules are used to
fuse the features; the diagnosis results are then obtained. Finally, the 1DCNN convolutional
structure is replaced by the multi-scale 1DCNN structure to achieve the final diagnosis in
the same way, as is shown in Figure 3.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 23 
 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
  Sensor 1

 
 
 
 
 
 

Conv 

Operation

 

 Sensor 2

Conv 

Operation

Conv 

layer1

Pooling 

layer1

Conv 

layer2

Pooling 

layer2

 

FC layer
Softmax 

layer

Input 

layer

Sensor n

Conv 

Operation

In
teg

r
a
tio

n
 o

f D
S

 ev
id

en
c
e th

e
o
ry

Class 0

Multi-

layer

Class 4

Class 1

Class 2

Class 3

  

Class n

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 
 
 

 

Figure 3. Structure diagram of multi-sensor fusion model. 

The fault diagnosis of the mechanical equipment was performed by constructing a 

1DCNN model. Figure 4 shows the training flow diagram of the network model. For mul-

tiple measurement points of the system, one-dimensional signals of the mechanical equip-

ment at different faults were measured by a variety of sensors. These one-dimensional 

signals are classified according to different faults and training sets. The testing sets are 

divided by all labeled data, as input into the 1DCNN model. By initializing the network 

parameters and selecting the optimal batch size and learning rate, the training set is input 

for self-learning. The trained 1DCNN is then verified by the testing set for identifying and 

classifying device faults. 

Train The Network Model And 

Update The Parameters

Start

Testing DatasetTraining Dataset

Initializes The Parameters Of Each 

Layer Of The Network

Complete The Training 

Save Network Model

Diagnostic Output

End

N

Y

Sensor1 Sensor2 Sensor3

Sample Division

Build Training Data Sets And 

Test Data Sets

Test Set Imports Network 

Model

Whether The 

Number Of Iterations 

is Reached?

 

Figure 4. Flow chart of network model training. 

Figure 3. Structure diagram of multi-sensor fusion model.



Sensors 2023, 23, 6999 10 of 23

The fault diagnosis of the mechanical equipment was performed by constructing a
1DCNN model. Figure 4 shows the training flow diagram of the network model. For
multiple measurement points of the system, one-dimensional signals of the mechanical
equipment at different faults were measured by a variety of sensors. These one-dimensional
signals are classified according to different faults and training sets. The testing sets are
divided by all labeled data, as input into the 1DCNN model. By initializing the network
parameters and selecting the optimal batch size and learning rate, the training set is input
for self-learning. The trained 1DCNN is then verified by the testing set for identifying and
classifying device faults.
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The input parameters of the multi-sensor fusion method include the initialization
value of the network, the dataset, the anticipated loss rate of training termination, and the
iteration times. Table 1 shows the pseudocode for the algorithm. The training subset and
testing subset are divided by all labels and data. An epoch is the maximum iteration time.
wi is weight in the i-th convolutional layer and pooling layer and is randomly initialized.
Er is the expected error at the end of the training phase, obtained by empirical knowledge.
W is the weight, and b is bias. The output parameters include the result of each iteration
and confusion matrix. yi is the output result of n training iterations of the 1DCNN model
at each scale. Mij is the confusion matrix for each 1DCNN at each scale. Ji(θ) is the error of
each 1DCNN after each iteration. Jj(θ) is the error of DS after each iteration.
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Table 1. Parameters of input, output, and initialized pseudocode.

Parameters of Multi-Sensor Fusion Model:

Parameter’s initialization:
Win_len: The size of each sample
Step: Step size at the time of sliding window interception
Batch_size(int, optional): How many samples are loaded per batch
Adam_lr: Customize the learning rate
wi: Weights of convolution and pooling layer i
W, b: Weights and bias of full connections layer
Epochs: Number of Iterations
Er: Expected error
Input:
Dataset: Load the data set with the data, including Vibration, Acoustic, Temperature
X_train, y_train: features and labels of training set
X_test, y_test: features and labels of test set
1DCNN Output:
Train_loss, Test_loss: The loss value is output through the network
Train_acc, Test_acc: The accuracy value is output through the network
T-SNE: Dimension reduction visualization
ỹi: Training iteration output
Mij: Confusion matrix of each scale
Ji(θ): The error of each iteration of training
DS Output:
Jj(θ): Iterative errors during training
m(Ai): Diagnostic results of BPA
k: Evidence conflict factor

After setting the initialization parameters, the training starts in the while loop, and
multiple sensor data are sent to the 1DCNN model in parallel with the training. Algorithm
1 illustrates the main structure of the multi-sensor fusion model. It is used to describe the
parameters and weights of the model in the training and updating stages. After each itera-
tion of model training, the model prediction (ỹi) and model loss (Ji(θ) =

1
2 ∑N

n=1 (ỹi − yp)
2)

are calculated. Then, the confusion matrix of each scale 1DCNN is calculated and the
output results are obtained. The combination rules of the DS theory are merged according
to the Equations (15)–(20) to obtain the predicted value.

Finally, the DS loss of Jj(θ) = 1
2 ∑N

n=1 (ỹi − ypd)
2 is calculated using the predicted

value, and the parameters of the gradient aggregation and the past gradient of the Adam
optimizer are calculated using the 1DCNN and the DS loss. The specific process of the
Adam algorithm is shown in (21):

θt = θt−1 − αm̂t/(
√

v̂t + ε)
m̂t = mt/(1 + βt

1)
mt = β1(mt−1) + (1− β1)(ρJi(θ) + ρJj(θ))

v̂t = vt/(1− βt
2)

vt = β2vt−1 + (1− β2)(ρJi(θ) + ρJj(θ))
2

(21)

where ρ is the weight of the error of 1DCNN and DS; ypd is the prediction of the model; β1
and β2 are exponential decay rates used to control the influence of the weight allocation
and the gradient square, respectively; ε is a very small constant that has little effect on the
algorithm and avoids division by 0; α is the learning rate that controls the update rate of the
weights during backpropagation; vt represents the exponential square of the past gradient;
mt represents the exponentially weighted average of the past gradient index; and m̂t and
v̂t are the correction values of the corresponding terms. During the training process, the
model parameter θ is updated through the above steps for each iteration of (21) until the
network error converges.
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Algorithm 1: Pseudocode of Multi-sensor fusion model.

Input: Initialize iteration variable; wi, W, b: These parameters are set randomly
Require: The training sample set is formed by using sliding window: y_test, y_train, X_test,
X_train
1: while n< Epochs and (ρJi(θ) + (1 − ρ)Jj(θ)) < Er do
2: for each 1DCNN in Dataset do
3: for all X_train do
4: ypd is obtained from X_train by using Formulas (15)–(20)
5: end for
6: Calculate ỹi
7: Calculate confusion matrix Mij
8: Set up loss function J(θ) and Calculate Ji(θ)
9: end for
10: Calculate Jj(θ)
11: Using the Adam algorithm, find global optimal solution of gradient descent as fast as
possible
12: wi, W, b are updated using equation
13: n + = 1
14: end while
Output: ỹi

4. Experimental Verification and Analysis
4.1. One-Dimensional Convolutional Neural Network Diagnostic Analysis
4.1.1. Establishment of Diagnostic Model

The architecture is shown in Figure 5. The diagnosis of faults in the blower of a flash
furnace used in nickel smelting by the method proposed in this paper was undertaken. For
the safe operation of a flash furnace, a low desulfurization rate should be avoided, and
equipment damage and even casualties can be caused by abnormal fans; several sensors
are used to monitor the fan’s operation and adjust the speed of the fan or stop the operation
of the fan according to the data collected. There are many types of mechanical components
in the flash furnace system, and there are limitations in fault diagnosis analysis based on
only one signal source. The signals from multiple sources, such as vibration, acoustic, and
temperature, generated in the event of a system fault complement each other, resulting in
an improvement in the fault diagnosis rate. To demonstrate the method’s effectiveness,
three types of sensors acquired during plant operation were selected from the diagnostic
model for simulation verification.

4.1.2. Experimental Data

In order to ensure the diversity of experimental data, five different working condi-
tions were simulated in the experiment, using a vibration sensor to detect the vibration
signal, an acoustic sensor to detect the acoustic signal, and a temperature sensor to detect
the temperature signal. To obtain objective results, sampling was used to obtain experi-
mental data from the original data. The total number of samples for each type of defect
was 4000, which corresponded to 4000 vibration samples, 4000 acoustic samples, and
4000 temperature signals at the corresponding time, for a total of 20,000 vibration samples,
20,000 acoustic samples, and 20,000 temperature signals. According to the ratio of 4:1, a
random selection of 75% of the dataset was used for training, and the remaining 25% of the
dataset was used for testing. The data were fed into the model for learning and training.
The sample data is shown in Table 2.

The common gearbox fault types are wear, shedding, tooth breakage, eccentric wear,
and skew; common bearing fault types are wear, fatigue, shedding, sediment, and eccen-
tricity; common types of generator fault are winding burnout, brush wear, bearing failure,
mechanical component damage, and unstable motor operation.
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Table 2. Sample data.

Fault Category Total Samples Training
Samples Test Samples Label

normal 4000 3000 1000 0
bearing fault 4000 3000 1000 1
gearbox fault 4000 3000 1000 2

blade fault 4000 3000 1000 3
generator fault 4000 3000 1000 4

For generator faults, bearing faults, and gearbox faults, the vibration signals of various
faults were collected by vibration sensors for analysis. The experiment simulated one
normal condition and five different working conditions with a sampling frequency of 100
Hz. In total, 4700 data points were collected under each working condition, and 28,200
data points, including each type of fault, were collected. The sample data for each type of
fault is shown in Table 3.

Table 3. Sample data for each type of fault.

Gearbox Fault Bearing Fault Generator Fault Training Samples Test Samples Label

normal normal normal 3760 940 0
wear wear winding burnout 3760 940 1

shedding fatigue brush wear 3760 940 2
tooth breakage shedding bearing failure 3760 940 3
eccentric wear sediment mechanical component damage 3760 940 4

skew eccentricity unstable motor operation 3760 940 5

4.1.3. Model Training and Parameters

In this paper, the 1DCNN network model consists of three scale submodels, where
each individual submodel includes a large convolutional layer, three groups of convolution
and maximum pooling, and a flattening layer. Each submodel finally converges with the
fully connected layer. In the end, Softmax outputs the classification result.
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Every convolution module of the three scales adopts the same parameter setting. The
parameters of the convolution and pooling layer in each branch are the same. All convolu-
tional layers in the model use the activation function Relu, and the filling method is the
same. The dropout parameter is set to 0.5. Softmax has five output neurons, corresponding
to several fault states. Table 4 shows the specific structural parameters of the 1DCNN.

Table 4. 1DCNN model detailed parameters.

Layer Layer Type Kernel Size/Stride/Kernel Channel Size Remark

1 Convolution0 32 × 1/2/16 Relu
2 Convolution1 16 × 1/2/32 Relu
3 Pooling1 2 × 1/1/32 Max pooling
4 Convolution2 8 × 1/2/64 Relu
5 Pooling2 2 × 1/1/64 Max pooling
6 Convolution3 4 × 1/2/128 Relu
7 Pooling3 2 × 1/1/128 Max pooling
8 Flattening 256
9 Fully Connected 256 Relu

10 Softmax 5

4.1.4. Experimental Effect Analysis

The accuracy and loss values of the 1DCNN network model in the training process
are shown in Figures 6 and 7. As the iteration times increase, the accuracy curve is on an
upward trend, while the loss curves are on a downward trend; the model performance
becomes better and better. After several iterations, in the training set, the model’s loss
value finally approaches zero, and the recognition accuracy reaches 100%. In the test set,
the model’s loss value gradually decreases and then remains in a state of fluctuation. The
recognition accuracy increases rapidly, from about 20% at the beginning, and then stabilizes
gradually. The highest recognition accuracy during the training process was 98%, with
about 30 iterations.
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Figure 8 shows the confusion matrix. The values on the matrix grid represent the
number and proportion of predicted correctness in each type of sample. Figure 8 shows
that there are 41 and 49 correct predictions in the normal state 1 and state 4 categories
in Figure 8a, which is 100%. Of the predictions in the state 0 category, 48 were correctly
predicted, which corresponds to 96%; of the predictions in the state 2 category, 49 were
correctly predicted, which corresponds to 98%. Of the predictions in the state 3 category,
45 were predicted correctly, corresponding to 93.75%. Figure 8b,c were analyzed using the
same method. The model can effectively identify the five states of the flash furnace.
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To more intuitively study the classification effect of flash furnace states in each layer
of the CNN, the T-distributed stochastic neighbor embedding (t-SNE) algorithm is used
to visualize model output signals in two dimensions, as shown in Figure 9. Each feature
is essentially separated and aggregated and has a good clustering effect. Finally, the five
types of states can be well identified, with obvious linear boundaries.

In Figure 9j–l, each feature is essentially separated and aggregated and has a good
clustering effect. Finally, the six types of states can be well identified, with obvious
linear boundaries.

4.1.5. Comparative Study of Models

As is shown in Figure 10, data from one sensor were analyzed in a comparative
experiment. In the training process, the accuracy and loss values of the long short-term
memory network (LSTM) were calculated. The model training stopped in advance, after
about 30 iterations. Compared with the diagnosis of the 1DCNN, the recognition speed of
the LSTM state is slower, and the recognition effect is worse. From Figure 10, the recognition
accuracy of the LSTM on the verification set remains unchanged at about 37% after about
30 iterations; the loss value is also large, and the decline rate is extremely slow, which
proves that the fault diagnosis ability of the LSTM is poor.

Figure 11 shows the confusion matrix. From Figure 11, there are 33 correct predictions
in the category of state 0, which corresponds to 80.49%. Of the predictions in the state
1 category, 22 were correctly predicted, which corresponds to 43.14%. Of the predictions
in the category of state 2, 10 were predicted correctly, which corresponds to 17.54%; of
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the predictions in the category of state 3, 6 were predicted correctly, which corresponds
to 16.67%; of the predictions in the category of state 4, 29 were predicted correctly, which
corresponds to 54.72%. From the test results, the LSTM model cannot effectively identify
the five states of the flash furnace.
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Figure 9. t-SNE dimensional reduction visualization. (a) t-SNE of original vibration signal;
(b) t-SNE of original acoustic signal; (c) t-SNE of original temperature signal; (d) t-SNE of single scale
vibration signal; (e) t-SNE of single scale acoustic signal; (f) t-SNE of single scale temperature signal;
(g) t-SNE of multi-scale vibration signal; (h) t-SNE of multi-scale acoustic signal; (i) t-SNE of
multi-scale temperature signal; (j) t-SNE of gearbox fault; (k) t-SNE of bearing fault; (l) t-SNE of
generator fault.

To more intuitively study the classification effect of flash furnace states in the LSTM
model, the T-distributed stochastic neighbor embedding (t-SNE) algorithm is used to
visualize model output signals in two dimensions, as shown in Figure 12. The individual
features are not completely separated and aggregated; the clustering effect is small. Finally,



Sensors 2023, 23, 6999 17 of 23

the five types of fault conditions are not separated, so the recognition effect of the model
is low.
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4.2. Dempster–Shafer Fusion Diagnosis Analysis
4.2.1. Fault Diagnosis Evaluation Criteria

The evaluation criteria for fault diagnosis are expressed by a confusion matrix which,
in supervision learning, is a visual tool. It is used to compare the classification result
with the actual measurement result. By using a confusion matrix, we can evaluate the
classification accuracy. The confusion matrix has a column for each category of prediction
and so each column is the total number of predicted data in that category. Each row is a
specific category of data. To assess the efficiency of the method, specificity, recall, precision,
and accuracy were used. These criteria are expressed by Equations (22)–(25), respectively.

Accuracy =
TP + TN

TP + FN + TN + FP
(22)

Precision =
TP

TP + FP
(23)

Recall =
TP

TP + FN
(24)

Specificity = 1− FP
TN + FP

(25)

As well as the actual sample category, the model recognition is positive, as indicated
by TP. TN indicates that the sample category is negative, as is the model recognition. The
actual sample category is negative, while the model recognition is positive, as indicated by
FP. The actual sample category is positive, while the model identification is negative, as
indicated by FN.

4.2.2. Diagnostic Analysis

A total of 1190 sampling points were divided into a data sample. In total, 200 samples
were selected from each fault category, amounting to 2000 samples. At a ratio of 4:1,
the training and testing samples were divided into three multi-scale 1DCNN diagnosis
subnetwork models for feature extraction, and the results were input into the improved DS
evidence theory model to achieve decision-level fusion diagnosis classification.

In the experiment, 10 test results were selected as the final fault diagnosis results
to enhance the experiment’s reliability. According to the developed multi-scale sensor
information fusion diagnosis method, three sensor data sources were input into the parallel
1DCNN diagnosis subnetwork for preliminary feature extraction and fault classification.
The network structure and parameters of the three 1DCNNs were identical. By training the
1DCNN network, the preliminary output results are obtained. The output results for the
samples of each type of fault from the three sensor data sources are shown in Table 5.

After the preliminary diagnosis of the 1DCNN network, the model in this paper can
diagnose all kinds of faults well, with an average diagnosis and recognition rate of more
than 90%. Then, according to the fusion rules of the DS theory, the fusion analysis of three
scaled data source networks was performed. Table 6 shows the results of the fusion.

By comparison, there may be conflicting data due to the different data sources, which
means that the diagnostic results of the three network outputs are different. However,
according to the results of the network training, the diagnosed fault type is consistent with
the actual fault type, which also confirms that the 1DCNN network model has a better
effect. After processing the DS theory, the fault mode representation of the network was
comprehensively analyzed. Table 6 shows that diagnostic accuracy can reach 99.65–100.00%,
which confirms the high accuracy and reliability of the model.

When the sensor amount increases, the diagnosis model has a higher accuracy and
reliability and it is more effective.
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Table 5. Multi-scale 1DCNN diagnosis actual output results.

Sensor
Actual Output Actual

Category
Diagnostic
Category0 1 2 3 4

Vibration

0.9286 0.0000 0.0000 0.0714 0.0000 0 0
0.0500 0.9000 0.0250 0.0000 0.0250 1 1
0.0652 0.0000 0.8913 0.0000 0.0435 2 2
0.0000 0.0000 0.0000 0.9655 0.0345 3 3
0.0000 0.0385 0.0000 0.0000 0.9615 4 4

Acoustic

0.9756 0.0000 0.0000 0.0000 0.0244 0 0
0.0222 0.8444 0.0222 0.0000 0.1112 1 1
0.1111 0.0000 0.8889 0.0000 0.0000 2 2
0.0000 0.0377 0.0189 0.8868 0.0566 3 3
0.0000 0.0000 0.0185 0.0000 0.9815 4 4

Temperature

0.9574 0.0426 0.0000 0.0000 0.0000 0 0
0.0408 0.9592 0.0000 0.0000 0.0000 1 1
0.0333 0.0000 0.8667 0.0333 0.0667 2 2
0.0500 0.0000 0.0000 0.9500 0.0000 3 3
0.0000 0.0000 0.0000 0.0000 1.0000 4 4

Table 6. DS evidence theory fusion results.

Actual
Category m(A1) m(A2) m(A3) m(A4) m(A5) m(Θ) Conflict Factor (k)

0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1678
1 0.0001 0.9999 0.0000 0.0000 0.0000 0.0000 0.2710
2 0.0035 0.0000 0.9965 0.0000 0.0000 0.0000 0.3131
3 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.1866
4 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0563

4.2.3. Analysis of Evaluation Results

Precision indicates how many positive class predictions are generated from positive
samples: it represents the proportion of samples that are truly positive among those
identified as positive by the model. Figure 13 can be used to compare the precision of all
the results, including the precision of vibration, acoustic, and temperature signals after the
multi-scale 1DCNN model, as well as the precision of the LSTM model and DS fusion. A
model’s effect is generally better the higher its accuracy. As shown in Figure 13, a higher
level of precision is achieved with 1DCNN and DS (1DCNN_DS) fusion than with the other
methods. The average precision of 1DCNN_DS is 0.9934, which can meet the requirements
of anomaly detection for complex industrial systems.
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In the dataset, recall indicates all of the positive samples which made positive pre-
dictions. It represents the ratio of positive samples identified by the model to all positive
samples. Figure 14 can be used to compare the recall of all the results, including the recall
of vibration, acoustic, and temperature signals after the multi-scale 1DCNN model and the
recall of the LSTM model and DS fusion. A model’s effect is generally better the higher its
recall. As shown in Figure 14, a higher level of recall is achieved with 1DCNN_DS fusion
than with the other methods. The average recall of 1DCNN_DS is 0.9884, which is a normal
and acceptable result.
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Specificity indicates the ratio of negative class samples the model identifies to all
negative class samples. Figure 15 can be used to compare the specificity of all the results,
including the specificity of vibration, acoustic, and temperature signals after the multi-scale
1DCNN model and the specificity of the LSTM model and DS fusion. A model’s effect is
generally better the higher its specificity. As can be seen from Figure 15, a higher level of
specificity is achieved with 1DCNN_DS fusion than with the other methods. The average
specificity of 1DCNN_DS is 0.9947, which is a normal and acceptable result.
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Sensors 2023, 23, 6999 21 of 23

ment. Using the one-dimensional convolutional structure to deal with one-dimensional
signals in time series, the time dependence of the collected signals is maintained. On this
basis, according to the training task of fault diagnosis, a CNN-based diagnostic model is
developed for feature extraction of the fault signals collected by sensors. The experimental
comparison shows that the developed intelligent diagnosis method 1DCNN can effectively
improve the fault extraction ability.

In addition, the fusion decision fault diagnosis method with improved DS evidence
theory realized the comprehensive fault analysis of devices. The diagnostic model of the
DS evidence theory was built using a multi-branch 1DCNN network, and the revised body
of evidence and probability distribution were established. The fault features extracted from
multiple data sources were processed and fused at decision level, and the ability of the
diagnostic model to handle uncertain information was improved. The proposed method
improves the diagnostic accuracy, according to experimental results, which is effective
and stable.

Further research can optimize the network model, build more advanced deep learning
models, improve the efficiency of model training, and reduce the complexity of diagnostic
models. We have developed an intelligent sensing sensor to improve the security of indus-
trial control systems through effective configuration and the proposed fusion algorithm.
In addition, effective sensor selection and fusion strategies need to be studied to improve
the overall performance of the diagnostic system. This research is very meaningful in
improving the safety and reliability of complex systems and reducing enterprise costs.
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